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Abstract

An open-source program named VeloxChem has been developed for the calcula-

tion of electronic real and complex linear response functions at the levels of

Hartree–Fock and Kohn–Sham density functional theories. With an object-

oriented program structure written in a Python/C++ layered fashion, VeloxChem

enables time-efficient prototyping of novel scientific approaches without sacrific-

ing computational efficiency, so that molecular systems involving up to and

beyond 500 second-row atoms (or some 10,000 contracted and in part diffuse

Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is

equipped with a polarizable embedding scheme for the treatment of the classical

electrostatic interactions with an environment that in turn is modeled by atomic

site charges and polarizabilities. The underlying hybrid message passing interface

(MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem

suitable for execution in high-performance computing cluster environments,

showing even slightly beyond linear scaling for the Fock matrix construction with

use of up to 16,384 central processing unit (CPU) cores. An efficient—with

respect to convergence rate and overall computational cost—multifrequency/gra-

dient complex linear response equation solver enables calculations not only of

conventional spectra, such as visible/ultraviolet/X-ray electronic absorption and

circular dichroism spectra, but also time-resolved linear response signals as due to

ultra-short weak laser pulses. VeloxChem distributed under the GNU Lesser

General Public License version 2.1 (LGPLv2.1) license and made available for

download from the homepage https://veloxchem.org.
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1 | INTRODUCTION

Theoretical chemistry has made tremendous progress in the past few decades and is today an indispensable tool in all
fields of molecular science, exemplified by biochemistry and nanotechnology, where it can be employed to reveal the
microscopic origins of functionality and interactions as well as to tune performance and guide synthesis. The interplay
between simulation and experiment is a key enabling factor for advancements in life and material sciences and spec-
troscopy represents one of the most important meeting points in between the two disciplines.1 For instance, electronic
circular dichroism spectroscopy is a sensitive probe of both molecular and electronic structures, and reaching spectral
agreement between theory and experiment for this spectroscopy may therefore be taken as strong evidence for having
correctly elucidated complex intermolecular interactions.2 It is imperative to base spectroscopic modeling on first prin-
ciples as the underlying microscopic events are quantum mechanical (QM) in origin—although3 typically in combina-
tion with classical force-field molecular dynamics for the sampling of configuration space—and in order to study
complex molecular systems and delocalized electronic transitions, it is therefore important that such first-principles
approaches are developed into forms where they may be tractably applied to large systems. It is therefore not surprising
that a vast amount of work in computational chemistry has been carried out to extend the computationally tractable
system domain boundaries with respect to time and length scales.4 For example, the field of quantum chemistry has
witnessed several efforts to design algorithms that demonstrate linear scaling with respect to the number of basis
functions.5

The attainment of linear scaling for methods that inherently scale as N4 (Hartree–Fock, HF, and Kohn–Sham
density functional theory, DFT) or worse (post-HF) does not come without sacrifices and requires spatial locality in
some form. This locality can be found naturally in sparse systems, for example, linear polymers, or accomplished
with orbital localization schemes and the zeroing out of small numerical integral values. Basis sets based solely on
valence-occupied atomic orbitals (AOs) and the use of pure functionals without exact exchange are also enabling
factors to reach linear scaling for reasonable-sized systems. This is, however, a poor fit for our goal, which is to
model spectroscopic responses for three-dimensional dense systems where diffuse basis functions and the inclusion
of exact HF exchange are necessities. Furthermore, as the key quantities in the simulation of spectroscopies are
response functions that correspond to sensitive derivatives of the energy with respect to the field strengths of the
weak perturbative external electromagnetic fields, there is little room for discarding integrals as it will lead to
numerical instabilities—particularly so for higher order interactions with the external fields. A comprehensive study
of the parallelization efficiency of the Fock matrix construction has been performed by Chow et al.6 and, in line
with our interest, they focus on sizable systems below the regime of linear scaling and introduce density-matrix
purification as alternative to conventional eigendecomposition approaches. Valuing numerical stability strongly, we
implement for the most part conventional algorithms formulated in the molecular orbital (MO) basis, which means
that, in the self-consistent field (SCF) optimization, we diagonalize the Fock matrix with an accompanying (low pre-
factor) N3 scaling. In the present version, this diagonalization is performed on a single node with use of a standard
threaded math kernel library.

All response properties are expressed in terms of auxiliary Fock matrices, which centralizes the computational cost
around the contraction of two-electron integrals with the corresponding auxiliary density matrices. A signum of the
VeloxChem program is that it processes efficiently and in parallel a very large number of Fock matrices in the sense
that they are all created from a single evaluation of the set of two-electron integrals. The default energy-gradient and
integral-screening thresholds are set to 10−6 and 10−12 a.u., respectively, which, in our experience, allows for accurate
determination of at least up to third-order (i.e., cubic) response functions.

