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Abstract: Recently more consideration has been given to the use of renewable materials and
agricultural residues. Wheat production is increasing yearly and correspondingly, the volume
of by-products from the wheat process is increasing, as well. It is important to find the use of
the residuals for higher value-added products, and not just for the food industry or animal feed
purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran
description. The low-cost of wheat bran and its composition assortment provides a good source of
substrate for various enzymes and organic acids production and other biotechnological applications.
The main purpose of this review article is to look into recent trends, developments, and applications
of wheat bran.
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1. Introduction

By following the Food and Agriculture Organization of the United Nations (FAO), cereals,
including wheat, rice, barley, maize, rye, oats, and millet, make up the major part of crop production.
They extend to be the paramount nutrition source for human intake [1]. According to FAO statistical
data wheat production reached 772 million tons in 2017 and it is expected to increase by 2.5 percent
annually [2].

Wheat grain is composed of different tissues: the germ, endosperm, aleurone layer, and pericarp [3].
Wheat grain is rich in bioactive compounds, micronutrients, and phytochemicals. A higher concentration
of these components is located in bran fractions. Wheat bran (WB) is a residue of the rolled milled
wheat grain [4]. The main layers of WB are pericarp, aleurone and testa tissue [5]. The components
distribution in WB are as follows: 55–60% are nonstarch carbohydrates, 14–25% is starch, 13–18% of
protein, 3–8% of minerals and 3–4% of fat, measured on a dry matter (Figure 1) [6].
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Figure 1. Wheat bran layers and components distribution. These constitute 55–60% of nonstarch 
carbohydrates, 14–25% of starch, 13–18% of protein, 3–8% of minerals, and 3–4% of fat calculated on 
a dry matter [Created with BioRender.com]. 

The nonstarch carbohydrate fraction is composed of 52–70% of arabinoxylan [6]. A quarter ton 
of WB comes from one million tons of wheat. Around 150 million tons of WB are made during year 
worldwide, and its main application is as a low-worth ingredient in animal feed [7]. The huge 
amounts of the WB by-products containing all the components of interest can be used to isolate the 
components or convert these in various ways, such as separation by fractionation or extraction, 
fermentation and many other ways 

An interest in renewable energy sources, such as wind, solar, geothermal energy, hydro, biofuel, 
and agricultural by-products applications has been increasing in recent years. Agricultural by-
products like WB appear as a promising feedstock for obtaining high added-value products (Table 1; 
it is also a low-cost residue that makes it cost-effective [8]. 
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carbohydrates, 14–25% of starch, 13–18% of protein, 3–8% of minerals, and 3–4% of fat calculated on a
dry matter [Created with BioRender.com].

The nonstarch carbohydrate fraction is composed of 52–70% of arabinoxylan [6]. A quarter ton
of WB comes from one million tons of wheat. Around 150 million tons of WB are made during year
worldwide, and its main application is as a low-worth ingredient in animal feed [7]. The huge amounts
of the WB by-products containing all the components of interest can be used to isolate the components
or convert these in various ways, such as separation by fractionation or extraction, fermentation and
many other ways

An interest in renewable energy sources, such as wind, solar, geothermal energy, hydro, biofuel,
and agricultural by-products applications has been increasing in recent years. Agricultural by-products
like WB appear as a promising feedstock for obtaining high added-value products (Table 1; it is also a
low-cost residue that makes it cost-effective [8].

Table 1. The role of wheat bran in various fields.

Field Application/Product Role as/in References

Enzymes

Enzyme production by solid-state
fermentation (SSF) and

submerged fermentation (SmF)
Substrate for enzymes production [5]

As an inducer for enzymes Complex substrate [9–11]

Production of protease, amylase,
and glucoamylase Nitrogen source [5]

Metabolites
Bacitracin

Cyclosporine-A
Gibberellic acid

Cheap raw material [12–14]

Biofuel
Bioethanol
Biobutanol

Biohydrogen
Lignocellulosic material [15–21]
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Table 1. Cont.

