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Abstract: Development of the Internet of Things (IoT) opens many new challenges. As IoT devices
are getting smaller and smaller, the problems of so-called “constrained devices” arise. The traditional
Internet protocols are not very well suited for constrained devices comprising localized network
nodes with tens of devices primarily communicating with each other (e.g., various sensors in Body
Area Network communicating with each other). These devices have very limited memory, processing,
and power resources, so traditional security protocols and architectures also do not fit well. To address
these challenges the Fog computing paradigm is used in which all constrained devices, or Edge nodes,
primarily communicate only with less-constrained Fog node device, which collects all data, processes
it and communicates with the outside world. We present a new lightweight secure self-authenticable
transfer protocol (SSATP) for communications between Edge nodes and Fog nodes. The primary
target of the proposed protocol is to use it as a secure transport for CoAP (Constrained Application
Protocol) in place of UDP (User Datagram Protocol) and DTLS (Datagram Transport Layer Security),
which are traditional choices in this scenario. SSATP uses modified header fields of standard UDP
packets to transfer additional protocol handling and data flow management information as well as
user data authentication information. The optional redundant data may be used to provide increased
resistance to data losses when protocol is used in unreliable networks. The results of experiments
presented in this paper show that SSATP is a better choice than UDP with DTLS in the cases, where the
CoAP block transfer mode is used and/or in lossy networks.

Keywords: fog computing; communication protocol; CoAP; information security; lightweight security
protocols; wireless sensors; wireless actuators

1. Introduction

The paradigm of Internet of Things (IoT) is used in many application domains, such as smart
devices, smart homes, smart environment management, remote healthcare, etc. One of the main
building blocks in these architectures are the networks of wireless smart sensors and actuators used to
collect various data and send it to the data analysis and decision-making systems. The development
of IoT introduces many new security challenges. As IoT devices are getting smaller and smaller,
the problems of so-called “constrained devices” arise. We will discuss these challenges in the case
of one of the fastest growing areas of IoT applications—healthcare, where measurement devices,
such as wireless sensors, wearable devices, and mHealth apps, monitor patient biometric parameters
and generate very large amounts of data that need to be processed effectively [1]. As a result, new
distributed computing paradigms have emerged that combine portable devices with medical items
over the Internet in order to be able to change remote telecommuting and services [2]. Use of
Fog computing [3] architecture can reduce logistical requirements and related medical and hospital
expenses [4]. Fog architecture could be used to reduce some limitations of WSNs [5] and help solve
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data routing [6] and data aggregation [7] challenges. Fog computing has many advantages and it
is suitable for applications that are real-time critical, require quick response, and has low latency,
particularly in the health care applications [8–11]. Fog computing-based eHealth architecture can
be expressed as a three-layer hierarchical architecture with the Cloud-Fog-Edge devices (Figure 1).
It provides a comprehensive solution from data collection, processing, and big data analysis to the
Cloud platform.

Figure 1. Three-layer Fog computing-based eHealth architecture.

The Edge nodes form the first layer of Fog architecture and they are various IoT-based smart devices
(sensors and actuators) used to acquire data and control the environment. Various authors use the terms
“End nodes”, “Edge nodes”, “End devices”, “User nodes”, “User devices”, or simply “Devices” to
describe the first layer of the Fog architecture. In this paper, the terms “End nodes”, “Edge nodes” and
“Edge devices” are used as synonyms. In healthcare applications, these devices form Wireless Medical
Sensor Networks (MSNs), or Wireless Body Area Networks (WBANs) [12]. Often Edge devices are
constrained [13], i.e., they have limited memory, CPU and/or energy resources, moreover, constrained
wireless networks (lossy, with limited bandwidth, etc.) are often used. While modern constrained
devices are able to implement and execute modern cryptographic primitives [14], the execution
time is still significant, so less complex and more suitable lightweight communication protocols are
often used to communicate with Edge nodes. Fog layer consists of various medium-power and
medium-performance computing nodes, which collect data from Edge devices, process it and forward
to the Cloud for further analysis.

