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Abstract: The partial cross-linking reaction of poly(vinyl alcohol) (PVA) by esterification using
poly(acrylic acid) (PAA) as a cross-linking agent was performed to obtain a PVA-PAA
supramolecular polymer complex. The PVA-PAA coatings with a different molar ratio between
hydroxyl and carboxyl groups were prepared to examine scratch-healing ability. These coatings
exhibited high optical transparency and excellent scratch-healing properties, which are attributed
to considerable amount of free hydroxyl groups at the scratched interfaces to reversibly form
multiple hydrogen bonds. Importantly, the PVA-PAA polymer was capable of initiating scratch
recovery at temperature of 20 °C and relative humidity (RH) of 40%. Scratches produced on the
PVA-PAA polymer coatings with different constant loading in the range of 1.5-2.7 N were healed
significantly more rapidly under humid conditions (RH = 99%). Increase of cross-linking
temperature also resulted in similar effect but with some reduction of the final scratch healing ratio.
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1. Introduction

In recent years, polymers have become an integral part of our daily lives. Replacement of the
natural materials with cheaper, lightweight, flexible plastic has enabled rapid development in all
fields of engineering including electronics, construction, aviation, drug delivery, and tissue
engineering. On the other hand, polymers are inherently susceptible to damage and continuous
usage sooner or later results in formation of cracks and surface scratches, which change the
appearance and functional properties of the materials [1]. Considering this fact, it is highly desirable
to produce polymers capable of repairing themselves. Such self-healing materials may be very
beneficial for the fabrication of easy-to-maintain devices with extended lifetime and enhanced
reliability.

Self-healing ability has already attracted substantial attention of researchers and industry as
conventional polymer repairing methods are not sufficiently effective for healing the tiniest
microcracks and scratches [2-4]. So far, two approaches of polymer self-healing have been
developed: extrinsic and intrinsic. Extrinsic approach requires inclusion of specific healing agents in
the form of microcapsules or vascular networks, whereas intrinsic self-healing relies on reversible
chemical bonds or physical interactions [5,6]. The process of external healing is related to the
consumption of healing agent and cannot occur again at the same place. Moreover, fabrication of
transparent self-healing materials using extrinsic self-healing approach is technically complicated
because various inclusions strongly scatter visible light [7]. Therefore, the intrinsic self-healing
approach is considered to be preferable for the fabrication of transparent healable polymers without
changing the overall performance of materials.

The intrinsic healing can be generally based on either dynamic covalent bonding or reversibility
of supramolecular interactions [8,9]. Reversible opening and closing of dynamic covalent bonds can
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be obstructed by occurrence of any side reactions modifying the material repair process [10].
Meanwhile, polymers based on supramolecular chemistry can potentially withstand multiple repair
cycles without substantial loss of performance [11]. A broad variety of supramolecular interactions
can be exploited with the aim to attain controllable dynamics and good mechanical properties of
self-healing polymers [12,13]. However, hydrogen bonding is the most extensively used approach to
generate supramolecular polymers [14]. Hydrogen bonds are highly directional and combine high
strength with excellent reversibility. Hydrogen bonded supramolecular polymers are not colored,
and demonstrate higher mechanical strength and faster healing compared to the polymers
cross-linked by other noncovalent or dynamic covalent bonds [15,16].

Herein, we designed the supramolecular system based on partially cross-linked poly(vinyl
alcohol) (PVA) and poly(acrylic acid) (PAA), which exhibits high optical transparency and efficient
scratch-healing properties. The cross-linking reaction was performed via simple and convenient
thermal treatment process. The PAA was chosen as a cross-linking agent because it has a functional
carboxyl group in monomer unit to react with hydroxyl group of PVA to form strong ester linkage
and is characterized by high solubility in water and high miscibility with PVA [17]. After
esterification reaction the polymer complex maintained enough free hydroxyl groups at the
scratched interfaces to reversibly form multiple hydrogen bonds, thus demonstrating efficient
scratch-healing ability. The PVA-PAA coatings with different molar ratio between hydroxyl and
carboxyl groups were probed for scratch-healing and the composition showing the best
performance was further systematically analyzed. The performed analysis has demonstrated that
the particular PVA-PAA polymer holds a great potential as a high-performance transparent
material for optoelectronic applications like foldable smartphones and wearable electronic sensors
where scratch-healing properties of the transparent protective coatings are more and more
desirable.