Field Application/Product Role as/in References

Heavy metals
removal

Removal of, Hg (II), Cd (II) Pb (II),
Cu (II), Cr (VI), Ni (II)

Biosorbent material,
lignocellulosic substrate [22–24]

Health

Minimizes the risk factor for
various illness:

Diabetes,
colon cancer,
hypertension,

coronary heart disease

Fiber source, strong antioxidant
activity, bioactive agents that
inhibit colon carcinogenesis

[25–31]

Food
Enrich the nutritional and

physical properties of bread and
baked products;

Nutritional and physical
properties

[32–35]

Feed additive The stock material for animal feed
preparations

High starch content, indispensable
amino acids, high content of
non-starch polysaccharides

Microorganisms cultivated on agro-industrial residues serving as a food source can supply several
other useful products including enzymes, organic acids, chemical additives, pigments, food additives,
antibiotics, biofuels, solvents, and bioplastics [36].

Bacteria and fungi grown on agro-industrial by-products are essential/relevant sources of enzymes
used in food-biotechnology, pharmaceutical, animal feed, paper industries, and textiles. According to
FAO, the increasing need for economical production methods, new functionalities, increasing safety
requirements, and reduction for environmental impact leads the trend toward the alteration of
traditionally chemical procedures with enzyme-based reactions [36]. Various biochemicals are being
used in pharmaceutical, cosmetic, food, leather, and textile industries. Nowadays natural and ecological
production is gaining popularity in chemical synthesis manufacturing [37], agro-industrial biowastes
being one of them. Agro-industrial biowastes can be a great source for bioremediation, i.e., heavy
metals ion fixation or removal, alternative production of oligosaccharides, single-cell oils, bioplastics,
biofuel, biosurfactant production, as well as for the cell immobilization. The industrial by-product
processing could be applicable to obtain various products from WB.

2. Enzyme Production by WB Utilization

Enzyme structure usually consists of proteins that are folded into various complicated special
3D shapes. The primary function of enzymes is to act as a catalyst to accelerate various reactions.
Enzymes are grouped into six classes corresponding to the type of reaction catalyzed: transferases,
oxidoreductases, lyases, hydrolases, ligases, and isomerases. They are widely used for commercial
and industrial purposes. The key areas of enzyme application are pharmaceutical, food, and cosmetic
industries [38]. WB is a cheap agro-industrial by-product and a good source of substrate for cultivating
various microorganisms. Microorganisms use WB mainly as a source of carbon (C) and nitrogen (N).
The enzymes reviewed are presented in Table 2.

There are two main methods to deliver enzymes—either by enzyme production by solid-state
fermentation (SSF) or by submerged fermentation (SmF). Classification into SSF and SmF is principally
based on the sample of substrate used through fermentation (solid or liquid state).
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Table 2. Enzymes production by wheat bran (WB) utilization in solid-state fermentation (SSF) and
submerged fermentation (SmF).

Fermentation Method

SSF SmF

Produced enzymes Produced enzymes

Xylanase [39–41]

Alkaline protease [42,43]

Phytase [44–47]

l-xylosidase [39] Ferulic acid esterase [48]

α-amylase [41] Carboxymethyl cellulase [49]

Pectinase [41] Laccase [50,51]

l-glutaminase [52–56]

Milk-clotting enzyme [57]

Polygalacturonase (PG) [58]

