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Abstract: Computer vision has been developed greatly in the past several years, and many useful and
interesting technologies have been presented and widely applied. Image matching is an important
technology based on similarity measurement. In this paper, we propose a novel feature describing
model based on scale space and local principle component analysis for heterogeneous image
matching. The traditional uniform eight-direction statistics is updated by a task-related k-direction
statistics based on prior information of the keypoints. In addition, the k directions are determined by
an approximately solution of a Min-Max problem. The principle component analysis is introduced to
compute the main directions of local patches based on the gradient field. In addition, the describing
vector is formed by then implementing PCA on each sub-patch of a 4× 4 mesh. Experimental results
show the accuracy and efficiency of proposed method.

Keywords: main direction; principle component analysis; scale space; heterogeneous; gradient field;
image matching

1. Introduction

Computer vision techniques have been widely applied in many areas such as object tracking,
medical image analysis, and pattern recognition. Image matching can help to find the similar content
in different images by analyzing the pixel values and their potential features [1–12]. Traditional image
matching techniques are developed based on different principles and information using skills. Some of
them directly use the original pixel values in a certain region, and it is easy to operate and work
well in some simple scenes [13–17]. It often requires more computation costs and is sensitive to the
geometrical differences. Some others process the matching computing based on features extraction
instead of directly on the pixel values [2,3,6,8,14,18]. Invariance can be achieved or partly achieved
in some procedures such as rotation, resizing, translation, and so on. After the features are detected,
matching computing will be processed on a certain similarity.

Some local feature detection methods have been presented in the past years, and it was put
forward firstly by Moravec [13] and Harris [1]. Moravec and Harris introduced auto-correlation
function and auto-correlation matrix independently to find feature points (simple corners).

However, for the extracted feature points, the former is not adaptive to rotation and noise,
the latter is adaptive to rotation and illumination, does not have scale invariance. Shi and Tomasi
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improved the Harris, and put forward the Shi–Tomasi [19], which makes the distribution of extracted
feature points more uniform and reasonable. It is computationally expensive and the feature points are
not scale invariant. SUSAN (smallest univalue segment assimilating nucleus) is proposed to determine
corners by the number of pixels in the preset region. The algorithm is small in computation and does
not have scale invariance [4]. Then, a machine learning method is used to compute FAST (features from
accelerated segment test) [20]. It can calculate faster, but when there are noise in the image, there will
be more error feature points. Based on FAST, Mair put forward AGAST (adaptive and generic corner
detection based on the accelerated segment test), which effectively improves the speed of feature point
extraction [21]. However, none of them have scale invariance. KAZE descriptor used a nonlinear
diffusion filter to construct a stable nonlinear scale space. It takes a long time to construct the nonlinear
scale space, and more octaves can reduce the efficiency of KAZE [22]. With the rapid development
of machine learning, some new methods, including sparse coding and convolutional neural network
(CNN), are applied to feature extraction [23–30]. Sparse coding is a linear combination that reconstructs
the input data into a set of hypercomplete basis vectors. The new features of input data are composed
of the coefficients of base vectors. Sparse coding is very slow in practice. The eigenvalue is obtained by
a convex optimization method in the test phase. From the structure perspective, the network can use
the increased nonlinearity to get the approximate structure of the objective function, and at the same
time get a better representation of the characteristics by increasing the depth of CNN. However, it also
increases the overall complexity of the network, making it difficult to optimize the network and easy
to over fit.

Scale-Invariant Feature Transform (SIFT) is proposed to improve the features invariance of previous
methods [3,6]. Image pyramid and local gradient information statistics are introduced to compute the
128-dimensional features. It can work well even if there exist some changes in scale, brightness, viewing
angle, etc. However, the computation and the matching error rate are still considerable. Some techniques
based on SIFT have been developed over the past years. Ke and Sukthankar introduce principal
component analysis to replace the weighted histograms and reduce the dimension of features to 20 [7].
Speeded up robust features (SURF) are presented based on Hessian matrix and image convolutions to
faster the computing [18]. There are some other techniques that have also been introduced to achieve
better performance [9,31–34].