The intended functionality of VeloxChem is that a user with access to moderately powerful contemporary high-
performance computing (HPC) cluster resources should be able to carry out spectroscopic simulations in a routine man-
ner for systems with up to and beyond 500 second-row atoms (or some 10,000 Gaussian basis functions with in part
diffuse character) in the quantum region and a large polarizable embedding (PE) region (described by distributed

2 of 14 RINKEVICIUS ET AL.



multipole moments and polarizabilities). The parallel processing of Fock matrices is enabled by a very small memory
footprint of the integral code, leaving the predominant part of the node memory available for storing auxiliary density
and Fock matrices as well as one-particle–one-hole (1p1h) vectors generated in the various iterative reduced-space
response equation solvers. The rest of this article is organized as follows: After a brief presentation of the program struc-
ture, implementation, and performance, we show three spectroscopic simulation examples to demonstrate aspects of
the program capabilities.

2 | PROGRAM STRUCTURE AND MODULARITY

The VeloxChem program is developed with a two-layer structure as illustrated in Figure 1: The upper layer is written in
Python and fully handles HPC resource management, workflow control, and input/output streams. The communica-
tion of data across HPC cluster nodes is performed with the message passing interface (MPI) standard in the form of
the MPI4Py package.7 and MPI split communicators are used to achieve cluster resource subdivision. On individual
cluster nodes, parallelization is achieved by (a) use of the NumPy8 and SciPy9 packages in the Python layer linked to a
threaded math kernel library and (b) task-based open multiprocessing (OpenMP) programming in the lower C++ layer
as to overall result in a hybrid parallel programming model. Similar program language structuring efforts have recently
been undertaken and served as inspiration for the present work, most notably (a) the PySCF program platform10 for
Python-based SCF and post-Hartree–Fock (post-HF) electronic structure theory calculations of finite and periodic sys-
tems and (b) the Psi4NumPy11 a Python programming environment for facilitating use of the SCF and post-HF kernels
from the Psi4 program is obtained through the NumPy library.

The Python layer also contains high-level implementations of the quantum chemical methods that perform the SCF
optimization of the electron density and the associated response function calculations needed for the simulation of
spectroscopies. In each SCF iteration, a density matrix is formed in the AO basis and exposed to the C++ layer by
means of the header-only library Pybind11.12 In this lower level and based on this density matrix, the corresponding
Fock (or Kohn–Sham) matrix is evaluated with contributions from Coulomb and exchange interactions and also, if
requested, the PE potential. The numerical DFT-kernel integration is based on a set of spatial grid points and associated
weights that are generated once in the beginning of the calculation and stored in memory for repeated use.

The secular and generalized eigenvalue equations arising in linear response theory are solved iteratively and numeri-
cally based on reduced-space algorithms residing in the Python layer. The key element in these algorithms consists of the
formation of multiple auxiliary Fock matrices based on the contraction of two-electron integrals with the associated density
matrices. From a computational point of view, this step is closely analogous to the formation of a single Fock matrix in any
given SCF iteration. The only modification that is made is to allow for a treatment of multiple Fock matrices in parallel by
having an entire batch of Fock matrices be constructed from a single evaluation of the set of two-electron integrals.

SCF Optimization

Pybind11

VeloxChem

Two-level DIIS

Spectroscopy
Response theory

Numerical

solvers
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FIGURE 1 VeloxChem program workflow

and module overview
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The VeloxChem program design is strictly modular with enforced unit testing. This enables easy interaction with
external libraries as exemplified by the PE model to incorporate environment effects into QM systems. This PE function-
ality is provided by the external CPPE library13,14 as schematically illustrated in Figure 1. Moreover, the situation can also
be reversed, that is, VeloxChem can just as easily serve as an external library in another software package. This aspect is
demonstrated in the Gator program, where VeloxChem is the provider of Hartree–Fock reference states and integrals.15

3 | IMPLEMENTATION AND EFFICIENCY

3.1 | Evaluation of integrals for general-contracted Gaussian basis sets

The evaluation of electron-repulsion integrals (as well as one-electron integrals) in VeloxChem is based on a modified
version of the Obara–Saika scheme16,17 in which vertical and horizontal recursion steps are combined to increase the
efficiency of the scheme on the target processing architectures. Our integral program module implements a workflow
as follows:

1. Generation of basic auxiliary primitive integrals [00|00]m up to m-th order as determined by the sum of angular
momenta on all four centers, that is, m = a + b + c + d.