2.1. Enzymes Production by SSF

Enzymes produced by SSF method utilize the increase of microorganisms on water-insoluble
substrates without free water [59,60]. All solid substrates have a principal macromolecular composition
consisted of starch lignocellulose, cellulose, pectin, and other polysaccharides [61]. Substrates for
SSF are heterogeneous products or by-products from the agriculture industry. Agitation is not
applied in majority aerobic SSF procedures, especially in static reactors, such as tray fermenters.
Agitation is generally a relevant part of continuously or periodically agitated SSF bioreactors [62].
As previously described, aeration accomplishes four principal functions in SSF, such as sustaining
aerobic conditions, desorbing carbon dioxide, controlling the substrate temperature and the humidity
level [61]. The technique is efficient and gives a higher production yield than submerged cultures,
also inoculum ratio is always larger and agitation may not be necessarily used. The essence of this
fermentation technique is that the substrates are used very gradually and steadily; therefore, the same
substrate can be used for long fermentation periods. Consequently, in this technique the release of
nutrients is controlled and maintained. SSF is most appropriate for fermentation methods with fungi
and microorganisms involved, which require a lower humidity content. Despite that, organisms that
need a large amount of water for their activity, such as bacteria, cannot be used with this fermentation
process [63].

The possibility to utilize the agricultural waste for xylanolytic enzyme production was explored
by Ferreira et al. [39]. Sugar cane, corn cob, bagasse, and WB were tested as substrates for xylanolytic
enzyme production in SSF by Aspergillus tamarii. High proteolytic activity was observed in WB cultures,
while weak proteolytic activity was discovered in sugar cane bagasse and corn cob cultures. The largest
l-xylosidase and xylanase activities were obtained 1.5 times faster with WB cultures than with other
cultures used. Furthermore, the optimal moisture content of the media was 86% with WB, while for
corn cob and sugar cane bagasse were 80% and 75% respectively. Nagar and others found elevated
production of cellulase-poor alkali stable xylanase by Bacillus pumilus SV-85S in the presence of WB
under SSF [40]. The enzyme was entirely stable over a wide pH (5–11) interval and maintained 52% of
its efficacy at a temperature of 70 ◦C for 30 min. Approximate evaluation of price collation showed
that the price of the enzyme generation using WB was reduced to 50%. It is well known that the
pectinase, xylanase, α-amylase, and compounds belonging to saccharification content (total soluble
carbohydrates and reducing sugars) are produced by Bacillus megatherium. The production was tested
in diverse SSF samples, such as WB, palm leaves, grasses, and date seeds [41]. The peak production of
xylanase, pectinase, and α-amylase was obtained (150, 350, and 100 units/g solid, respectively) with
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WB substrate, in comparison with other agricultural residual. One of the main advantages of using WB
is that WB itself contains enough nutrients and no additions of carbon and nitrogen sources are needed.

WB was selected as an effective substrate for milk-clotting enzyme production by three strains of
Bacillus subtilis [57]. The optimized medium possessed WB (30 g/L), glucose (16.2 g/L), NaCl (5 g/L),
MgSO4·7H2O (5 g/L), KH2PO4 (2 g/L), and CaCO3 (3 g/L). WB was used as the single nitrogen source
in the media and the slow release of nitrogen from WB is thought to support bacterial growth [64].
This agro-industrial by-product includes glucose that in most cases is vital to the microorganisms
for growth and metabolism support. For these reasons, WB discovered to be the most appropriate
substrate for polygalacturonase (PG) production. No addition of any nutrient or stimulating supplement
was needed, either. PG was produced by Aspergillus sojae mutant strain [58]. l-glutaminase was
produced by Vibrio costicola using WB with particle sizes from 1.4 to 2.0 mm [54]. The preferable
substrate for l-glutaminase manufacturing in SSF was WB [52]. Kashyap et al. investigated the
glutaminase production from Zygosaccharomyces rouxii NRRL-Y 2547 by SSF using WB and oil cake
from sesame [53,55]. El-Sayed reasearched the same enzyme production by Trichoderma koningii using
WB as solid support. He could demonstrate that after optimization, l-glutaminase productivity by the
solid cultures of T. koningii grew up by 2.2 fold concerning to the submerged culture [56].