Many modern security solutions are primarily intended to be used in traditional Internet and are
designed to protect big enterprise networks, data centers, and some consumer products. These solutions
are frequently based on the concepts of private networks, public networks, perimeter defense, etc.
Traditional security methods and approaches could still be effectively used to protect the Fog node-Cloud
part of the Fog architecture, while the Edge node-Fog node part requires a different approach. The Edge
devices are constrained, use constrained wireless networks, and the environment is heterogeneous
and distributed. Some wireless MSN generate a considerable amount of data, which are transferred
from the Edge devices to the Fog nodes for further analysis. This data are mainly generated by the
Edge devices, such as environment sensors, BAN sensors, portable devices, etc. [11,15]. The usual
three fundamental components of security must be ensured: Confidentiality, data integrity, and device
authentication [16], which may be challenging considering the limited resources of the Edge node
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devices. Therefore, more effective and requiring less computational resources security algorithms,
as well as special lightweight communications protocols, such as CoAP (Constrained Application
Protocol) [17] or MQTT (Message Queuing Telemetry Transport) [18], are usually used.

In this paper, we propose a novel lightweight secure self-authenticable transfer protocol (SSATP),
which is intended to be used as transport protocol for CoAP for communications between Edge devices
and Fog nodes. SSATP protocol uses modified UDP (User Datagram Protocol) packet’s headers to carry
protocol handling and security information, lightweight symmetric encryption, nonces, secure hash
functions and timestamps are used to provide user data confidentiality and to mutually authenticate
Edge node devices to the Fog nodes, redundant data in the form of error correction codes are used
to increase the resilience to network packet losses. The proposed protocol can successfully replace
DTLS (Datagram Transport Layer Security), providing the equivalent security properties with a lower
requirement for energy and computational power resources. The SSATP protocol ensures better transfer
performance for applications where block-wise mode of CoAP protocol dominates, it provides better
overall data delivery rate in unreliable networks with up to 10% of total packet loss, and consumes less
energy when compared to plain UDP and DTLS working as transport protocols for CoAP in block data
transfer mode. SSATP uses only symmetric cryptography primitives, does not rely on asymmetric
ciphers, so it is easily implementable even on the smallest devices having low-end processing and
memory capabilities. The paper is structured in the following way: The related work is presented
in Section 2. We describe the proposed protocol in Section 3. The evaluation and experimental results
are summarized in Section 4, and, finally, Section 5 is dedicated to conclusions and discussions.

2. Related Work

Dizdarević et al. [19] made a detailed review of the communications protocols in order to meet
the communications requirements of IoT, and their suitability to implement the Fog-based IoT systems.
They analyzed the application layer communication protocols (also called messaging protocols and
machine-machine,) in the IoT architectures, taking into account the specific challenges of Fog and Cloud
computing integration, including MQTT, AMQP (Advanced Message Queuing Protocol), DDS (Data
Distribution Service), HTTP (Hypertext Transfer Protocol), XMPP (Extensible Messaging and Presence
Protocol) and CoAP. At the transport level, these protocols use TCP or UDP. Security requirements are
ensured using TLS or Datagram TLS (DTLS) [20] accordingly.

Quite a few works [21–27] studied various performance (bandwidth efficiency, power consumption,
reliability) and security properties of these protocols. The suitability of lightweight CoAP and MQTT
protocols to be used in highly constrained environments are analyzed in [28]. The research [28] shows
that CoAP protocol used on top of UDP is more efficient than other analyzed protocols. Authors
conclude that according to specific requirements for MSN listed above, the most efficient way to
implement MSN is to use the CoAP protocol at the application layer and UDP at the transport layer [28].

The DTLS on top of UDP is used as the de facto standard security solution for CoAP protocol.
DTLS is based on TLS with minimal changes caused by the nature of the underlying UDP protocol.
As long as DTLS is only an adaptation of TLS protocol for use with unreliable transport and was never
designed to consider all the special demands of IoT and constrained devices, the new versions of DTLS,
which are more suitable for constrained environments, are emerging [29,30], and new lightweight
authentication protocols are being proposed [31]. Despite these efforts, the optimization of DTLS for
constrained environments is still an open issue [32,33].