2. Build up of primitive integrals [00|0(c + d)] and [0(a + b)|0(c + d)] using vertical Obara–Saika recursion.
3. Generation of contracted Cartesian integrals (0(a + b)|0(c + d)) by contracting primitive integrals [0(a + b)|

0(c + d)].
4. Build up of contracted integrals (0(a + b)|cd) by applying horizontal angular momentum transfer recursion to primi-

tive integrals (0(a + b)|0(c + d)) on the ket-side.
5. Generation of half-transformed contracted integrals (0(a + b)|(cd)sp) from contracted integrals (0(a + b)|cd) by

applying Cartesian to spherical transformation on the ket-side.
6. Build up of contracted integrals (ab|(cd)sp) by applying horizontal angular momentum transfer recursion to con-

tracted integrals (0(a + b)|(cd)sp) on the bra-side.
7. Generation of contracted spherical integrals ((ab)sp|(cd)sp) from half-transformed contracted integrals (ab|(cd)sp) by

applying Cartesian to spherical transformation on the bra-side.

The VeloxChem implementation of this workflow is based on automated code generation with a high degree of loop
structure optimization in order to achieve efficient vectorization on CPUs that implement single instruction multiple
data (SIMD) instructions, and the obvious goal of this vectorization is to achieve efficient usage of the vector registers
on modern CPUs. In Figure 2, we present a performance profile of the vectorization for the vertical recursion step
corresponding to Step 2 in the above integral workflow scheme. For basis set primitives up to angular momentum l = 5
(or h-functions), the Intel-compiler reported efficiencies depicted in Figure 2 exceed a speedup of 4.75 for the vectorized
code as compared to the scalar code.

FIGURE 2 Single instruction

multiple data (SIMD) vectorization for

primitive integral blocks with different

angular momenta (red circles) and the

corresponding scalar computational

costs (green squares) to be understood in

a relative sense. Performance profiling

results in the inset are obtained for the

C60 fullerene at the level of Hartree–
Fock/def2-SVP and recorded with the

performance profiler Intel VTune

Amplifier running on a dual-socket

(20-core) Intel Xeon node that

implements AVX2
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The OpenMP parallelization on a single node is benchmarked with use of the Intel VTune Amplifier tool that mea-
sures the amount of time spent at different levels of CPU core activity. Thus, the range of activity spans from zero (fully
idling CPUs) to the maximum number of cores on the node (in our case 20). The inset in Figure 2 depicts the reported
results for the complete SCF optimization of the Hartree–Fock ground state of the fullerene C60 as well as the subse-
quent complete response calculation to obtain the five lowest roots of the generalized eigenvalue equation, that is, the
five lowest singlet states in the ultraviolet (UV)/visible (vis) spectrum. The overall total OpenMP threading efficiency is
seen to reach levels of some 96 and 98% for the SCF (blue bars) and response parts (red bars), respectively.

3.2 | DFT grid/weights generation and kernel integration

Before the SCF optimization begins, a set of grid points and the associated grid-point weights connected with the AO
basis set are constructed using modified versions of the Log3-quadrature18 and SSF-partitioning schemes.19 This initiali-
zation needed for DFT calculations is performed on a single node using OpenMP parallelization. The size of the grid
determines the accuracy reached in the numerical integration and it is set by the user in terms of a grid level number
between 1 and 6 (the program default level is 4). The grid-point data is divided equally in between the nodes that are
set aside with an MPI split communicator to handle the kernel integration—meaning that the DFT-kernel integration
uses its dedicated part of the cluster resources and is carried out aside and in parallel with the more resource intensive
calculation of Fock matrix contributions due to Coulomb and exact exchange interactions (ERIs). The distribution of
grid-point data segments is carried out with the operation of MPI scattering.

In Figure 3, we provide an illustration of the prototypical scaling of the kernel integration with respect to the num-
ber of employed cores. This example refers to the kernel integration of the ground state density of a medium-sized mol-
ecule, zinc porphyrin, with use of a basis set involving 1,352 contracted and 1,986 primitive functions. We do, however,
not expect the principal behavior of this scaling to depend strongly on the system size.

Using the default grid level, the Zn-porphyrin derivative spawns a bit more than 1,100,000 grid points. The required wall
time in the calculation to generate these grid points and weights is 2 s and the time needed for their scattering across nodes
is in comparison insignificant. Employing 32 cores (1 node) the actual kernel integration takes 594 s on this particular CPU
that dates back 5 years in time—a result that refers to the reference data point in Figure 3. Up to 256 cores (eight nodes), the
scaling is seen to be nearly linear, pushing down the wall time to 81 s at the point of using of 256 cores (or about 1 core per
4,000 grid points). Doubling the number of cores to reach 256 (16 nodes) results in a reduced scaling and the corresponding
wall time becomes equal to 47 s. It is in practice not very important to further push down the wall time of the kernel integra-
tion as this part of the calculations should be balanced against that of the analytic calculation of ERIs.