2. Materials and Methods

2.1. Materials

All reagents and solvents were obtained at the highest purity and used without further
purification unless otherwise specified. For instance, poly(vinyl alcohol) (PVA, average Mw =
30000-70000, 87%-90% hydrolyzed) and poly(acrylic acid) (PAA, 35 wt.% in H2O, average Mw
~250000) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Twenty-seven percent
ammonium hydroxide, NH4«OH, and 30% hydrogen peroxide H:O: were obtained from JSC
“Eurochemicals” (Vilnius, Lithuania). Ultrapure water with a resistivity higher than 18.2 MQ/cm at
25 °C was used in all experiments, and was obtained from a Direct-Q® 3 UV water purification
system (Merck KGaA, Darmstadt, Germany). Microscope glass slides were obtained from Thermo
Fisher Scientific (Budapest, Hungary).

2.2. Preparation of the PVA-PAA Coatings

Prior to the deposition procedure, RCA-1 cleaning solution (six parts ultrapure water, four
parts 27% ammonium hydroxide NH4OH, and one part 30% hydrogen peroxide H202) was prepared
and heated on a hot plate until its boiling point. Microscope glass slides were immersed into this hot
solution for 60 min with continued heating and stirring. Afterwards, glass slides were rinsed three
times with deionized water and dried under compressed oxygen. The clear colorless viscous
mixtures containing PVA and PAA with molar ratio of hydroxyl groups to carboxyl groups in the
range of 3:1-1.5:1 were applied on microscope glass slides as a 50 um thick layer via the Meyer rod
coating method. The coatings were left for 30 min in a vacuum drying oven Vacucentre VC50
(SalvisLab, Rotkreuz, Switzerland) at a temperature of 35 °C and pressure of 400 mbar. Finally, the
coatings were thermally cross-linked at 150 or 170 °C for 5 min. The partially cross-linked polymer
coating was denoted as PVA-PAA.
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2.3. Characterization

Scratch testing of PVA-PAA coatings was performed with a custom-made PC controlled
scratch testing apparatus (KTU, Kaunas, Lithuania). Schematic diagram of the used scratch tester is
available in Figure S1, Supplementary Materials. During the scratch test, the PVA-PAA coatings
were scratched (scratch length 10 mm and speed 0.2 mm/s) with a sphero-conical stylus (cone angle
90° and indenter radius 45 pm) applying the constant loading in the range of 1.2-2.7 N. The scratches
were performed in air atmosphere (temperature 23 °C and relative humidity 40%). The B-600MET
series upright metallurgical microscope (OPTIKA Srl, Ponteranica, Italy) with a c-mount 2560 x 1920
resolution (5.0 Mpixel) camera (Optikam Pro 5LT) was used for the inspection of a scratch track. The
optical images of the scratch tracks were converted to grayscale with brightness and contrast levels
equalized for each image, respectively, so that the intensity of pixels in unscratched area would be
similar for the same section. Scratch track profiles were obtained using a precision surface roughness
tester TR200 (SaluTron Messtechnik GmbH, Frechen, Germany).

The Martens hardness (HM) of the PVA-PAA coatings was measured using a FischerScope HM
2000S (Fischer, Achern, Germany) with a Vickers indenter. Hardness tests were carried out at
different locations on the sample surface. An average of five measurements was reported as the
hardness value.