The lightweight secure system for MSNs, proposed by He et al. [34], uses hash-chain based key
update mechanism, as well as proxy protected signatures, to ensure secure data transfer and efficient
data access control. This system is well fitted for use in constrained environments as it uses only
symmetric ciphers and secure hash functions. Secure IoT-based healthcare system, introduced by
Yeh [35], uses body sensor network architecture (BSN). The two main objectives of this system are to
ensure efficiency and robustness of transmission using public IoT networks. To achieve confidentiality
of the transmitted data and to ensure proper authentication of the smart devices, the local processing
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unit, and the BSN server, the system uses robust crypto-primitives and constructs two communication
mechanisms. However, this solution ensures the security of communications only between users and
smart devices.

A public-key-based lightweight authentication protocol for MSNs was presented by Hayajneh
et al. in [36]. In this solution, all MSN nodes are divided into two classes: Sensors, which perform
measurements of the human body, and actuators, which wait for directions from medical staff and
perform corresponding actions. As the human health and wellbeing are involved here, the main security
challenge is the authenticity of received command, as an incorrect invocation of some actuators may
result in serious consequences. The authors show that confidential, tightly timed, and authenticated
commands can be implemented using the proposed solution for MSN nodes.

Kraemer et al. [11] analyzed 163 papers and summarized the main requirements and issues
for the Fog computing architecture: Low latency, energy efficiency, bandwidth requirements, etc.
The special questions for Fog computing-based healthcare applications are also discussed and include
bandwidth and latency requirements for various types of medical sensors, energy efficiency, security,
interoperability, etc. Martínez-Pérez et al. [37] studied security and privacy problems in the area of
mHealth. The authors focus their research in three areas: What is the current state of the legislation
in the EU and USA related to the mHealth, what current academic literature is analyzing problems
related to this topic, and, finally, the authors propose some recommendations, which are useful for
designers and creators of mobile health applications, which have to satisfy the security, privacy
and legislation requirements. Kotz et al. focus on the privacy and security challenges of mHealth
technology [38]. Among other mHealth problems to be solved, the authors investigate the issues
related to limited computational resources, network latency and throughput, dependability, privacy
and security, and energy efficiency. Fog computing can help to address these challenges.

Stojmenovic et al. [39–41] investigated solutions to various Fog computing security challenges.
The main security problems in the Edge device-Fog device layer are: Authentication of the devices,
rogue nodes, confidentiality of data during network transfer, confidentiality and integrity of the stored
data, secure computations in the Fog nodes, data privacy and intrusion detections and prevention [40,42].
Two different types of authentication problem may be distinguished in the Edge-Fog node part of Fog
architecture while applied for healthcare applications [11,43]: Authentication of the Edge devices and
authentication of the patient [44,45].

Xu et al. [46] suggested a privacy-preserving data integrity verification model for health
cyber–physical system (CPS), which uses special data structures in lightweight streaming. Authors
give a detailed description of the design, architecture of the solution, formal and security definitions,
and specifications of communications protocol. The provided security and performance analysis results
confirm the security and efficiency claims of the authors. Gope et al. [47] proposed a list of essential
requirements for secure IoT based healthcare systems using BSN, which includes authentication, data
privacy, anonymity, data integrity, data freshness, and secure localization. The authors then proposed
an IoT-based healthcare system, called BSN-Care, which satisfies all security requirements. In our
previous paper [48], we proposed a method for modification and evaluation of energy efficiency of
SSL/TLS protocol, which achieves the best tradeoff between energy consumption and security of the
transmitted data. Usman et al. [49] suggested authenticating data streams using a clustering-based
technique. This method is energy-efficient, authenticates data stream and provides unaltered quality
of service. Two-step authentication scheme is used: Node authentications and data authentication
during secure transmission. The method uses crypto-hash tags, which organize all data packets into
the chain. The usage of crypto-hash tags increases the amount of data transferred thought the network,
which, in turn, increases the total energy consumption by about 20%. Wei et al. [49] used the multiple
sink network structure with the Voronoi-based clustering algorithm to assign the optimal transmission
range and power for each sink, and perform network clustering to effectively reduce the overall energy
use of the network.
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3. Lightweight Secure Self-Authenticable Data Transfer Protocol