Different combinations of WB and soybean were tested for the growth of Xylaria nigripes (XN) by
SSF [65]. XN mainly used for insomnia and trauma treatment, as well as a diuretic or nerve tonic. When
WB was used as a single substrate, the ethanol extract of XN-fermented matter achieved the highest
antioxidant activities. Combining the equal amounts of WB and soybean for SSF helped to increase the
protective impact against H2O2-stimulated lesion in neuronal cells (PC12 cells) [65]. The conclusion
was that both substrate remnants of fermentation may have an impact on the biological activities of
XN-fermented substances [65].

Pseudomonas aeruginosa was tested for alkaline protease production by using WB via SSF [42].
The main fraction of the WB aleurone layer is composed of 50% of phytic acid [43]. Its degradation
makes beneficial supplies for easily digestible fiber foods. Therefore, WB can be used as phytate
sources in the fermentation to expand phytase activity [44,45]. Salmon et al. reported the phytase
production by Schizophyllum commune in SSF with the substrate as WB, and showed 96 U/g at 66 h in
the sequel optimization studies that were performed [45].

2.2. Enzyme Production by SmF

In SmF, the substrate used for fermentation is always in the liquid state containing the nutrients
needed for the culture growth. This fermentation method is best suitable for microorganisms like
bacteria that need water for growth [66]. One of the major benefits of this fermentation type is the
straight forward purification of the product. It is widely used for the extraction of secondary metabolites
that are secreted into the growth medium [67]. Five different agricultural waste sources were selected
as a substrate and WB was found to be the most appropriate for co-production of alkaline protease
and xylanase from Bacillus licheniformis NRRL 14209 using Box–Behnken Design under SmF [68].
Another research demonstrated that the highest enzyme efficiency of xylanase (4.31 U/mL) and alkaline
protease (3.66 U/mL) was gained at 24 h of the incubation duration, primary media pH 8.5 with 0.5%
w/v WB and 4% (v/v) inoculum concentration at the temperature of 30 ◦C [48]. Ferulic acid esterase
(FAE) production was carried out using Streptomyces S10 culture and destarched wheat bran (DWB).
After optimizing the conditions, the enzyme yield reached 2.0 mU/mL in MBS medium, which contained
1.5% of DWB under the agitated submerged culture [69]. Carboxymethyl cellulase expression in
Aspergillus flavus was optimized with culture conditions at an optimum pH of 6.0, temperature of
30 ◦C, inoculum size of 4% in Czapek Dox using WB as a substrate by SmF. Other substrate options
were: cotton seeds, pomegranate, rice bran, and rice straw. Enhanced production occurred with
the addition of 4% of WB and 1% of peptone as nutritional factors [49]. WB was used as low-cost
lignocellulosic support for fungus growing and laccase manufacturing by Cerrena unicolor C139 in SmF.
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It was demonstrated that the laccase generation begin after 2 days of cultivation, achieved the highest
activity of 416.4 U/mL after 12 days of fermentation [70].

Nampoothiri et al. explored thermostable phytase generation by Thermoascus auranticus in SmF
and 3.75% (w/v) WB particles as carbon origin complemented with sucrose, glucose, peptone, starch,
and minerals [46]. A 4.5-fold enzyme activity increment was observed. Sarsan and Reddy investigated
the equal substrate, for phytase production by Bacillus sp. C43 in SmF appended with glucose and
sucrose, which achieved 0.52 and 0.59 U/mL of phytase activity, accordingly [47]. Laccase production
by Trametes modesta was successfully optimized using a one-factor-at-a-time method. WB, yeast
extract and incubation temperature appeared to be the main factors influencing laccase production
by T. modesta [50]. The same study showed that the laccases from T. modesta showed their maximum
activity at pH 4 and at 50 ◦C and were steady at pH range 5–6 and at 40 ◦C [50]. Efficiently produced
laccase was isolated from fungus Trametes sp. LS-10C and the laccase producing medium was optimized
by the response surface methodology in shake flask fermentation [51]. WB diffusion juice was selected
as one of the optimized medium ingredients for the scale-up fermentation [51].