However, heterogeneous image matching is much different from natural image matching [35–39].
Some vision characteristics may change seriously by the imaging condition. The related features
describing will also change greatly. It can be found that many traditional methods do not work in
heterogeneous image matching.

This paper aims to present a novel local features describing model more advantageously for
heterogeneous image matching. (1) The prior information of some keypoints is used to determine
k adaptive directions instead of the traditional uniform eight directions. A gradient histogram is
computed on these new directions and forms the first part of the describing vector. (2) The main
direction of a local area is computed by carrying out PCA on the gradient fields instead of searching
the extreme of a gradient histogram. (3) PCA is independently carried out on 16 sub-patches of the
local area and the first components are integrated to the second part of the describing vector. After the
final k + 32 dimensional descriptor formed, better performances can be achieved on some matching
tasks by the proposed method with respect to some traditional methods.

The rest of this paper is organized as follows: in Section 2, the related fundamentals of scale space
and principle component analysis are prepared. A novel feature descriptor based on PCA is proposed
in Section 3. In Section 4, several experiments are implemented to verify the accuracy and efficiency of
proposed algorithm.
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2. Fundamentals

2.1. Scale Space and Difference Space and Principal Component Analysis

Scale space theory [40] has been introduced in many models and it can help to distinguish
the features in different levels. After a scale parameter added to the related model, a multi-scale
representation sequence can be computed following the changing of the parameter. Many tasks can be
achieved by analyzing or processing the sequence such as extracting features.

The classical linear scale space can be generated by a diffusion equation as shown in Equation (1),
and it can be regarded as the observation of the image at different distance/scale:

∂I
∂t
(x, t) = c∇2 I(x, t), (x, t) ∈ Ω× Σ,

I(x, 0) = I0(x), x ∈ Ω,
(1)

where t denotes the scale parameter and c denotes the diffusion constant. I(x, t) means the a scale
space and Ω ⊂ R2 is the image domain. This partial differential equation can be solved by some
classical techniques such as Fourier transform and many related models have been presented for
different image processing problems [41–43]:

I(x, t) = I(x) ∗ 1
4πt2 exp(−|x|

2

4t2 ). (2)

It means that the scale space can be denoted as the convolution of image function I(x) and a Gaussian
kernel function g√2t with different t, so-called Gaussian scale space. Then, the discrete difference of
Gaussian space can be denoted as

d I(x, t) = I(x, t + dt)− I(x, t). (3)

Here, dt can be set according to the image data. Figure 1 shows two Gaussian images and
a difference image of Lena.
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Figure 1. Gaussian scale space of Lena image.

Principal Component Analysis (PCA) [44] is a common technique for dimensionality reduction
and has been widely applied to many computer vision problems such as feature selection, object
recognition, and so on. The main ideas of PCA can be summarized as follows. Assume n× d matrix Y
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is the normalized observation data of random variables Y1, Y2, ·, Yd. Then, the d-dimensional data can
be mapped into an orthogonal space for a maximal variation in each new dimension. The orthogonal
space can be computed by applying matrix eigen value theory on the covariance of Y:

YTYvi = λivi, i = 1, 2, · · · , d. (4)

The components can be denoted as Vi = Yvi with the assumption λ1 > λ2 > · · · > λd and vi
means the direction with maximal projection variation of original data. Then, the first k components
can be used for dimension reduction of the original data, and k can be determined by specific needs.

Though PCA suffers from some restriction and shortcomings, it is still popular due to its simplicity.
Fergus et al. introduce PCA to unsupervised scale-invariant learning for object recognition [45]. This technique
is also applied to represent keypoint patches and improves SIFT’s matching performance [7], named
PCA-SIFT.