Here, we propose a lightweight secure self-authenticable transfer protocol (SSATP) for Fog node-to-Edge
node device communication in Fog computing. This protocol is intended for communications of constrained
devices with limited energy and computation power using constrained networks, where packet loss is
possible. The proposed protocol is intended to be used as transport protocol for CoAP, replacing the DTLS
and UDP layers, and providing the security properties equivalent to that of DTLS. SSATP is based on ideas
similar to our previous work [50], which are heavily modified to suit the new challenges provided by the
request/response nature of the CoAP protocol. The new protocol is heavily adapted to closely meet the
CoAP behavior.

The main advantage of SSATP over the standard UDP with DTLS is an increased resilience to
data losses in unreliable networks and a more efficient way to transfer big data blocks using the CoAP
protocol [51]. A short summary of its main properties is the following:

• Session-less communication with mutual authentication of server and client. No handshake or
key agreement procedure is required to start the communication.

• Protocol provides confidentiality, integrity, and authentication of user data and increased resilience
to data loss in network infrastructure.

• The length of authentication data and amount of redundant data, which are used to recover lost
packets, is flexible and can be adjusted according to the requirements of a specific application.

• In the cases, where the resilience to data loss is not required, the protocol can provide zero data
overhead, because all protocol and data flow management, as well as user data authentication
information, are inserted into the headers of modified UDP packets, whereas the UDP packets’
data fields carry only useful user data.

• The protocol uses simple cryptographic primitives, such as symmetric ciphers, timestamps, nonces,
and secure hash functions, which could be easily implemented in constrained Edge devices.
No asymmetric encryption is used.

The implementation of the SSATP protocol is based on the following:

1. The protocol uses UDP packets with modified headers inspired by techniques used in covert
channel solutions [52,53]. All protocol and data flow management information, as well as user
data authentication information, are embedded in the header fields of UDP packets.

2. Edge device authenticators [54], timestamps and secure hash functions are used for mutual
authentication of Edge node devices and Fog node devices.

3. Symmetric encryption algorithms and timestamping are used to provide user data confidentiality
4. Redundant data in the form of error correction codes (ECC) [55–57] and checksums [58] are added

in the cases where a higher level of resilience to data packet loss during message transmission
is required.

3.1. CoAP Protocol and Block Transfer Mode

Constrained application protocol [17] is an HTTP-like request/response data transfer protocol
primarily used for communication with constrained devices and/or using constrained networks.
CoAP uses UDP as transport protocol and DTLS in the scenarios, when secure communications are
required (Figure 2).
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Figure 2. Datagram Transport Layer Security (DTLS)-secured Constrained Application Protocol
(CoAP) architecture.

CoAP works well when small payloads are used in reliable networks and packets are small, and do
not need fragmentation and resequencing. Transports used with CoAP (UDP and DTLS) provide
only the service of packet fragmentation, which is not trivial to implement in constrained devices,
therefore, many practical implementations try to avoid this by limiting data size transferred using one
request/response pair. The authors of the CoAP standard allow developers to avoid IP fragmentation
by using Block options in the CoAP protocol, for transferring large data payloads [51]. However,
the main disadvantage of block transfer is that information is transferred in small blocks using many
request/response pairs, which causes a large drop in an average data transfer speed. The situation is
even worse, when CoAP is used in unreliable networks. In this case, in the event of the packet drop,
the packet receiving party must wait for timeout and send retransmit request.

These shortcomings may be partially solved by using the proposed SSATP protocol as a transport
for CoAP in place of UDP with DTLS.

3.2. Modified Data Transfer Protocol for CoAP

We propose to use the SSATP protocol as a secure transport protocol for CoAP. In SSATP,
all additional transfer flow handling information and user data authentication codes are embedded
in the headers of modified UDP packets. The structure of the standard UDP packet is unchanged,
only some header fields are used differently. The communicating devices are authenticated using
authenticators, which are generated from the secure device identifiers (sids) and timestamps using
secure hash functions. The authentication data are processed and embedded into modified UDP
headers. UDP is unreliable and does not guarantee packet delivery, preservation of original order, or
deduplication of packets, therefore all data packets must carry packet order information. ECC are used
for restoring data if some packets are lost during the transfer.