Our implementation of the kernel integrator takes advantage of SIMD instructions for vectorization, allowing for rapid eval-
uation of exchange–correlation functional derivatives and electron densities on the molecular grid. To enable SIMD instructions
in the kernel integration, the electron density evaluated on the molecular grid is partitioned into three sets namely (1) ρα(r) > 0

FIGURE 3 Speedup of the density functional theory

(DFT)-kernel integration with respect to number of cores

and with reference to the 32-core (1 node) case. Results are

obtained for a zinc porphyrin derivative at the level of

B3LYP/def2-SVPD (without zinc f-functions) and using the

program default grid level 4 to spawn 1,111,721 grid points
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and ρβ(r) > 0; (2) ρα(r) > 0 and ρβ(r) = 0; (3) ρα(r) = 0 and ρβ(r) > 0, and different forms of the functional derivative code are
developed and used for each of these sets. This approach to kernel integration not only enables efficient usage of SIMD instruc-
tions but also ensures numerical stability in the integration process and provides a user-defined control of accuracy.

3.3 | Two-level direct inversion of the iterative subspace (DIIS)

VeloxChem implements the C2DIIS algorithm20 with an initial guess based on a superposition of atomic densities
followed by a small number (around five) of SCF iterations. The formation of the initial guess is performed in a mini-
mal basis set derived from the user-specified basis set by removal of polarization and diffuse functions. As the adopted
minimal basis set is a subset of the user-specified one, we relieve the need for a projection of the initial density from
one basis set to the other before starting the real SCF optimization. The complete formation of this initial density has a
computational cost that is close to one regular SCF iteration.

To illustrate the performance of the SCF scheme in VeloxChem, we use a large organic system with 834 atoms forming a
three-armed linked π-conjugated core with extended saturated alkyl chains. In Figure 4, we present electronic energies and
gradients during the SCF optimization. The most noteworthy aspect is the fact that the Hartree–Fock energy of the initial
guess is a mere 0.3 Hartree higher than the final converged value. To place the initial density in such close proximity to the
final one means that there are no observed oscillations in the electronic energy, which is otherwise a typical and undesired
behavior in DIIS-based electronic structure optimizations. The illustrated representative SCF convergence is monotonic and
takes place in 26 iterations with an employment of a tight gradient threshold norm of 10−6 a.u. that in turn enables accurate
determination of linear and nonlinear response functions up to at least third order, or cubic response functions.

3.4 | Multifrequency/gradient linear response equation solver

At the single-determinant Hartree–Fock and Kohn–Sham levels of theory, the linear response equation takes the form3

E 2½ �− ω+ iγð ÞS 2½ �
h i

XR + iX I
� �

=GR + iGI , ð1Þ

where E[2] and S[2] are the real-valued electronic Hessian and overlap matrices, respectively, G is the complex property
gradient, ω is the optical angular frequency of the perturbing electromagnetic field, and γ is a relaxation parameter
associated with the inverse lifetime of the excited states. The equation is solved for the unknown associated complex
response vector, X = XR + iXI, that determines the first-order responses in the reference state and from which linear

FIGURE 4 Representative SCF

convergence characteristics of the two-level

direct inversion of the iterative subspace (DIIS)

scheme implemented in VeloxChem. Results are

presented in atomic units and obtained at the

Hartree–Fock/def2-SVP level of theory for a

three-armed organic system with 834 atoms,

resulting in 7,626 contracted and 12,366

primitive basis functions
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and first-order nonlinear response properties can be determined. It has been demonstrated that Equation (1) can be
effectively solved by means of an iterative reduced-space algorithm for a large set of optical frequencies discretizing a
continuous spectral region of interest.21 An extension of this algorithm has been implemented in VeloxChem as to han-
dle not only multiple frequencies in parallel but also multiple right-hand sides (or gradients) in the linear response
equation. Parallel here refers to solving all equations with use of a common subspace and a single evaluation of the
entire set of two-electron integrals per iteration in the subspace algorithm. If the perturbing electromagnetic fields are
treated in the dipole approximation, there are, respectively, three Cartesian electric- and magnetic-dipole operators to
consider in Equation (1). The benefits of a parallel handling of gradients becomes even more striking in going beyond
the electric-dipole approximation when the perturbation operators are frequency dependent.22