A Vertex 70 Fourier transform infrared (FTIR) spectrometer (Bruker Optics Inc., Ettlingen,
Germany) equipped with a 30Spec (Pike Technologies) specular reflectance accessory having a fixed
30° angle of incidence (3/16” sampling area mask) was used to record the spectra. The sample was
laid face down across the top of the 30Spec accessory and the spectrum of the sample was recorded
at a resolution of 4 cm-'. The software OPUS 6.0 (Bruker Optics Inc., Ettlingen, Germany) was used
for the baseline correction and normalization of spectra.

Contact angle (CA) measurements were performed at room temperature using the sessile drop
method. A droplet of ultrapure water (5 pL) was deposited onto the investigated surface. Optical
images of the droplet were recorded with a PC-connected digital camera after 10 s from the
dropping and CA measurements were carried out using an active contour method based on B-spline
snakes (active contours) [18].

Optical properties of the PVA-PAA coatings were evaluated by measuring ultraviolet-visible
(UV-Vis) transmission. Measurements were conducted using a fiber optic UV/VIS/NIR Spectrometer
AvaSpec-2048 (Avantes, Apeldoorn, Netherlands) in the wavelength range from 300 to 800 nm, with
a resolution of 1.4 nm.

3. Results and Discussion

In order to investigate the scratch-healing ability of PVA-PAA with different compositions,
PVA-PAA coatings with 3:1, 2:1, and 1.5:1 molar ratios between hydroxyl and carboxyl groups were
prepared as 50 pum thick layers on microscope glass slides via the Meyer rod coating method. After
the thermal cross-linking at 150 °C for 5 min, these coatings were used for the scratch testing. Figure
1 shows optical microscope digital photographs of scratch tracks obtained on the coatings with
different constant loading as well as corresponding healing process of the scratch after 24 h at a
temperature of 20 °C and relative humidity of 40%. A scratch track profile area was used to calculate
a scratch-healing ratio (Sr) of PVA-PAA coatings in Equation (1):

S, :MXIOO%, 1)

1
where A1 stands for scratch track profile area after scratch, while A>—scratch track profile area after
healing. As evident from Figure 1, all the tested coatings, regardless of particular composition,
demonstrated the ability to heal surface scratches. Scratch healing ratio for the scratches made at 1.8
and 2.7 N loading was at least 50%. PVA-PAA polymer coatings prepared with a molar ratio
between hydroxyl and carboxyl groups of 1.5:1 (Figure 1ci—cs) exhibited the best scratch-healing
performance. For these coatings, scratch tracks obtained with the constant loading in the range of
1.2-1.8 N were almost completely healed with S: in the range of 98.9%-99.2 %. This efficient intrinsic
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scratch-healing of the particular coating composition is attributed to considerable amount of free
hydroxyl groups at the scratched interfaces to reversibly form multiple hydrogen bonds with
sufficient molecular chain mobility present [19-21]. Based on these scratch-testing results, the
PVA-PAA polymer coatings prepared with molar ratio between hydroxyl and carboxyl groups of
1.5:1 were selected for further systematic analysis.

S=57.0% S=86.2% S=99.2%
(ay)

S~ 60.5% S=89.5% S=99.1%

(a;) )

S=50.1% S,=84.0% S;=98.9%
(a,) (b2)

S=50.8% S=79.7% S;=96.3%

Figure 1. Scratch-healing of the partially cross-linked at 150 °C for 5 min PVA-PAA polymer
coatings, with the scratch-healing ratio Sr calculated according to Equation (1). Optical microscope
digital photographs show characteristic scratch track sections before and after 24 h at a temperature
of 20 °C and relative humidity (RH) of 40% for coatings prepared with molar ratio between hydroxyl
and carboxyl groups (ai—a4) 3:1, (b1i—ba) 2:1, and (c1—cs) 1.5:1. Subscripts 1-4 indicate scratch constant
loading of 1.2 N, 1.5 N, 1.8 N, and 2.7 N, respectively. Insets show characteristic scratch track profiles.
Mark size on the bottom left of each digital photograph is 50 um.