Authentication of the sender device and user data integrity is ensured by using the CCM mode
for data encryption [59], which is also one of the mandatory-to-implement encryption modes of DTLS
specified in the CoAP protocol standard. After the encryption of the data, the authentication field is
generated automatically. During data encryption, the sending side adds a secure device identifier and
timestamp information as additional authenticated data and nonce as parameters for CCM encryption
mode. Based on the preferred length of the authentication field produced by CCM encryption and
the size of the data provided by the higher levels of network stack (CoAP protocol), the data are
divided into several packets grouped into the same segment si. Each segment is assigned a sequence
number i = 0, 1, . . . , Each communicating party counts the segments sequentially and independently.
The optional packet with error correction data covering data and authentication field may be added
to the segment as the last packet in the segment. The total length of the segments may vary and is
provided to the receiving party in the special field in modified UDP packet header. All data packets pi, j
comprising the same data segment si are ordered and have the sequence number j, j = 0, 1, . . . , n− 1
assigned. The segment number i, segment size n , and packet number j are transmitted with each data
packet as a part of the modified UDP header. The segment number, segment size and packet numbers
are used by the receiver to reorder packets, when the packets are received out of their original order.
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The proposed modification of the UDP packet’s header fields is presented in Figure 3.
The destination port field is left untouched from the original UDP packet header [52]. The UDP data
length and checksum fields are used to store the k -th fragment (four bytes in length) of user data
authentication field a fi,k, k = 0, 1, . . . , n− 1. The source port field is divided into four parts. The first
three bits are used to store the sequential number of the packet in the current segment of data ( j),
the following three bits are used to identify the total amount of packets in the current segment (n),
and the next four bits are used to identify the number of the current data segment (i). Due to the
fact that the CoAP protocol is of request/response type of protocol, the source port number of each
packet must be preserved. For this purpose, the remaining six bits are used to encode the source port.
The reconstructed source port reported to the upper levels of network stack is calculated by adding the
remaining six bits from the modified UDP header to the reserved CoAP port value 5683, thus ensuring
the possible range of source ports of 5683–5746.

Figure 3. Proposed modifications to the User Datagram Protocol (UDP) packet’s header. Standard
UDP header (a) and modified header (b).

For example, if the AES_CCM encryption algorithm with eight bytes of authentication field is
used and redundancy option is enabled, then the length of the according data segment is n = 2 + 1
data packets, because eight bytes of authentication information fit into two packets’ headers with
an additional one packet used for checksums of data and authentication field.

The particular selection of the UDP header fields was reasoned following these assumptions:

1. The length of the UDP data is not very important and redundant, as the data length could be
easily calculated using the IP header;

2. Although the checksum field is not compulsory in UDP header, data integrity is checked in the data
link layer. Additional authentication and data integrity checking are provided by SSATP protocol.

The modification of the UDP header fields sometimes may cause issues in traditional IP networks
including routers, firewalls, etc. This is not a problem as long as SSATP protocol is used for
communications between the Fog and Edge node devices, where only the OSI Level 2 network
devices are dominating. Our inspections during the experimental testing of the protocol show that all
modifications do not cause any additional problems in operating system network stack as long as we
use only low-level network libraries (e.g., libpcap [60], winpcap [61], etc.).

Modification of UDP fields causes incompatibility of the proposed protocol with standard
UDP-based implementations of CoAP. As a consequence, it is necessary to implement and use the
SSATP protocol on both communicating devices.

3.3. Generation of Secure Device Identifiers and Registration of Edge Devices

The first step while organizing a new Fog node and adding a new Edge device to the infrastructure
is the registration. Registration starts with the generation of the sid for a new Edge device, which
is secret and known only to the Edge device and to one of the Fog nodes. As long as the CoAP
protocol is request/response protocol, the new Edge device also has to know sid of the Fog node
it intends to communicate with. The secure device identifier is transmitted to the Fog node using
a secure communication channel and is stored in the Fog node. An initial secure channel must be used
to generate and transfer secure sids to the appropriate devices. Secure channel can be established
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with the direct wire connection using USB or UART, with wireless communication using factory
one-time-password or in other manner.