The convergence characteristics of the multifrequency/gradient linear response equation solver is illustrated in
Figure 5 for the case of a calculation of the UV/vis and electronic circular dichroism spectra of noradrenaline. We
choose to solve Equation (1) for the set of electric-dipole operators and determine the absorptive parts of the electric
and mixed electric–magnetic linear response functions, that is, Im μ̂;μ̂h ih iω to obtain the absorption cross section σ(ω)3

and Re m̂;μ̂h ih iω to obtain the anisotropy of the decadic molar extinction coefficient Δϵ(ω).23 The former type of
response functions is here evaluated in the length gauge whereas the latter is evaluated in the velocity gauge as to guar-
antee that the trace of the mixed electric–magnetic polarizability tensor is gauge-origin invariant. In figure panel a, we
show the convergence behavior when solving Equation (1) for the three electric-dipole operators (length gauge) and a
single frequency in resonance with the absorption band at ω = 7.3749 eV. The three equations are solved in parallel
and converge smoothly in 20 iterations. To obtain the electronic absorption and circular dichroism (ECD) spectra, the
frequency region from 0 to 13.5 eV is uniformly divided by 200 frequency points with a resulting 600 linear response
equations to solve. As shown in figure panel b, all 600 equations are converged in, at the most, 11 iterations.
Equations involving frequencies up 9.3 eV are all converged in, at the most, seven iterations (results for the remaining
equations are shown in rainbow colors) and the three equations depicted in figure panel a are converged in as few as
six iterations (shown in red, green, and blue). This clearly demonstrates the convergence benefit of solving linear
response equations in parallel in a single common reduced space rather than in serial and, in addition, there is an obvi-
ous computational cost benefit.

(a)

(b)

(c)

(d)

FIGURE 5 Convergence characteristics of linear complex response equation solver. (a) Residuals of convergence (a.u., logarithmic

scale) for the three electric-dipole operators for a single resonant frequency, ℏω = 7.3749 eV; (b) same as (a) but with parallel handling of

200 optical frequencies and, in addition, a shown dimension of the reduced space; (c) resulting electronic circular dichroism spectrum with

rotatory strengths depicted by bars and reported in units of 10−40 esu2cm2, and (d) spectrum with oscillator strengths depicted by bars.

Results are obtained for noradrenaline at the level of Hartree–Fock/aug-cc-pVDZ with a damping term γ = 1,000 cm−1 and adopting a

molecular structure optimized at the level of B3LYP/cc-pVTZ
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3.5 | Multicore MPI/OpenMP scaling

A key VeloxChem design objective is to target execution on contemporary and future HPC hardware platforms and to
make efficient use of parallelism and (less obvious) the aggregated and distributed memory available in multinode exe-
cution runs. As we believe it to be beneficial and productive from a user's perspective, we have decided to implement
conventional SCF and response schemes in the MO basis with an emphasis on numerical stability and we aim to push
the program performance only up to the point of where the strong N3-scaling of the Fock matrix diagonalization takes
over and dominates the overall cost.

In Figure 6, we address a titanium oxide nanoparticle that illustrates the size (but not necessarily type) of system
that we routinely wish to encompass in the quantum region of a given physical model. With generous and exclusive
access to a large part of the main cluster at PDC Center for High Performance Computing in Stockholm, we had the
opportunity to test the MPI/OpenMP scaling of VeloxChem up to 16,384 cores (or 512 dual socket 32-core Intel Xeon
nodes) and we use the otherwise identical calculation performed on 32 cores (or 1 nodes) as benchmark reference. A
complete SCF cycle during the optimization of the ground state density requires a wall time of 70,565 s in the reference
calculation and out of which 70,493 s and 72 s are spent on the construction of the Fock matrix and other parts (includ-
ing the Fock matrix diagonalization), respectively. Apart from the Fock matrix construction, the SCF module is written
in Python (Figure 1) and executes on a single node and the corresponding timing is therefore nearly constant along the
series of calculations presented in Figure 6.

Owing to favorable differences in the dynamic workload balancing between the available MPI processes and
OpenMP threads, the Fock matrix construction scales slightly beyond linear with respect to the number of cores (up to
a point of 384 nodes) and reaches an efficiency of 162.9% at the point of using 64 nodes and compared to the reference
calculation. This example thus demonstrates almost perfect scaling up to a point of allocating almost one CPU core per
primitive basis function. The wall time for the Fock matrix construction using 512 nodes is reduced to 149 s, so while it
may be possible to observe a reasonable scaling beyond 512 nodes in the present example, it makes little sense in prac-
tice as the SCF/DIIS part becomes comparable in duration.

As a final remark in the context of program scaling, we note that the reported wall time of 72 s for the SCF cycle
excluding the Fock matrix construction is still not representing a practical program bottleneck per se. With cubic scal-
ing of the Fock matrix diagonalization, it is realistic to remain within 10 min of wall time for this part of the SCF cycle
with twice the number of basis functions (or double the system size) as compared to the present example.