Overall, good yields could be obtained with the general conditions of pH (4–11), the temperature of
30–70 ◦C, the cultivation medium should contain glucose, sodium and magnesium salts, fermentation
time can vary from 2 till 12 days, substrates combination of WB and soybean can also provide
good results.

3. WB as a Source for Organic Acids Production

It is widely known that microbial strain selection is a highly relevant factor in the production
of organic acids [2]. Microorganisms used must possess steady characteristics, grow quickly and
strenuously, be non-pathogenic and generate high yields of the desired product according to FAO [2].
Wheat is rich in phenolic acids: ferulic acid, syringic acid, p-coumaric acid, caffeic acid, and vanillic
acid [71]. It was already demonstrated that the phenolic compounds are differently spread in wheat
grain tissues [72]. Furthermore, together with phenolic acids, polyphenols such as lignans can be
found on the living-cell aleurone layer, but concrete phenolics are located in bran fractions [73].
Bound phenolics are the major group in wheat grains and have been found to possess the highest
antioxidant activity. The same study identifies ferulic acid as the most plentiful compound in the
bound form [73]. Another widely used acid is lactic acid. This acid is mainly produced by bacterial
fermentation of starch, involving biomass from renewable supplies as WB. Recently, there has been an
increased interest in the application of renewable material for the production of various chemicals.
Two organic acids, the ferulic and lactic acids, have a significant part in various industries and have
been produced from WB.

3.1. Ferulic Acid (FA)

Ferulic acid (Figure 2) is mostly used in pharmaceutical, cosmetic, and food industries [74].
Moreover, this acid covers plenty of potential medical implementations, as a scavenger of free radicals
or as a protective agent against UV radiation-induced skin harm [75,76]. It was demonstrated that the
FA is mainly bound in the cereals bran in the form of ester linkage [77]. Based on that various methods
have been studied for FA release from their ester-linked compounds.
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The mixture of flax shives, corn, and wheat bran was used for FA extraction and purification
by non-pressurized alkaline hydrolysis with 0.5 M NaOH and pressurized solvents (0.5 M NaOH,
water, ethanol, and ammonia) [79]. There were no differences in the content of products extracted with
non-pressurized and pressurized 0.5 M NaOH solution yielding mostly FA, p-coumaric acid, and small
amounts of vanillin.

Xie et al. studied edible mushrooms that are capable to release FA from WB. Here Hericium
erinaceus produced the maximum FA yield at 4 days of culture, and reached 95.51 mg/L in WB
broth [76]. FA was released from DWB under the action of AnXyn11A and AnFaeA [80]. Gopalan and
Nampoothiri also used DWB for the purification and to find it as a good adsorbent for the FA [81].
Dupoiron et al. studied downstream purification of the WB enzymatic hydrolysate. Hydrolysis was
carried out with hemicellulasic cocktails received from Thermobacillus xylanilyticus. The purification
process was carried out with a weak anion-exchange resin (Amberlyst A21-Dow) in a free-base form.
52% of FA was released from WB [82].

3.2. Lactic Acid (LA)

LA (Figure 3) is one of the first noted fermentation products from microbial metabolism with the
structure of two enantiomers: synergistic L (+) and D (−) [83]. LA and its derivatives are broadly used
in food, pharmaceutical, leather, and textile industries [84]. Acid is produced by chemical synthesis
and microbial fermentation [85].
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LA production from WB has been announced by Naveenaet al [87]. The authors tested different
bran for LA production by Lactobacillus amylophilus GV6. Different bran (pigeon pea, green gram, black
gram, corn, and WB) for LA production by Lactobacillus amylophilus GV6 were studied. WB was found
as the best solid support and substrate from all the other ones. The same Lactobacillus strain was used
for Plackett–Burman design [88] and screening of 15 parameters for the production of L (+) LA from
WB substrate and solid support. “The nitrogen sources, peptone, yeast extract, and tri-ammonium
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citrate, along with NaH2PO4 H2O and Tween 80, were found to increase productivity” [83]. Yun et al.
announced the production of LA from rice and WB hydrolyzate, without additional nutrients by the
batch culture of the isolated LA bacterium Lactobacillus sp. RKY2 [89]. Experiments confirmed that
fermentable carbohydrates and nutritional factors from rice and WB might be an effective nutrient for
LA fermentation.