Data authentication information (encryption keys, additional authentication data, and nonce used
in CCM cipher mode) is created from the secure device identifier of the sending and receiving parties,
so these identifiers must be unclonable, truly random, contain enough entropy, have sufficient length,
and are not stored on the device. For generation of sids, physical unclonable functions (PUFs) [62] are
used. In the scenarios where special hardware is not available, a software-based secret encryption key
generation algorithm, as the one proposed and evaluated in our previous work [54], may be involved.

3.4. Encryption Parameters’ Generation, Authentication and Redundant Data Calculation

All the packets of the SSATP protocol include essential data flow management information,
i.e., segment number, current segment size, and packet sequence number in the current segment.
These numbers are calculated independently on the server and client sides and are used on the receiving
party to check segments’ authenticity and to restore packet order and/or lost packets. SSATP uses
a symmetric cipher in the CCM mode. This modification of the symmetric cipher provides encryption
and data authentication and requires the following parameters: The encryption key (e.g., 128 bits,
if standard AES is used), additional authenticated data, and nonce (7–13 bytes).

1. New encryption key eki is generated for each new segment of data. eki = H(sids
∣∣∣∣∣∣sidd || ts || i) ,

where sids is the secure identifier of the source device, sidd is the secure identifier of the destination
device, ts is the current timestamp, i is the sequential number of segment and H is the secure hash
function. When the result is too long for the key of the encryption algorithm, it is truncated.

2. Additional authenticated data adi is a simple concatenation of all information available in the
headers of the packets: adi = n

∣∣∣| i|∣∣∣ports
∣∣∣∣∣∣portd, where n is the size of the current segment, i is the

sequence number of the current segment, ports and portd are source and destination ports of
the packets.

3. Nonce value is also unique for each new segment of data: nonce = H(ts
∣∣∣∣∣∣ i) , where ts is exactly

the same timestamp value as used in key generation, and i is the sequence number of the current
segment. Nonce value is then truncated to first eight bytes.

On the packet sending side, the user data are encrypted using a symmetric cipher in the CCM
mode and the calculated values of encryption parameters. The result of encryption is ciphertext cti
(with a size equal to plaintext) appended with authentication field a fi. The size of the authentication
field may vary according to the CCM standard from 4 to 16 bytes. The authentication field is then
separated from ciphertext and divided into m parts a fi,k, k = 0, 1, . . . , m− 1, where m = lenght(a fi)/4.
Parts of the authentication data are then inserted into headers of the corresponding packets. Ciphertext
is also divided into m parts cti,k and each part is used as a payload of the corresponding packet.

If optional redundancy information is required, then chosen error correction function fecc is used,
and ECCs are calculated for all parts of authentication fields a fi,m = eccauth = f ecc(a fi,0, . . . , a fi,m−1)

and ciphertexts cti,m = eccct = f ecc(cti,0, . . . , cti,m−1). The additional packet is added to the current
data segment with a fi,m in the header and cti,m as a payload.

Finally, all packets involved in the segment are sent to the receiver.
To authenticate the source of newly received data, the receiver must collect all packets of the

current segment i, concatenate all payloads cti,k, k = 0, 1, . . . , m − 1 into ciphertext cti, extract the
authentication data a fi,k, k = 0, 1, . . . , m − 1 combine them and append to cti. The CCM mode of
a symmetric cipher automatically decrypts and authenticates the data.

If some of the packets go missing during transmission, and redundancy data packet is available,
then the lost fragment is restored using the ECC before the decryption takes place.
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4. Evaluation of the Protocol

4.1. Qualitative Comparison

The proposed SSATP protocol has an advantage over DTLS in the simplicity of the procedure
of the registration of a new device to the Fog node. Only the lightweight cryptographic functions
(symmetric cipher and hash function) are required to authenticate devices and provide confidentiality
and authenticity for the transferred data. On the other hand, the DTLS protocol often requires
asymmetric ciphers, generation, and distribution of key pairs to all devices involved in the exchange of
information. Moreover, the verification process of key pairs provided by other communicating party is
not a trivial task for the resource-constrained devices.