2.2. SIFT and PCA-SIFT

Based on the scale space and the difference space, the original Scale-Invariant Feature Transform
(SIFT) can be described as four main steps.

1. Scale-space peaks selection.

The extreme points in the DoG (difference of Gaussian) space are detected by comparing the
pixels in a 3× 3× 3 neighborhood, named non-maximum suppression. Let D(x) and Ur(x) denote
the DoG function and r-neighborhood of x; then,

EPTs = {x, D(x) ≥ D(y)∀y ∈ U1(x)}. (5)

2. Keypoint localization.

Taylor expansion and principle curvature are both applied to check the detected extreme points
again and then keypoints can be located. Let H denote the Hessian of DoG function D(x); then,

KPTs = {x ∈ EPTs, | − (
∂2D
∂x2 )−1 ∂D

∂x
| < 0.5∧ |D(x)| < 0.03∧ Tr(H)2

|H| <
(r + 1)2

r
)}. (6)

Generally, set r = 10.

3. Orientation assignment.

To achieve rotation invariance, eight-direction statistics is applied on the gradient field of A(x),
the local patch centered at x. Then, the orientation can be computed by searching the maximal direction
of the histogram.

θ(A) = argminhist8(θk,∇A), k = 1, 2, . . . , 8. (7)

Here, hist8(θk,∇A) means the value in [θk − π
8 , θk +

π
8 ) when the histogram was carried out on

a local gradient patch ∇A(x). θk is one of the eight uniform directions.

4. Keypoint descriptor.

Then, eight direction statistics is applied on each subarea after the local gradient field has been
rotated by θ0 and divided into 4× 4 sub-areas. Let B(i, j) denote the subareas of rotated A(x); then,
a 128-dimensional descriptor can be obtained by arranging them as follows:

FSIFT =
[
hist8(θk,∇Bi,j)

]
4×4×8 . (8)
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The PCA-SIFT is similar to the SIFT in many details and they only differ in Step 4. It can be
summarized as follows.

1. An eigenspace of the image gradient fields is pre-computed.

The gradient fields on a 41× 41 patch centered at the keypoint can be rearranged to a 2× 39× 39 =

3042-dimensional vector. In addition, it is normalized to unit magnitude for reducing the unexpected
impact of variations in illumination. Such about 21,000 patches will be collected and then principle
component analysis is processed. The first 20 components will be selected to generate the projection
matrix for any other observation. Let C denote the normalized version of collected patches; then,
the projection matrix for any path can be computed as

Mproj = [v1, v2, · · · , v20] . (9)

Here, CTCvi = λivi, i = 1, 2, · · · , d and λ1 ≥ λ2 ≥ · · · ≥ λd.

2. A simplified descriptor is used on the eigenspace.

A 3042-dimensional vector z on a given image patch centered at x will be computed and
normalized, and then projected into the pre-computed feature space as denoted by Equation (10).
A 20-dimensional vector can be used to describe the feature point. Figure 2 shows some keypoints and
patches of the Lena image. Figure 2b shows the gradient filed on the yellow patch. Figure 2c shows
the pre-computed feature space to be dimension reduced:

FPCA−SIFT = zMproj. (10)

keypoints

patch

(a) (b)

fx fy

patch n

patch i

patch 1

n keypoints

3042-dimension

(c)

Figure 2. Keypoints and the patches: (a) some keypoints and the patches centering them;
(b) the gradient field on a patch; (c) a 3042-dimensional feature space for dimension reduction.

After then, the Euclidean distance can be used to determine whether the two vectors mean the
same keypoint in different images. In more detail, a proper threshold ρ0 is presented for the ratio
between the best and second-best match as in the SIFT. Let Ia and Ib be the two images, x ∈ Ia and
x ∈ Ib are keypoints, and then the matching between x and y can be determined based on PCA-SIFT
features FPCA−SIFT(x) and FPCA−SIFT(y)

IsMatch(x, y) =

{
1, ρ > ρ0,
0, ρ ≤ ρ0.

