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Abstract. It is known that in the vibroimpact system at the chosen values of parameters linear 
relationship between impact velocities and eigenfrequencies may exist. The purpose of this paper 
is to reveal the qualities of the systems of this type. Investigations are performed by analytical and 
numerical methods. It is determined that in the systems of this type nonlinear solutions with 
infinite series of harmonics exist. Multivalued stable and unstable regimes do not exist in the 
systems. The obtained analytical relationships enabled to reveal new qualities of the systems and 
to make useful conclusions. 
Keywords: characteristics of impact velocity and eigenfrequencies, free and decaying vibrations, 
phase trajectories of motions, harmonics of motions up to infinity. 

1. Introduction 

Investigation of dynamics of vibroimpact systems is presented in a number of publications, 
where the main fundamental achievements are presented including recent years for the cases when 
the vibrations of the system are with stiff and soft stiffness characteristics. Here the system of 
intermediate type is investigated. Investigations were performed also graphically, and they 
enabled to reveal the qualities of the system, which enable to create energetically more effective 
mechanisms. 

Resonances and velocity jumps in nonlinear dynamics are investigated in [1]. Basic theory of 
vibrating systems with impacts is presented in [2]. Vibro-impact dynamics under periodic and 
transient excitations is investigated in [3]. Modeling of nonlinear dynamics of a system with 
clearance is performed in [4]. Dynamical behavior of a vibro-impact oscillator is investigated in 
[5]. Stabilization of periodic nonlinear systems is analysed in [6]. Basic ideas of vibrating systems 
in engineering are presented in [7]. Contemporary methods of vibration theory are described in 
[8]. Basic concepts of mechanical vibrations are presented in [9]. Nonlinear dynamics of inertial 
actuators is investigated in [10]. Nonlinear effects in dynamics of bearings are presented in [11]. 
Nonlinear contact dynamics of ultrasonic actuator is investigated in [12]. Non-sinusoidal 
dynamics of interacting oscillators is analysed in [13]. Free vibration analysis of piezoelectric 
cylinder is performed in [14]. Free vibrations of nonlinear oscillators are investigated in [15]. 
Synchronization of impacting mechanical systems is analysed in [16]. Chatter in mechanical 
systems with impacts is investigated in [17]. Dynamics of systems with impact and friction is 
analysed in [18]. Periodic orbits of mechanical systems with impacts are investigated in [19]. 
Vibro-impact nonlinear behavior and energy transfer are described in [20]. Modeling of particle 
impact is performed in [21]. Impacts in novel mechanisms and their applications are investigated 
in [22]. Resonant type impact mechanism is analysed in [23]. Positioning using impact drive 
mechanism is investigated in [24]. Impact mechanics of collisions and experimental results are 
analysed in [25]. Nonlinear rotor system with vibration absorbers is investigated in [26]. Active 
vibration absorber for impulse excitation is described in [27]. Nonlinear vibrations of a beam with 
piezoelectric actuators are investigated in [28]. Nonlinear effects and their use for vibration 
isolation are analysed in [29]. Nonlinear vibration absorber is investigated in [30]. Nonlinear free 
vibrations of beams are analysed in [31]. Electro-mechanical coupling vibrations of structures are 
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investigated in [32]. Nonlinear dynamic analysis of vehicle system is performed in [33]. Wideband 
vibration attenuation is investigated in [34]. Nonlinear vibrations with interactions are analysed in 
[35]. Piezoelectric nonlinear vibrations are investigated in [36]. Nonlinear analysis of free 
vibrations of beams is performed in [37]. Nonlocal free and forced vibrations of beams are 
investigated in [38]. Vibration system with nonlinear coupling is analysed in [39]. Nonlinear 
vibrations of a system with piecewise linear spring are investigated in [40]. Nonlinear vibrations 
of piezoelectric plates are analysed in [41]. Free and forced nonlinear vibrations of beams are 
investigated in [42]. Nonlinearities in piezoceramic actuators are analysed in [43]. Nonlinear free 
and forced vibrations of beams are investigated in [44]. Nonlinear free vibrations of shells are 
analysed in [45]. Nonlinear free vibrations of plates are investigated in [46]. 