The main disadvantage of the SSL/TLS-based protocols in the constrained devices and networks
is the handshake procedure, which requires considerable processing resources and reliable network
connection. Even slight data loss in the network causes significant delays, when one side is waiting for
a missing packet, and after the timeout tries to retransmit the last request. If the handshake happens
frequently, it can significantly increase network traffic and cause delays. The SSATP protocol does not
require any special negotiation stage to set up the connection between the server and the client and,
consequently, does not have such shortcomings. Moreover, the DTLS protocol adds authentication and
data flow control information to the user data causing a slight increase of network traffic. The SSATP
protocol uses only not essential UDP header fields to store all additional information, therefore, data
fields of the network packets are untouched, thus ensuring zero traffic overhead.

The DTLS protocol has to use a new handshake procedure, when the connection between
communicating parties is resumed after a long delay, but the proposed SSATP protocol can resume
the sessions almost instantly as authentication of source is possible after one full segment of data is
collected and decrypted.

The DTLS protocol is not specially targeted to be used under non-ideal network conditions and
it does not have any special means to deal with data loss or changes of the packet order. Only the
handshake stage of DTLS requires correct data delivery and, in the case of packet loss, the timeout
and packet retransmission techniques are used. The proposed SSATP protocol uses ECC for integrity
check of protocol and used data. Moreover, the ECC data could be also used to restore the entire data
segment, if one packet is missing, thus providing higher resistance to data loss when using network
infrastructure with possible packet losses.

One side effect of usage of multiple smaller packets is increased efficiency of the CoAP protocol
in the block transfer mode. The CoAP protocol may use logical packets bigger than maximum
transmission unit (MTU) of the network, considering that SSATP will divide them into a few smaller
packets, thus ensuring that the final size of the packets on the media will be less than MTU and will
not cause packet fragmentation. This property allows to use fewer request/response exchanges and
speed up data transfer in the CoAP block transfer mode.

One of the negative sides of the proposed SSATP protocol is the need to use multiple smaller
packets instead of one bigger packet in case of plain UDP or DTLS. The number of packets increases as
longer authentication fields are used in the CCM encryption mode. In practice, this impact is not very
critical as all multiple packets comprising one segment of data are sent in one take without waiting for
the response from the other side. Our practical experiments show that the impact of sending three or
five smaller packets instead of one bigger packet is not very significant when compared with delays of
one request/response exchange. Moreover, the receiving party is aware of the timing of the packets
from the same segment and could use significantly smaller timeout values while communicating
in lossy networks.

4.2. Security Assessment

The proposed protocol is able to provide several security properties, which are required in various
application areas, e.g., MSNs, WBANs, etc. Confidentiality of the data is preserved using symmetric
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encryption, and it is uncompromised as long as the sids of the communicating parties are kept secret.
The integrity of the data is ensured by using the CCM encryption mode and the authentication data field
of sufficient length. Communicating devices are authenticated to each other so the authenticity of the
data source is ensured. The protocol does not provide means for authentications of the patient, so this
property must be ensured by additional means (if required by a particular application). The protocol
ensures the data freshness property, as timestamps are used on both sending and receiving parties.
Moreover, the replay attack is not possible due to timestamps and counters used to encrypt the data.
The impersonation attack is not possible if the sids of the devices are not compromised. The protocol
provides increased data availability as it uses redundant data, which could be used to reconstruct the
missing fragments of the data. SSATP does not have the property of forward secrecy, because after the
compromisation of the sids belonging to both communicating parties, all the data collected in the past
could be decrypted, if the exact time of the collection is also available. The protocol is resistant to the
man-in-the-middle attack.

4.3. Performance Comparison

To assess the performance of the proposed protocol, a CoAP request making client and different
length responses providing server were created. Raspberry Pi embedded computer (Model B rev. 2,
BCM2835 CPU, 512 MB RAM) with “Raspbian GNU/Linux 9 (stretch)” was used as the CoAP server.
Performance was measured at the client device, which was a standard PC running Windows 10
operating system. All tests were performed in the following fashion: (1) The client computer sends
a short GET request to the server (the length of the expected response is indicated in the request’s
parameters), (2) the server generates response of the required length and sends it to the client, 3) the
client has to wait for the response and then sends a new request.