(11)

Here,

ρ = max
{

dist(FPCA−SIFT(x), FPCA−SIFT(t))
dist(FPCA−SIFT(x), FPCA−SIFT(y))

, t ∈ Ib ∧ t 6= y
}

. (12)
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It is obvious that a smaller ρ0 means fewer false positives and more false negatives. On the contrary,
a bigger ρ0 leads to more false positives and fewer false negatives. A proper threshold ρ0 is advantageous
to an appropriate trade-off between false positives and false negatives.

Different from the features represented by histogram of local gradient fields in traditional SIFT,
PCA-SIFT represents the features in the eigenspace. The descriptor can be computed more efficiently
after the eigenspace pre-computed based on sufficient prior keypoints. Speeded up robust features
(SURF) detect the extremes in the difference of Hessian (DoH) instead of DoG. Then, the downsampling
in the Gaussian pyramid is replaced by a box-filter with some fixed size, and the eight-direction
statistics is replaced by computing a Harr wavelet response. However, the strong dependence on
local gradient and discrete scale in DoH should still be addressed in some cases. KAZA constructs
a nonlinear scale space via a nonlinear diffusion filter for better matching performance in complex
cases. In addition, the additive operator splitting (AOS) scheme requires more computation.

3. Proposed Method

The original PCA-SIFT describes the feature via the first 20 components of collected patches
centered known keypoints. It is advantageous for the linear structure, but some information of
nonlinear structure will be ignored. In addition, pre-computing should be carried out on considerable
classical images/patches for good representativeness. Furthermore, 20 components may be not
sufficient in some scenes for the information lost.

In our opinion, PCA is more advantageous to achieve local representativeness than the global,
and it is robust to some image changes such as noise, rotation, and so on. Thus, we introduce it to
describe local information and then form a novel feature describing model.

Moreover, the traditional uniform eight directions in [0, 2π) are easy to be used to describe the
local gradient distribution centered at a keypoint. However, various distributions can be found in
different tasks indeed. Task-related directions will be more beneficial to achieve accurate features and
correct matches. The prior information of keypoints can be used to determine the directions/intervals
which were used to implement gradient statistics.

Heterogeneous images are often captured by difference imaging devices/methods on a same
scene/object. Figure 3 shows two types of heterogeneous images and their local gradient fields.
The traditional image changes such as noise, rotation, and scaling can be regarded as specific
heterogeneity. Heterogeneous features or keypoints can be explained in a similar way. It can be found that
the local gradient fields of heterogeneous images are very different from the original. Traditional methods
based on gradient statistics often fail to achieve matching tasks on such heterogeneous images. This paper
aims to present a novel feature describing model that is advantageous to address some heterogeneous
images matching tasks.
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(a) (b) (c)

Figure 3. Two types of heterogeneous images: (a) original; (b) heterogeneous type 1; (c) heterogeneous
type 2.

3.1. Main Steps

Based on previous sections, a novel frame for heterogeneous image matching can be formulated
as follows.

1. Gradient histogram and adaptive intervals.

According to the matching task, some prior information of keypoints can be helpful to determine
proper candidate intervals for computing gradient histogram. Such adaptive intervals are more
advantageous to describe the keypoints accurately and distinguish different keypoints than traditional
uniform eight-intervals.

The local gradient information of some known keypoints can be integrated as ∇I(x), x ∈ Ωkey.
Ωkey means the set of keypoints and ∇I(x) is the gradient at a keypoint x in the rotated local patch.
Then, refined interval statistics is carried out on it, and a weighted histogram can be denoted as

hi = ∑
|θ(x)−ci |<= π

m

|∇I(x)|, i = 1, 2, · · · , m. (13)

Here, {ci}m
i=1 means the centers set of candidate intervals. θ(x) denotes the direction angle of

∇I(x). Figure 4 shows the traditional histogram and the weighted version of Lena image as m = 36.
Then, an optimization model (14) is introduced to determine a set of adaptive intervals for local

gradient statistics:
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min
k,Cj