The system is described in the following way: 𝑚𝑥 + 𝐻𝑥 + 𝐶𝑥 = 𝐹sin𝜔𝑡,   𝑥 < 0, (1) 𝑥 = −𝑅𝑥 ,   𝑥 = 0, (2) 

where the collision of the vibrating mass is considered as an instantaneous process, 𝑥  denotes 
velocity before the impact and 𝑥  denotes velocity after the impact, the coefficient of restitution 
of the impact velocity of the mass is denoted as 𝑅 and it is in the interval 0 ≤ 𝑅 ≤ 1. 

The equation is rearranged: 𝑥 + 2ℎ𝑥 + 𝑝 𝑥 = 𝑓sin𝜔𝑡,   𝑥 < 0, (3) 

where: 

2ℎ = 𝐻𝑚 ,   𝑝 = 𝐶𝑚 ,   𝑓 = 𝐹𝑚.  

2. Conservative motion of the system, decaying vibrations when 𝒇 = 𝟎 

It is assumed that the impact number 𝑖 of the mass 𝑚 to the support takes place when: 𝑡 = 0,   𝑥 = 0,   𝑥 = 𝑥 > 0, (4) 

and the next impact number 𝑖 + 1 takes place when: 𝑡 = 𝑇 ,   𝑥 = 0,   𝑥 = 𝑥 > 0. (5) 

According to the Eq. (3) motion after 𝑡 ≥ 0 is: 𝑥 = 𝑒 𝐶 cos 𝑝 − ℎ 𝑡 + 𝐶 sin 𝑝 − ℎ 𝑡 , (6) 

where the constant quantities 𝐶  and 𝐶  are found from the conditions Eq. (4) by assuming 𝑥  
after impact according to the Eq. (4). 

Thus: 

𝑥 = − 𝑅𝑥𝑝 − ℎ 𝑒 sin 𝑝 − ℎ 𝑡, (7) 𝑥 = − 𝑅𝑥𝑝 − ℎ 𝑒 −ℎsin 𝑝 − ℎ 𝑡 + 𝑝 − ℎ cos 𝑝 − ℎ 𝑡 , (8) 
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𝑥 = 𝑅𝑥𝑝 − ℎ 𝑒 (𝑝 − ℎ )sin 𝑝 − ℎ 𝑡 + 2ℎ 𝑝 − ℎ cos 𝑝 − ℎ 𝑡 . (9) 

The next impact number 𝑖 + 1 takes place at the conditions Eq. (5). By taking into account the 
Eqs. (7) and (8) it is obtained: 𝑇 = 𝜋𝑝 − ℎ . (10) 

During the time of the cycle of motion between the impacts 𝑖 and 𝑖 + 1 the change of velocities 
is lost, which is estimated by the dummy coefficient: 

𝑅 , = 𝑥𝑥 = +𝑅 ⋅ exp − ℎ𝑝 − ℎ 𝜋 = −𝑅 ⋅ exp ℎ 𝑝⁄1 − (ℎ 𝑝⁄ ) . (11) 

Further graphical material representing dynamics of the investigated system is presented for 
various parameters of the system in Fig. 1, Fig. 2 and Fig. 3. 

 
a) Displacement as  

function of time 

 
b) Velocity as  

function of time 

 
c) Acceleration as  
function of time 

 
d) Velocity multiplied by  

acceleration as function of time 

 
e) Phase trajectory: velocity as  

function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

Fig. 1. Dynamics of the system when the initial conditions of motion 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –1 and 𝑝 = 1 for ℎ = 0 (thin line), ℎ = 0.25 (line of medium thickness) and ℎ = 0.5 (thick line) 
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a) Displacement as  
function of time 

 
b) Velocity as  

function of time 

 
c) Acceleration as  
function of time 

 
d) Velocity multiplied by  

acceleration as function of time 

 
e) Phase trajectory: velocity as  

function of displacement 

 
f) Phase trajectory: acceleration as  

function of velocity 

 
g) Phase trajectory: velocity multiplied by acceleration 

as function of displacement 
Fig. 2. Dynamics of the system when ℎ = 0 and 𝑝 = 1 for the initial conditions of  

motion 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –1 (thin line), 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –2/3  
(line of medium thickness) and 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –1/3 (thick line) 