In another scratch-testing instance, the temperature was maintained constant while RH was
increased to 99%. Figure 2 shows optical microscope digital photographs of scratch tracks obtained
on the coatings (molar ratio between hydroxyl and carboxyl groups of 1.5:1) with different constant
loading as well as corresponding healing process of the scratch after 5, 10, 20, and 30 min,
respectively. In contrast to previous scratch-testing conditions (see Figure S2, Supplementary
Materials), the increase in RH (from 40% to 99%) resulted in rapid scratch-healing process with S-
values in the range of 95.7%-97.4 % after 30 min for different scratch constant loading (Figure 2as—cs).
Owing to hydrophilic and hygroscopic nature of PVA-PAA coatings, significantly more water
molecules were attracted from the surrounding at RH of 99%, which increased the chain diffusion
across the scratched interfaces and association of the hydroxyl groups to reform multiple hydrogen
bonds, thus resulting in more rapid scratch recovery process.
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Figure 2. Scratch-healing of the partially cross-linked at 150 °C for 5 min PVA-PAA polymer
coatings (molar ratio between hydroxyl and carboxyl groups of 1.5:1), with scratch-healing ratio S-
calculated according to Equation (1). The optical microscope digital photographs show characteristic
scratch track sections (ai-c1) before and after (az—cz2) 5, (as—c3) 10, 20 (as—cs), and (as—cs) 30 min at a
temperature of 20 °C and relative humidity (RH) of 99%. Scratch constant loading of (a1) 1.5 N, (b1)
1.8 N, and (c1) 2.7 N. Insets show characteristic scratch track profiles. Mark size on the bottom left of
each digital photograph is 50 um.

Additionally, it was observed that under high RH conditions the PVA-PAA polymer coatings
undergo surface morphological changes with time, leading to the formation of the cellular-like
structures (Figure 3). The formation of these structures is attributed to the dominant phase
separation of uncross-linked polymer fraction, mainly driven by nucleation-and-growth mechanism
[22]. No such morphological changes of PVA-PAA polymer coatings were observed when the
cross-linking temperature was increased from 150 to 170 °C, which indicates that higher number of
the cross-linking sites was achieved by esterification, in good agreement with [17]. The Martens
hardness of the PVA-PAA coatings after thermal cross-linking at 150 and 170 °C was equal to 287 + 4
N/mm? and 316 + 5 N/mm?, respectively. Figure 4 shows optical microscope digital photographs of
scratch tracks obtained on the coatings, thermally cross-linked at 170 °C for 5 min (molar ratio
between hydroxyl and carboxyl groups of 1.5:1), with different constant loading as well as
corresponding healing process of the scratch after 5, 10, 20, and 30 min, respectively. In contrast to
PVA-PAA polymer coatings cross-linked at 150 °C, different scratch-healing manner was observed
in this case —the main healing process at a temperature of 20 °C and RH of 99% proceeded during 5
min with Srvalues in the range of 92.8%—-99.1% for different scratch constant loading (Figure 4ai—ci).
After that, no significant changes in scratch recovery were observed. A much faster healing process
can be associated with the increased stiffness of PVA-PAA polymer network cross-linked at 170 °C
resulting in lesser lateral dimensions of the initial scratches and enhanced delayed elasticity in the
high humidity environment. On the other hand, scratch healing ratios for the scratches produced
with a constant loading of 1.8 and 2.7 N after 30 min in humid environment did not exceed 93.6%
and 92.5%, respectively, and were by ~3% lower compared to the coatings cross-linked at 150 °C.
This is the outcome of decrease in the number of free hydroxyl groups at the scratched interfaces to
reversibly form multiple hydrogen bonds. Nevertheless, the results obtained were very promising as
the scratch recovery process proceeded much faster as compared to the PVA-PAA polymer coatings
cross-linked at 150 °C and also relatively high Srvalues were obtained.
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Figure 3. Optical microscope digital photographs of PVA-PAA morphological changes occurring
with time at relative humidity (RH) of 99%, leading to the formation of the cellular-like structures —
(a) initial, after (b) 20 and (c) 30 min. Mark size on the bottom left of each digital photograph is 50