1
k

k

∑
j=1

(
∑

ci∈Ej

hi −
∑i hi

k
)2, max

k,Cj

1
k

k

∑
j=1

∑cj∈Eh
j

hi

∑ci∈Ej
hi

,

s.t. E1 =

{
[C1 − ε0

2 , C1 +
ε1
2 ], C1 + Ck > π,

[Ck +
ε0
2 , 3π

2 ] ∪ [−π
2 , C1], C1 + Ck ≤ π,

(14)

Ek =

{
[Ck, 3π

2 ] ∪ [−π
2 , C1 − ε0

2 ], C1 + Ck > π,

[Ck −
εk−1

2 , Ck +
ε0
2 ], C1 + Ck ≤ π,

Ej = [Cj −
εj−1

2
, Cj +

εj

2
], Eh

j = [Cj −
εj−1

4
, Cj +

εj

4
], j = 2, 3, · · · , k− 1,

ε0 =
2π + C1 − Ck

2
, εj = Cj+1 − Cj, j = 1, 2, · · · , k− 1,

−π

2
≤ Cj < Cj+1 ≤

3π

2
, j = 1, 2, · · · , k− 1.

Here, Ej(j = 1, 2, · · · , k) means the adaptive intervals and Cj(j = 1, 2, · · · , k) denotes the centers,
k is the number of selected intervals. It can be approximately solved by a dynamic programming
algorithm after k preset.

(a)
0 2 4

0

1000

2000

3000

4000

5000

(b)
0 2 4

0

50

100

150

200

(c)

Figure 4. Gradient field statistics: (a) a gradient field on Lena image; (b) a traditional histogram;
(c) the weighted histogram.

2. SIFT keypoints localization.

In this step, the keypoints are detected as the SIFT. The extreme points in the DoG space can
be detected by non-maximum suppression. Let D(x) and Ur(x) denote the DoG function and
r-neighborhood of x; then, the keypoints can be located as Equations (5) and (6).

3. Main direction computing based on PCA of local patch.

The main direction will be computed on the local gradient field of patch A(x) centered the
keypoint x. To recognize heterogeneous image features, we normalize the keypoint a maximal point in
the difference space. The local gradient field extracted from the pre-computed global gradient field
will be treated in the same way. Then, PCA will be carried out on the normalized rearranged 2× n
matrix L, and the first component can used to determine the main direction:

θ(A) = arctan
v1[2]
v1[1]

. (15)

Here, v1 = PCA(1,∇A) means the first component of PCA carried out on ∇A; it can be denoted
in more detail as

λ1 = max
λi

{
|λi|, LLTvi = λivi, i = 1, 2

}
, L =

∇Iloc −mean(∇Iloc)

std(∇Iloc)
.
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Then, the patch will be rotated by the main angle before computing the feature vector.

4. Feature vector computing based on PCA and the adaptive intervals.

To enhance the ability recognizing heterogeneous image features, we define the feature vector
by two parts. Gradient statistics of the rotated local patch B will be taken on the k selected intervals,
and the first part of the feature vector is generated. Then, the local patch B will be divided into 4× 4
sub-patches, denoted by Bs,t(s, t = 1, 2, 3, 4). Different amounts of sub-patches can be set for different
performances on accuracy or computation. A bigger amount means more computation and higher
sensitivity. PCA will be carried out out independently on each small patch and determine the main
gradient. Figure 5 shows the 16 divided sub-patches and the main gradient computed by PCA on
a local gradient field. These 16 main gradients generate the second part of the feature vector. The final
32 + k dimensional descriptor can be obtained by arranging them as

F = [F1, F2]k+32, (16)

where F1 =
[
hist(Ej,∇A)

]
k, F2 = [PCA(1,∇Bs,t)]4×4×2, hist(Ej,∇A) means the value in interval Ej

when the histogram was implemented on local patch A(x). Ej is one of the selected intervals computed
in Step 1.