3.3. Other Acids Production Utilizing WB as a Source

There are some other organic acids that can be derived from WB. The industry did not realize
until now a wide range of organic acids production from WB, and the publications on this subject is
scarce. Besides FA and LA, the itaconic acid (IA) and fumaric acid are the main organic acids produced
from WB as a base.

The main applications of itaconic acid (2-Methylidenebutanedioic acid) are in medicine,
the chemical industry, agriculture, and the industrial production of acrylic acid, resin plastics, latex,
acrylate, slush powder, and anti-scaling agents [90–93]. Production of IA was investigated by the
biotransformation from WB hydrolysate. The IA yield was further increased by utilizing the A. terreus
mutant strain CICC40205 [94].

Another important acid for medicine, polymerization and esterification reactions is fumaric
acid [95]. Related to that, a study was performed where WB was utilized as feedstock to synthesize
fumaric acid by Rhizopus oryzae [96]. WB pretreatment with sulfuric acid hydrolysis at 100 ◦C for 30 min
was the optimal choice for fumaric acid production. Vanillin is one of the most widely used flavours
in the food industry. Vanillin was obtained from the bioconversion of FA-derived from enzymatic
hydrolysis of wheat bran [97].

4. Biotechnological Applications of WB to Environmental Treatment

The main field of WB conversion still remains food sector. This wheat milling waste can be used
in environmental remediation, as well. WB as an adsorbant is a great source for biodegradation,
bioremediation, or bioabsorption process.

4.1. Biodegradation Process

The biotic degradation or biotic decomposition chemical of contaminants by bacteria or other
biological means [98]. Various substrates are used as a natural filter for decontamination of an industrial
effluent containing heavy metals, inorganic chemical and other hazardous waste compounds [5].
The first step in biodegradation is to adsorb material and then to degrade it by specific microorganisms.
Since WB made up from lignin, cellulose, and fatty acid units whose functional groups (hydroxylic,
carboxylic, and phenolic) are perfect for ion fixation [99]. Organic material can be degraded aerobically
or anaerobically. Important factors for bioremediation are microbial populations that are metabolically
efficient and sustainable, appropriate environmental growth conditions, temperature, the presence of
water, and favorable acidity or alkalinity [98,100].

The triphenylmethane dye malachite green (MG), is used as a fungicide and antiseptic in fish
cultures, direct dye for silk, wool, jute, and leather. It is toxic to bacteria and mammalian cells [101,102].
MG was adsorbed onto WB with a particle size of 8–20 mesh by using a batch technique. MG degradation
process was carried out by Fomes sclerodermeus at pH 5, because these fungi are able to convert lignin to
inorganic material [101].

Free gossypol (FG) is a yellow coloring pigment present in cotton [103]. It causes the decrease of
animal growth and feeds conversion and depression of fertility in bulls and reduction of viability of
gametes in cattle [104,105]. Wen and Sun evaluated Candida tropicalis ZAU-1 ability in biodegrading
free gossypol by analyzing the time course of SSF. The solid medium contained 20% of WB. It was
the second-largest component in media after cotton seed (60%) [103]. As expected, Candida tropicalis
biodegraded the FG up to 3.55% and 21% of dry matter of substrate (mixture of cottoseen, WB, rice
bran and rice wine spent grain) were lost after 64 h of SSF.
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We could expect further use of WB for the biodegradation of various other, even potentially
toxic biomaterials.