3. Dynamics of the conservative system 

Case: conservative system, that is when: ℎ = 𝑓 = 0,   𝑅 = 1. (12) 

In this case the Eqs. (7)-(10) take the following form when: 𝑥 < 0, (13) 𝑥 = − 𝑥𝑝 sin𝑝𝑡, (14) 𝑥 = −𝑥 cos𝑝𝑡, (15) 𝑥 = 𝑥 𝑝sin𝑝𝑡, (16) 𝑇 = 𝜋𝑝. (17) 

Period of motion 𝑇 is the eigenperiod of vibrations of the system and 𝜔 is the eigenfrequency 
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of vibrations of the system, that is by equating the right sides of the Eqs. (17) it is obtained: 𝜔 = 2𝑝,   𝑇 = 𝜋𝑝 = 2𝜋𝜔 . (18) 

 

 
a) Displacement as  

function of time 

 
b) Velocity as  

function of time 

 
c) Acceleration as  
function of time 

 
d) Velocity multiplied by  

acceleration as function of time 

 
e) Phase trajectory: velocity as  

function of displacement 

 
f) Phase trajectory: acceleration as  

function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

Fig. 3. Dynamics of the system when ℎ = 0.5 and 𝑝 = 1 for the initial conditions of  
motion 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –1 (thin line), 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –2/3  

(line of medium thickness) and 𝑡 = 0, 𝑥(0) = 0, 𝑥(0) = –1/3 (thick line) 

By expanding the functions of displacement, velocity and acceleration into the Fourier series 
the following expressions of the first terms of the series are obtained. The laws of motions may 
be expanded into the Fourier series. From the Eqs. (14-16) it is obtained: 

𝑥 = − 𝑥𝑝 2𝜋 − 4𝜋 1(2𝑛 − 1)(2𝑛 + 1) cos𝑛𝜔𝑡 , (19) 𝑥 = −𝑥 8𝜋 𝑛(2𝑛 − 1)(2𝑛 + 1) sin𝑛𝜔𝑡 , (20) 𝑥 = 𝑝𝑥 2𝜋 − 4𝜋 1(2𝑛 − 1)(2𝑛 + 1) cos𝑛𝜔𝑡 , (21) 
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where 𝜔 = 2𝑝. 
From the Eqs. (14) and (15) it is obtained: 𝑥 + (𝑝𝑥) = (𝑥 ) , (22) 

that is in the system of coordinates 𝑥0𝑝𝑥 there is a circle the length of radius of which is equal 
to 𝑥 . 

From the Eqs. (15) and (16) it is obtained: 𝑥𝑝 + 𝑥 = (𝑥 ) , (23) 

that is in the system of coordinates 0𝑥 there is a circle the length of radius of which is equal 
to 𝑥 . 

Further graphical material of amplitude frequency characteristics is presented in Fig. 4. 

 
a) Displacement frequency cos characteristic 

 
b) Velocity frequency sin characteristic 

 
c) Acceleration frequency cos characteristic 

 

 
d) Velocity multiplied by acceleration  

frequency sin characteristic 
Fig. 4. Amplitude frequency characteristics (constant part and first three harmonics) when ℎ = 0 and 𝑝 = 1 

4. Conclusions 

On the basis of the presented results the qualities of dynamic behavior of the nonlinear 
vibroimpact mechanism in separate case, when the contacting surface of the vibrating part of the 
system with the impacting surface is in the position of static equilibrium, are investigated. 

Analytical relationships describing the motion of the system and amplitude frequency 
characteristics have been determined and are presented in the paper. Graphical relationships for 
typical parameters of the system were obtained and are investigated. It is shown that the values of 
eigenfrequencies of vibroimpact vibrations do not depend on the values of amplitudes of 
excitations. Because of this fact multivalued stable and unstable regimes can not take place in the 
vicinities of resonances. 

The presented results enable to perform the design of vibrating vibroimpact systems of this 
type. 
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