(a) (b) (c)

Figure 5. Divided sub-patches and the main gradients: (a) a local gradient field; (b) divided sub-patches;
(c) main gradients computed by PCA.

3.2. Parameters Setting

The adaptive intervals are determined by the optimization model (14) based on m candidate
intervals. Too big of an m is not necessary for the limited discrete information of the keypoints, and we
set m = 360 in the experiments.

k adaptive intervals are used for gradients statistics and embedded in the feature vector. It can be
found that a smaller k is advantageous to save computation but not beneficial to precision. A smaller
k means less information from the keypoint collected in F1, the first part of the feature vector. It will
reduce the accuracy in some sense. A bigger k required more computation, and it is beneficial to
precision. More information for the keypoint can be collected in the F1. However, it also leads to higher
sensitiveness. For a trade-off between computation and precision, it is advantageous to set k = 36 in
our experiments.

Then, the matching between two keypoints x, y can be determined based on features F(x) and
F(y) by Equation (11) and Equation (12). The threshold ρ0 is set in [1, 3]. A smaller ρ0 prefers to find
more matches, but the precision may be low. A bigger ρ0 is advantageous to capture accurate matches,
but the amount may be more limited. In our experiments, ρ0 = 1.6 is set for an expected precision.
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4. Experiments

In real scenes, images are often affected by changes of viewpoint, scale, illumination, and so on.
We ran two main types of experiments to explore the difference between the traditional methods
and the proposed method. The first types of experiments explore the robustness to effects caused
by rotation and the addition of noise. The second types of experiments verify the efficiency of the
proposed method to heterogeneous image matching. We collected several classical natural images
and heterogeneous image pairs. Some transforms are applied to them: (1) additional Gaussian noise
(SNR = 20 db); (2) rotation of 7π/36 followed by additional Gaussian noise; and (3) scaled 50% and
rotated π/6.

The experiments are completed under Windows 7 with Matlab R2017b. To evaluate the performance,
the proposed algorithm is compared with Harris, SIFT, and PCA-SIFT. For more credible and stable
results, the first two experiments are repeated for 10 times, and the results are computed on average.
In addition, according to the widely known work for features matching performance evaluation [5,46],
correct number, cost time per match (ms), precision, and recall are applied to evaluate the performance.
The related definitions are stated as follows. The correspondence between two images can be computed
as illustrated in [47]:

Precision =
Numcorrectmatches

Numcorrectmatches + Num f alsematches
,

Recall =
Numcorrectmatches
Numcorrespondences

.
(17)

Noised images matching test. The four images (Pavilion, Monkey, Fruits, Elaine) are all added
Gaussian noise (SNR=20db) for their polluted versions. Then, the proposed method and the compared
methods are all carried out on each pair (original and polluted).

Matching results of one implementation are shown in Figure 6. The rows from top to bottom
mean different image pairs, Pavilion, Monkey, Fruits and Elaine, corresponding to the horizontal axis
in Figure 7. The columns from left to right mean different methods: Harris, SIFT, PCA-SIFT, and the
proposed method. Harris finds the least matching number while SIFT and PCA-SIFT achieve better
performance. More matching can be found by the proposed method than others in this test. It can
be found that 91 matches in the Pavilion image pair while 100 matches in the Monkey image pair by
the proposed method. In addition, 52 matches and 98 matches can be found independently in the
Fruits image pair and Elaine image pair. More details of an accurate matching number can be found in
Figure 7a.

The cost time per match is shown in Figure 7b, and the proposed method achieves better
performance than SIFT and PCA-SIFT. The bar value means the total cost time and the green part
means the localization time. Precision and recall of each image pair are shown in Figure 7c,d. It can be
found PCA-SIFT loses on precision but gains on recall compared to SIFT. The proposed method can
achieve higher precision and recall than SIFT and PCA-SIFT, but roughly equivalent to Harris.