pm.
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Figure 4. Scratch-healing of the partially cross-linked at 170 °C for 5 min PVA-PAA polymer
coatings (molar ratio between hydroxyl and carboxyl groups of 1.5:1), with scratch-healing ratio Sr
calculated according to Equation (1). Optical microscope digital photographs show characteristic
scratch track sections (ai—c1) before and after (az—c2) 5, (as—c3) 10, 20 (as—cs), and (as—cs) 30 min at
temperature of 20 °C and relative humidity (RH) of 99 %. Scratch constant loading of (a1) 1.5 N, (b1)
1.8 N, and (c1) 2.7 N. Insets show characteristic scratch track profiles. Mark size on the bottom left of

each digital photograph is 50 um.
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In order to further quantify our results, functional group analysis using FTIR spectroscopy was
performed. First of all, FTIR spectra of pure PVA and PAA coatings annealed at 150° C for 5 min
were recorded for reference purposes. These spectra were typical of the most common annealed
PVA and PAA spectra, and had characteristic peaks of O-H, C-H, C=0, and C-O absorption (see
Figure S3, Supplementary Materials). Secondly, we have recorded FTIR spectra of the partially
cross-linked PVA-PAA coatings. Figure 5 presents characteristic FTIR spectra of the PVA-PAA
coatings with a molar ratio between hydroxyl and carboxyl groups of 1.5:1 cross-linked at 150 and
170 °C for 5 min. In the range from 1500 to 3800 cm-' (Figure 5a), the broad absorption band from
2300 to 3650 cm-! can be assigned to overlapping H-O-H, -OH, and C-H stretching vibrations,
while weaker bands at 1745 and 1542 cm-! represent C=O stretching and COO- asymmetric
stretching modes [17,23]. For the coatings cross-linked at 170 °C, relative absorbance at 3590 cm is
smaller due to the lesser absorption of water molecules into the polymer network. Moreover,
absorption peaks at 2958, 1746, and 1542 cm-! become narrower and more expressed thus confirming
reduction of the disorder in stiffer polymer networks with increased cross-linking density. In the
spectral range from 550 to 1250 cm™' (Figure 5b), peaks at 1166, 1056, 1002, 925, and 767 cm~! can be
associated with C-O stretching, O-H bending, and —CH>- stretching [24-26]. Absorption band at
1056 cm-! is a result of anhydride formation upon heating of PAA, whereas the band at 1002 cm-" is
an indication of C-O-C ester vibration [27]. In our case, the band at 1002 cm-'becomes significantly
stronger after cross-linking of the polymer at 170 °C. At the same time decreased absorption due to
O-H bending vibrations at 925 cm-l. These changes confirm esterification reaction between
carboxylic acid groups in PAA and hydroxyl groups in PVA.

1000 80D
Wavenumbers, cm-!

Figure 5. Characteristic FTIR spectra of the PVA-PAA coatings cross-linked at (1) 150 and (2) 170 °C
for 5 min (molar ratio between hydroxyl and carboxyl groups of 1.5:1). FTIR spectra presented in two
wavenumber ranges: (a) 1500 to 3800 cm" and (b) 550 to 1250 cm.

Figure 6 shows 5 pL water droplets on the PVA-PAA polymer coatings cross-linked at 150 °C
and 170 °C for 5 min with CA indicated. As expected, the PVA-PAA polymer coatings exhibited
hydrophilic property with CA values of 45° and 50° for cross-linking temperature of 150 and 170 °C,
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respectively. The slight increase of CA in Figure 6b is a result of lower concentration of hydroxyl
groups on the surface of PVA-PAA polymer coating cross-linked at 170 °C, in line with the results of
scratch-testing and FTIR functional group analysis.