4 | CAPABILITIES

Release version 1.0 of VeloxChem encompasses response theory simulations of general linear (one-photon) electronic
spectroscopies at the level of Hartree–Fock and Kohn–Sham DFT employing standard localized Gaussian basis sets
ranging up to angular momentum l = 4 (g-functions). In the case of DFT, a set of standard exchange–correlation

FIGURE 6 Scaling with respect to number of cores for the

optimization of the ground state wave function. Speedups for

one complete SCF cycle (orange circle) and the isolated

associated Fock matrix construction (blue square) are reported

separately and with reference to the calculation using 32 cores.

Results are obtained for a titanium oxide nanoparticle,

Ti165O330, at the level of Hartree–Fock/def2-SV(P), resulting in
8,580 contracted and 18,810 primitive basis functions
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functionals are provided in the categories of pure, generalized gradient approximation, hybrid, long-range corrected,
and short-range corrected.

Real and complex linear response functions are implemented to describe dispersive and absorptive electronic spec-
troscopies in the entire region of photon frequencies—in practical applications, however, the regions of main interest
are UV/vis and soft X-ray as neither geometric derivatives nor relativistic effects are considered. The complex response
function technique is also known as the complex polarization propagator (CPP) approach.24

For real linear response functions, calculations of residues and poles are offered to enable the calculation of ground-to-
excited state transition moments and the corresponding vertical transition energies. These properties are provided based on
solutions to the secular equation in the full random phase approximation (RPA) as well as the more limited Tamm–Dancoff
approximation (TDA). The former of the two approaches is also known under the names of time-dependent Hartree–Fock
(TDHF) and time-dependent DFT (TD-DFT), depending on the adopted level of electronic structure theory.

For complex linear response functions, calculations are enabled for “spectral windows” so that the requested
response functions are determined for a dense set of optical real-valued frequencies in an interval covering the user-
specified spectral region. In this type of spectrum calculation, a uniform imaginary damping parameter is assumed. In
addition, it is also possible to request the calculation of response functions for a set of imaginary frequencies without
further inclusion of damping terms as to determine dispersion interaction coefficients such as the C6 dipole–dipole dis-
persion coefficients. The program evaluates the Casimir–Polder integral by means of the Gauss–Legendre quadrature
scheme and a user-specified number of pretabulated weights and frequency points.25

Description of a molecular environment is enabled by the self-consistent PE approach,26–28 which uses distributed
electric multipole moments to represent the permanent electrostatic effects of the environment on the QM subsystem
and distributed localized electric-dipole polarizability tensors to describe anisotropic polarization effects both internally
in the environment and due to interactions with the QM subsystem. PE parameters can be obtained with use of an inte-
grated implementation of the LoProp scheme29,30 and the corresponding potential is consistently integrated in the
response theory module under the assumption that dispersion effects in the polarizabilities of the environment can be
ignored.31 The PE functionality in VeloxChem is handled through the external CPPE library.13,14

5 | NUMERICAL EXAMPLES

5.1 | Electronic circular dichroism of helicenes

It has been demonstrated that ECD in linear and nucleosomal forms of DNA can be simulated by means of summing
spectra from base-pair dimers and thereby effectively transform the spectrum calculation of a large-scale system into a
large number of calculations for moderately sized systems.32 Similarly, ECD spectra of very short peptides and unfolded
oligo-peptides/proteins are in close agreement but, at the same time, the involvement of dynamic explicit water molecules
in the electronic structures of accessible states makes the situation more complex and renders classical excitonic models
unsuitable.33 In the general case, however, systems cannot be subdivided while maintaining quantitative accuracy in ECD
spectrum calculations. One extreme is represented by extended π-conjugated systems with delocalized excitons, in which
case there is a need for a treatment of large QM regions. This is offered by VeloxChem and we illustrate this capability by
studying the near-UV spectral convergence of helicenes with respect to increasing polymer chain length.

A comprehensive combined experimental and theoretical study has been performed on the series of carbo[n]
helicenes, or CH[n], with the number of phenyl rings, n, ranging from 6 to 10.34 Characterized by symmetry, the two
lowest bands showing large Cotton effects were denoted as 1Bb and

1Ba, respectively. For (P)-(+)-CH[6], the 1Bb and
1Ba

bands were observed at 320 nm (positive Cotton effect) and 250 nm (negative Cotton effect), respectively, or 3.87 and
4.96 eV. The reported theoretical spectra were obtained at the level of coupled cluster (CC2) and showed an excellent
agreement with experiment for the whole series of systems.

In Figure 7, we report the ECD spectra at the level of Hartree–Fock for the series ranging from CH[6] to CH[30].
For the shortest member, CH[6], corresponding to one complete helix turn, the 1Bb and

1Ba bands are found at 4.6 and
5.4 eV, respectively. The signs of the Cotton bands are correctly predicted but the transition energies are strongly over-
estimated as may be expected at the level of Hartree–Fock. Completing a second helix turn to reach CH[12], the 1Bb
and 1Ba bands are found red shifted and now appear at transition energies of 3.8 and 4.5 eV, respectively.