Rotated and noised images matching test. The four images (Pavilion, Monkey, Fruits, Elaine)
are all added Gaussian noise (SNR = 20 db) after rotation by π

6 . Then, the proposed method and the
compared methods are all carried out on each pair. Matching results are shown in Figures 8 and 9.
The columns mean different method results. Harris achieves accuracy of about 95% on the Pavilion
image pair, and it finds only one match in the Fruits image pair. Our method has an advantage on the
correct matching number. The details of an accurate matching number can be found in Figure 9a.

As shown in Figure 9a, Harris finds the least matching number in each image pair. The proposed
method finds the most matches in three of four image pairs. It can be found that there are 42 matches
in the Pavilion image pair while 60 matches in the Monkey image pair. In addition, 23 matches and
41 matches can be found independently in the Fruits image pair and Elaine image pair. More details of
accurate matching numbers can be found in Figure 9.
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(a) (b) (c) (d)

Figure 6. Matching results of noised images: (a) Harris results; (b) SIFT results; (c) PCA-SIFT results;
(d) our results.
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Figure 7. Results analysis of noised images matching test: (a) correct matching number; (b) cost time
per match; (c) precision of the matches; (d) recall of the matches.

The cost time per match is shown in Figure 9b, and the proposed method achieves more stable
performance. Precision and recall are shown in Figure 9c,d. It can be found that the proposed method
achieves better precision and recall.
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(a) (b) (c) (d)

Figure 8. Matching results of rotated and noised images: (a) Harris results; (b) SIFT results; (c) PCA-SIFT
results; (d) our results.
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Figure 9. Results analysis of rotated and noised images matching test: (a) correct matching number;
(b) cost time per match; (c) precision of the matches; (d) recall of the matches.

Scaled and rotated images matching test. The four images (Pavilion, Monkey, Fruits, Elaine) are
all scaled 50% after rotation by π/6. After applying the proposed method and the compared methods
on each image pair, the matching results are shown in Figure 10. The proposed method finds more



Appl. Sci. 2019, 9, 4792 13 of 19

matches than other methods, and Harris finds no match. PCA-SIFT finds less matches than SIFT, and it
means that the components do not work so well with the mixed changes.

(a) (b) (c) (d)

Figure 10. Matching results of scaled and rotated and images: (a) Harris results; (b) SIFT results;
(c) PCA-SIFT results; (d) our results.

Furthermore, the proposed method finds 30 matches in the Pavilion image pair while 23 matches
in the Monkey image pair by the proposed method. In addition, 15 matches and 37 matches can be
found independently in the Fruits image pair and Elaine image pair. PCA-SIFT only catches about five
matches on average, while Harris catches no matches. Other results can be found in Figure 11a.

As shown in Figure 11b, the proposed method achieves the best performance on cost time than
SIFT and PCA-SIFT (Harris fails to find any match, and the cost time can’t be computed). Precision
and recall are shown in Figure 11c,d. PCA-SIFT achieves four 100% on Precision and the proposed
method achieves three. PCA-SIFT achieves the best Recall, and our method performs better than
SIFT and Harris.

Heterogeneous image matching test. The original four images are all brushed to simulate the
heterogeneous version. After applying the proposed method and the compared methods on each
image pair, the matching results are shown in Figure 12. Harris only can find very few matches in
the second pair and the fourth pair but could find no matches in other pairs. SIFT and PCA-SIFT can
find roughly the same matches in each pair. Our method can find more matches than the other three
methods in each pair.

To be more exact, the proposed method finds 46 matches in the Pavilion image pair while
40 matches in the Monkey image pair by the proposed method. Thirty matches and 54 matches can be
found independently in the Fruits image pair and Elaine image pair. SIFT and PCA-SIFT only catch
about half of the proposed method. Harris fails to find any match in Pavilion and Fruits. Other results
can be found in Figure 13a.