4.2. Wheat Bran as Biosorbent

While in the biodegradation process the WB acts as biosorbent, and the final absorbed material is
degradated, the WB can act as biosorbent for various inorganic and organic toxic substances, which not
necessary can be degradated (such as heavy metal ions). WB is a great source for biosorption process
because it contains large amount of cellulose and ligin which works as the adsorbent material [7,101].
Toxic elements ions such as Cr, Fe, Se, V, Cu, Co, Ni, Cd, Hg, As, Pb, and Zn are of special attention
regarding their toxicity, bio-accumulation tendency, and persistence in nature [106]. As stated in the
study, these elements are not biodegradable and have a tendency to accumulate in live organisms,
inducing different diseases and disorders [107].

The potential use of rice and wheat bran was for sequestering cadmium and significant removal
efficiency was reported [23,108,109]. Bulut et al. investigated the adsorption of Pb(II) ions from
aqueous solutions on WB [110]. They found that adsorption of Pb (II) onto WB is an endothermic
and spontaneous process, also the Pb (II) amount decreased with increasing dose of adsorbent, pH,
and temperature, and the best suitable particle size of milled WB for adsorption process would be
500 µm.

WB has been found to be an economically usable and efficient biosorbent for the removal of Cr
(VI) [22]. Here, the highest removal of Cr (VI) was achieved to be 310.58 mg/gat pH 2.0, initial Cr
(VI) concentration of 200 mg/L and temperature of 40 ◦C [22]. Kaya et al. used WB and modified
WB (M-WB) for Cr (VI) removal [24]. The authors realized the chemical modification by using citric
and tartaric acids. WB and M-WB have removed 4.53 mg 5.28 mg of Cr (VI)/g from the solution
accordingly [24].

Microbes bound to a WB (85%)/red wood powder (10%)/diatomaceous (5%) earth carrier were
used as inoculants for a biotrickling filter. The filter is a combination of a biofilter and a bioscrubber,
where bacteria responsible for decomposition are immobilized on a carrier or filter material [111] for
contaminated gas treatment with a combination of benzene, toluene, and o-xylene [112]. WB was used
for a natural biosorbent preparation with multiple quaternary ammonium salts This natural biosorbent
was used for removal of dye (AR-18) from aqueous solution [113]. Polylactic acid (PLA) and several
plasticized PLA based systems were biodegradated by Trichoderma viride fungus, in a liquid medium
and controlled laboratory conditions [114]. WB was a carbon source in a liquid medium.

5. Further Applications of WB in Biotechnology

Besides biodegradation, bioremediation, or bioabsorption processes, there are many other
well-suited applications in the industries where WB is or can be utilized. WB as a cell immobilization
carrier is an excellent source for the feruloyl oligosaccharides, wheat bran oil extraction, single-cell oils
(SCO), and polyhydroxybutyrate (PHB) production.

Yuan et al. identified xylanases from Bacillus subtilis able to hydrolyze WB for the production of
feruloyl oligosaccharides. The optimum WB concentration was 120 g/L, with 42 ◦C, pH 5.2. After 35 h
inoculation, enzyme concentration was 4.8 g/L and substrate concentration, 120 g/L. The resulting
concentration of various oligosaccharides was measured by specrophotometer and determined to be
1.5 mM for the 120 g/L substrate (wheat bran insoluble dietary fibre) [115]. The authors state that
the “isolation of these feruloyl oligosaccharides enabled a better understanding of the plant cell wall
structures” [115]. Another study demonstrates the use of mesoporous silica catalysts, which was found
as a good option for the hydrolysis of real arabinoxylans derived from WB [116].

Microbial oils, called SCO, are used for commercial applications as nutraceuticals, pharmaceuticals,
and feed ingredients for aquaculture [117]. Microsphaeropsis sp. was used for the production of SCO in
SSF from a substrate consisting of steam-exploded wheat straw and WB [118].
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WB was used as a cell immobilization carrier for probiotic yogurt production by L. casei strain in
combination with L. bulgaricus strain. The WB delignification by alkali treatment enhanced viability
of both strains and helped to maintain high viable cell numbers through storage at 4 ◦C [119].
Delignified WB was used for the immobilization of L. paracasei K5 cells and used for functional
Cornelian cherry beverage production with potential synbiotic properties [120]. Xie et al. reported
about in situ fortifications of vitamin B12 in wheat flour and WB by fermentation with Propionibacterium
freudenreichii [121].