Going beyond CH[12], we see band progressions that are less predictable. ECD spectra for the series CH[12]–CH
[19] are shown in the inset of Figure 7. It is seen that the 1Bb band does neither grow stronger nor becomes further red
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shifted with helicene length. Instead there appears a new band at 4.3 eV for CH[14] that rapidly gains in intensity and
red shifts with helicene length. For CH[19], this new band is found at 3.9 eV and completely dominates the near-UV
spectrum due to its strong intensity. This observation of irregular band progressions demonstrates that spectral extrapo-
lations as made from CH[10] to the polymer limit should be done with a high degree of caution.34 We are inclined to
conclude that explicit calculations for longer systems as opposed to extrapolations become a necessary requirement to
make accurate predictions of ECD spectra for the family of longer helicenes.

In spectral studies of large molecular systems, it is always difficult to guess beforehand the number of states that
must be converged in the generalized eigenvalue equation in order to fully cover the spectral region of interest. The
VeloxChem program addresses this issue by implementing a reduced-space eigenvalue solver with an efficient restart
capability. The reduced-space information from a calculation made to converge a first set of n excited states can be fully
retrieved in a second run to quickly converge an additional set of m excited states (in a bottom-up Davidson-solver
sense).

5.2 | UV/Vis absorption and dichroism of a probe DAPI in an aqueous DNA PE

Quantitative simulations of spectroscopic response properties of chromophores in the condensed phase require the
modeling not only of short-range quantum but also long-range electrostatic solute–solvent interactions. For the latter,
VeloxChem implements a PE scheme that discretizes the environment into atomic sites with associated electric multi-
pole moments and polarizabilities. We illustrate this program capability by the simulation of the absorption and circu-
lar dichroism spectra of the 40,6-diamidino-2-phenylindole (DAPI) biomarker inside the minor groove of DNA.

Our example calculation refers to a molecular dynamics snapshot configuration with embedding potential parame-
ters (point charges and isotropic polarizabilities) taken from previous work.2 The model system illustrated in Figure 8 is
set up with (i) a single DAPI in the QM region, (ii) a PE region containing the DNA sequence, the three additional
bound DAPIs, and a 15 Å shell of water molecules and a small number of sodium and chlorine ions (the entire system
is charge neutral), and (iii) the remaining water molecules and ions in the surrounding point-charge (PC) region. In
total, the model includes some 85,000 and 23,000 point-charge and polarizable sites, respectively.

The linear absorption and circular dichroism spectra of the model system are shown in Figure 8. In the original
work, it was demonstrated that the experimental circular dichroism spectrum is due to an intricate interplay between
several mechanisms namely (i) excitonic coupling between the four bound DAPIs, (ii) off-resonant excitonic coupling
between DAPIs and nucleobases, (iii) charge transfer between probe and host, and (iv) chiral imprint of DNA onto the

FIGURE 7 ECD spectra for

the series of helicenes built from

6 to 30 phenyl rings. Results refer

to the calculation of rotatory

strengths at the level of Hartree–
Fock/def2-SVPD for up to the

20 lowest excited states,

depending on system size, as to

include the first bright state.

These rotatory strengths are

broadened by a Lorentzian line

profile with a half-width at half-

maximum (HWHM) of 0.124 eV

to produce the displayed ECD

spectra. Structures are optimized

with the density functional based

tight binding DFTB approach
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electronic and molecular structures of DAPI. The ECD spectrum in Figure 8 is the result of contribution (iv). Modeling
of contributions (ii) and (iii) to the ECD spectrum requires extended QM regions with inclusion made of nearby
nucleobases and coordinating water molecules. Modeling of contribution (i) can be achieved by either extended QM cal-
culations including all four probes or by means of the excitonic coupling model (ECM). In the present work, it has been
amply demonstrated that VeloxChem is well suited for spectral calculations of extended systems and it also implements
the ECM as described previously in the literature,35 so all four contributions to the ECD spectrum of this complex bio-
chemical system can readily be simulated with the current version of the program.

5.3 | Linear responses to pulsed electric fields

The present version of the VeloxChem program can be used to calculate the first-order time-domain response resulting
from the interaction of a system with a pulsed electric field, such as a Gaussian pulse. The spectral envelope of a field of
this form will also be Gaussian and centered around the carrier frequency of the pulse, confining the spectral compo-
nents of the resulting time-domain signal to the regions where the spectral envelope of the field is appreciably strong.
We demonstrate this functionality in Figure 9 (see caption for details), which shows the calculated first-order correction
to the dipole moment of noradrenaline in the time domain upon interaction with a Gaussian-shaped pulse. This is
accomplished by the use of Fourier transformation of the frequency-domain response function weighted by the spectral
profile of the pulse (Figure 9b).