As shown in Figure 13b, the proposed method achieves the best performance on cost time
compared to SIFT and PCA-SIFT (Harris fails to find any matches in two pairs, and the cost time
can’t be computed). Precision and recall are shown in Figure 13c,d. PCA-SIFT achieves a little worse
performance than SIFT on Precision. SIFT achieves two 100%, and our method achieves one, but our
method achieves obviously better performance in Monkey and Fruits. The proposed method achieves
the best performance on recall in three pairs and only a little lower than PCA-SIFT in the Elaine
image pair.
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Figure 11. Results analysis of the scaled and rotated images matching test: (a) correct matching number;
(b) cost time per match; (c) precision of the matches; (d) recall of the matches.
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Figure 12. Matching results of heterogeneous images: (a) Harris results; (b) SIFT results; (c) PCA-SIFT
results; (d) our results.
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Figure 13. Results analysis of the heterogeneous and noised images matching test: (a) correct matching
number; (b) cost time per match; (c) precision of the matches; (d) recall of the matches.

Based on the four experiments above, we use three performance levels (Low, Moderate, High)
to comprehensively evaluate the methods as shown in Table 1. It can be found the proposed method
is advantageous in mixed changed image matching and heterogeneous image matching. For more
comprehensive results from the proposed method, we carry out these methods on the Oxford database
in the last experiment.

Table 1. Performance levels of correct number.

Changes Noise Rotation + Noise Rotation + Scale Heterogeneous

Harris Low Low Low Low
SIFT High Moderate Moderate Moderate

PCA-SIFT Moderate High Moderate Moderate
Proposed High High High High

Matching test on Oxford database. Eight image pairs are selected from the well-known feature
matching test database Oxford provided by Mikolajczyk et al. [11]. All the images are scaled to
one-third of the original size, and the right one of each pair is transformed into a heterogeneous version
as shown in Figure 14. After applying the proposed method and the compared methods on each image
pair, the matching results can be obtained as shown in Figure 14. Harris finds few matches and the
proposed method finds the most matches in each pair. SIFT and PCA-SIFT can find moderate matches.
Our method can find more matches than the other three methods in each pair as shown in Figure 15a
and Table 2.
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(a) (b) (c) (d)

Figure 14. Matching results of Oxford database: (a) Harris results; (b) SIFT results; (c) PCA-SIFT results;
(d) our results.

Table 2. Correct numbers in the matching test on the Oxford database.

Image Bark Bikes Boat Graf Leuven Trees Ubc Wall

Harris 1 9 6 3 0 2 4 0
SIFT 6 74 5 15 25 12 19 1

PCA-SIFT 0 73 3 3 26 4 17 0
Proposed 19 98 25 28 35 24 26 16

As shown in Figure 15b, the proposed method achieves better performance on cost time than
Harris and SIFT but worse than PCA-SIFT. Though Harris finds the least matches, it still achieves
the best performance on Precision excluding Leuven and Wall. The proposed method achieves the
best performance as shown in Figure 15c. PCA-SIFT achieves four 100%, and SIFT achieves seven
100%. The recall performances are shown in Figure 15d, and it can be found that the proposed method
achieves better performance than the other compared methods.
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Figure 15. Results analysis of matching test on Oxford database: (a) correct matching number; (b) cost
time per match; (c) precision of the matches; (d) recall of the matches.

5. Conclusions

In this paper, a novel features describing method based on scale space and local principle
component analysis is presented for heterogeneous image matching. The keypoints are located in
the DoG space and similar to traditional SIFT. Then, k directions are optimized for gradient statistics
on some prior local patches centered keypoints and the first part of the feature describing vector is
formed. Then, PCA is introduced to compute the main direction of each local patch instead of using
the traditional eight-direction statistics. In addition, the second part of the feature describing vector
is then achieved by applying PCA on each sub-patch of the rotated local patch. Several experiments’
results verified the efficiency and accuracy of the proposed method.
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