It is well known that the PHB is an organic polymer with commercial potential as a biodegradable
thermoplastic and a biomaterial [122]. Alkaline pretreated WB was enzymatically hydrolyzed using
cellulase of Trichoderma reesei and glucosidase of Aspergillus niger and then used for the production of
PHB [123]. Zhang et al. demonstrated that WB can be an efficient and sustainable raw material to receive
low-cost carbon products with a high surface area and an indication of its potential utilization [124].

Surfactants are materials used to decrease surface and interfacial tension in various industrial
processes. According to FAO, agro-industrial by-products with a high carbohydrate or lipid content
can be used as substrates for the production of biosurfactant [2].

With the increasing amount of WB production, we may expect other uses of WB in biotechnology.
The WB content may change depending on the wheat strain used, opening new ways for WB utilization.

6. Future Perspectives for WB Application

According to FAO, within the cereal group, it is expected worldwide that relative significance
of rice is going to decrease slightly, while wheat consumption will continue to grow in per capita
terms [125]. Right now, the utilization of WB is still focused on the sectors of food and feed supplement.
Many researchers demonstrated that this renewable resource could be used in various ways. It is known
that WB consists of quite a large percentage of proteins (8–12%) [8]. Because of that, WB is a great
source for protein extraction. Extracted and purified proteins could be used for plant-based nutrition
which is highly popular these days. Extracted proteins could be used for amino acid production and
potentially included in athletes’ diet, as an ingredient in sports drinks and supplements.

There is also an increased interest in safer drug forms. The plant polysaccharides are of special
interest as WB consist of more than 50% of nonstarch carbohydrates. Prisenžnakova et al. revealed that
arabinoxylan type WBH1 had great pharmacotherapeutic potential in the therapy of cough but still
there is no information about WBH1 clinical use in cough therapy [126]. WB is a rich source of fatty
acids, tocopherols, and phenolic compounds [3]. Therefore, it could serve as a natural source for vitamin
production. Various agro-industrial byproducts can also be used as substrates for medical-grade or
edible mushroom production [127]. We conclude WB has a good impact on health, therefore we can
expect further development of this field and increased dedicated funding to the research. It might be
one of the keys to preventing or even to stop serious diseases.

Nowadays the cosmetic industry is trying to create as many as possible natural and environmentally
friendly products, containing ingredients extracted from natural sources. Grain cultures are already
widely used in the cosmetic industry, but WB is unique, with the presence of specific oils, fats,
and antioxidant activity. The area of interest could be a skin conditioning agent, humectant, exfoliate,
or anti-aging agent.

There are lots of reports on biofuel production from WB, but in practice, it mostly remains on
a laboratory scale. There is a potential to commercialize biofuel originating from WB. A scale-up of
starch-based biofuel could substitute the use of fossil fuel, enabling a greener and sustainable future.

With the constant worldwide human population growth, food production increases. The wheat
production increases as well, over recent years, resulting in WB higher amounts. While this is still
used for the animal feed, there is a clear trend towards high value-added products. We may expect
that some components produced from the WB will diminish in the future (such as food, metabolite
production, heavy metals removal), while the higher value-added products will increase (such as
health-related drugs, enzymes). The WB role in biofuel production may increase shortly, but we
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consider it as non-sustainable, as both WB and biofuel are based on the carbon source. Therefore, in
the future its role in biofuel may diminish. In the end, to diminish the waste, all the WB should be
efficiently utilized, retrieving the highest value products, then using the remaining fractions as the
lower value input. Ideally, the waste conversion should be located near or in the plants producing that
waste, ultimately leading to zero-waste production.
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