Observing the time-domain signal, we note an initial increase in the signal strength in synchronicity with the
strength of the applied field. The signal later resolves into a weaker signal pattern originating from interference
between induced oscillations of differing frequencies, where the resonant feature around 7.5 eV is assumed to contrib-
ute the strongest.

A more detailed description of this functionality, including the incorporation of pulse-shape effects for nonlinear
response, will be presented in a future work and is a natural complement to the planned development of nonlinear
response functionality in VeloxChem.

6 | SUMMARY AND OUTLOOK

The VeloxChem 1.0 program release offers a versatile tool for the simulation of spectroscopies described by linear response
theory. It efficiently implements SCF theory, that is, Hartree–Fock and Kohn–Sham DFT, for targeted execution on HPC
cluster resources and by means of the standard hybrid OpenMP/MPI programming model. At the same time, it also

PE

PC
QM

FIGURE 8 Absorption and ECD spectra for DAPI in vacuum and bound to DNA in aqueous solution. Results are obtained at the level

of TDA/BHandHLYP/6-31+G(p,d). Oscillator strengths and rotatory strengths (in units of 10−40 esu2cm2) are broadened by a Lorentzian line

profile with a half-width at half-maximum (HWHM) of 0.124 eV to produce the displayed spectra

RINKEVICIUS ET AL. 11 of 14



executes well on single-node desktops and laptops, and the strictly modular implementation in a Python/C++ layered fash-
ion enables interactive usage in a notebook environment suitable for educational purposes. Such training aspects are
described in some further detail in the release paper of Gator 1.015 that represents a twinning project of ours aimed at spec-
troscopy simulations with the use of electron-correlated wave functions.

All computationally intensive parts of the program are formulated in terms of the construction of Fock matrices and it
is a program hallmark to efficiently handle and construct a very large number of such matrices in parallel. This core func-
tionality enables the efficient implementation of a multifrequency and multigradient complex (and real) linear response
equation solver. As thousands of Fock matrices can be processed in parallel, “windows” of spectral regions that are up to
and beyond 10 eV wide are conveniently addressed and the problematic resolution of eigenstates in dense spectral regions
can thereby be circumvented. Furthermore, the atomic-to-molecular orbital transformation that is a cornerstone in conven-
tional implementations of correlated electronic structure theory methods can also be Fock-matrix driven and thereby car-
ried out on HPC cluster platforms. This has been described in detail in the program release paper of Gator 1.0.15

The low memory-footprint integral code is based on a modified version of the Obara–Saika scheme with caution
exercised not to introduce hardware-specific solutions while yet remaining performance competitive. To reach the
reported high degree of SIMD vectorization comes as the result of C++ source code solutions that are not suitable to be
implemented and, more importantly, maintained by a human programmer. We manage to circumvent this issue by
means of meta-coding, that is, we have developed a C++ code of manageable size and complexity that writes the exten-
sive compile-stage source code. All things considered, we believe we have put ourselves in a position to have an integral
code platform flexible enough to navigate the landscape of HPC hardware solutions, at least for the foreseeable future.
This belief will be put to a first test as we will next begin the endeavor of addressing heterogeneous hardware—in par-
ticular, execution on general-purpose graphical processing units.

In terms of program capability, VeloxChem 1.0 provides a potent and flexible platform for future developments and
expansions of the spectroscopy toolbox. We expect that the strictly modular and layered programming model will serve
us well in this respect, and future extensions to other spectroscopies involving linear and also nonlinear response func-
tions are expected to be quite straightforward, constituting suitable tasks for students in the field. Specifically, the next
program release will include an efficient implementation of complex response theory up to third order, or cubic
response functions, and, among other things, it will encompass the important property of two-photon absorption.36

FIGURE 9 First-order interaction of

noradrenaline with a Gaussian-shaped optical

pulse (ω0 = 0.32 a.u.; Δt = 30 a.u.; E0 = 10−5

a.u.; t0 = 300 a.u.). (a) Section of real and

imaginary parts of the frequency-domain

isotropic electric-dipole polarizability, �α −ω;ωð Þ,
truncated by the region of appreciable field

spectral amplitude, Fω(ω). (b) Time-domain

representation of the electric field, F(t), and the

resulting first-order-induced dipole moment,

�μ 1ð Þ tð Þ. Computational details are identical to

those in Figure 5
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Refraining from listing all of the functionality not included in this first release version of the program, we nevertheless
conclude this discussion by pointing out the lack of analytical molecular gradients and Hessians. We regard this as
another crucial development for the next release version as it enables molecular structure optimizations and simulation
of vibrational spectroscopies.
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