Figure 6. Water droplets on the PVA-PAA polymer coatings cross-linked at (a) 150 °C and (b) 170 °C
for 5 min with the contact angle (CA) indicated.

The UV-Vis transmission spectra of bare and PVA-PAA polymer-coated microscope glass
slides are shown in Figure 7. Only a slight decrease in transmittance of wavelengths in the range of
380-800 nm was observed for PVA-PAA coatings as compared with the bare microscope glass, thus
both the coatings can be considered highly transparent for visible light. Furthermore, PVA-PAA
polymer coatings cross-linked at 170 °C exhibited lower UV transmittance in the range of 300-380

nm. Thus they could be useful for the extra filtering of near-UV light generated by optoelectronic
devices.

o] [{e]
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~
o
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Transmittance, %
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o

50
300 400 500 600 700
Wavelength, nm

Figure 7. Characteristic UV-Vis transmission spectra of (1) bare and PVA-PAA polymer-coated
microscope glass slides with coatings cross-linked for 5 min at (2) 150 °C and (3) 170 °C.

4. Conclusions

The partial cross-linking reaction of PVA by esterification using PAA as a cross-linking agent
was performed via simple and convenient thermal treatment process to obtain PVA-PAA
supramolecular polymer coatings. It was found that the molar ratio of the hydroxyl groups of PVA
to the carboxyl groups of PAA played an essential role in scratch-healing efficiency. After 24 h at a
temperature of 20 °C and RH of 40%, the PVA-PAA polymer coatings prepared with a molar ratio
between hydroxyl and carboxyl groups of 1.5:1 exhibited the best scratch-healing performance with
Srin the range of 98.9%-99.2% for the scratch tracks obtained with the constant loading in the range
of 1.2-1.8 N. This efficient intrinsic scratch-healing of the particular coating composition was
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attributed to the considerable amount of free hydroxyl groups at the scratched interfaces to
reversibly form multiple hydrogen bonds with sufficient molecular chain mobility present. The
increase in RH from 40% to 99% resulted in a more rapid scratch-healing process with Srvalues in
the range of 95.7%-97.4 % for different scratch constant loading after 30 min of healing. It was
observed that under high RH conditions the PVA-PAA polymer coatings cross-linked at 150 °C
underwent surface morphological changes with time, leading to the formation of the cellular-like
structures. No such morphological changes of PVA-PAA polymer coatings were observed when the
cross-linking temperature was increased from 150 to 170 °C, which was attributed to the higher
number of the cross-linking sites achieved by esterification. Coatings cross-linked at 170 °C exhibited
much faster healing process, which was associated with increased stiffness of PVA-PAA polymer
network resulting in lesser lateral dimensions of the initial scratches and enhanced delayed elasticity
in the high humidity environment. For these coatings, Sr ratios for the scratches produced with
constant loading of 1.8 N and 2.7 N after 30 min in humid environment did not exceed 93.6% and
92.5%, respectively, and were by ~3% lower compared to the coatings cross-linked at 150 °C. FTIR
analysis had confirmed the more rapid esterification reaction between carboxylic acid groups in
PAA and hydroxyl groups in PVA at 170 °C. The PVA-PAA polymer coatings were found to be
hydrophilic and exhibited high transmittance in the visible spectrum. So, these polyfunctional
coatings could find application as a high-performance material for optoelectronic applications.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Schematic
diagram of used scratch tester, Figure S2: Scratch-healing of the partially cross-linked at 150 °C for 5 min
PVA-PAA polymer coatings with molar ratio between hydroxyl and carboxyl groups of 1.5:1 after 30 min at
temperature of 20 °C and relative humidity (RH) of 40%, Figure S3: FTIR spectra of pure (a) PVA and (b) PAA
coatings annealed at 150 °C for 5 min.
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