The SSATP protocol was implemented in Java programming language using security libraries from
Bouncy Castle [63]. The low-level access to the UDP packets’ headers was provided by the jnetpcap Java
library [64] acting as an interface to the low-level libpcap and winpcap system libraries. The Eclipse
Californium [65] library was used to implement the CoAP server and client. The Scandium [66] library
was used for tests involving DTLS.

Two modifications of the SSATP protocol were implemented. The first implementation (labeled as
“M64”) used segments of two user data packets and one redundancy packet. The AES block cipher
in CCM mode producing eight bytes of authentication data was used. To calculate the checksum
values, a simple XOR function was employed. The headers of the first two packets of the segment
carried an eight-byte authentication data, and the last packet carried the checksums of the first two
parts of the digest and encrypted user data.

The second implementation (labeled as “M128”) used AES block cipher in the CCM mode
producing 16 bytes of authentication data. All user data was split into payloads of four packets and
the authentication data was embedded into the corresponding headers. The fifth’s packet’s payload
was used for the ECC values of the first four data packets. To calculate checksums, we used the
XOR function.

The performance characteristics of the proposed method were evaluated using a simple CoAP
server and client with four different underlying transport protocols. (1) Standard UDP transport
protocol, which does not ensure source authentication or confidentiality was used to evaluate baseline
performance of the test setup, (2) DTLS over standard UDP was used as standard secure mechanism
for CoAP, DTLS used the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite, which provides
the same level of security as M64 version of SSATP, (3) SSATP protocol implementation M64 using AES
in CCM mode and producing eight bytes (64 bits) of authentication information, (4) M128 modification
of SSATP using AES in CCM mode and producing 16 bytes of authentication data.
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4.4. Experimental Results

During the experimental evaluation of the performance, the client sent requests for a specific
length of data and waited for the corresponding response from the server. After the response was
received, the client sent a request for another bit of server data. The procedure was repeated until the
total amount of 1 MB of server data was received by the client. E.g., in the case where 128 B size data
chunks were used, the total amount of 8192 request/response actions, each carrying 128 B of server
data were performed.

The energy consumption on the CoAP server device’s network adapter was measured to compare
the power efficiency of the proposed method with the standard transport protocols. We measured only
the energy drained by the USB Wi-Fi adapter (Digitus Wireless 150N USB adapter) attached to the
Raspberry Pi computer. The arrangement used for energy measurement is summarized in Figure 4

Energy consumption was measured at the server network interface card, by cutting USB cable,
inserting current shunt and using a bench multimeter (The Mastech MS8050 Benchtop Multimeter)
connected to the PC to record current consumption during data transmission. We used Matlab
(The MathWorks Inc.: Natick, MA, USA) software to process collected data, to calculate average
quiescent current and the total energy consumption during data transmission. DTLS and M64 protocols
were using the same encryption algorithms, this guarantees that power consumed for data encryption
should be the same by these two protocols.

Figure 4. Energy consumption measurement setup: (a) Overall picture of the setup, (b) principal
diagram of the setup, here EDM—Edge device module, EMM—energy measuring module [50].

Figure 5 shows the power consumption of the Wi-Fi network interface card while transferring
1 MB of data using 2048 B data packets and different transport protocols.
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Figure 5. Power consumption of the Wi-Fi network card while transferring 1 MB of data using 2048 B
data packets and different transport protocols.

Figure 6 presents the performance of the CoAP protocol using four aforementioned transport
protocols with regard to transmission time while transmitting 1 MB of user data (from server to
client only, additional traffic required for all requests and protocol information are not counted here)
using different CoAP protocol level user data sizes. The plain UDP achieved the best result, but both
implementations of the SSATP method are very close competitors, even considering the fact that they
are providing encryption and data authentication. The standard DTLS transport is the worst performer.
This is mainly caused by quite significant time used by handshake procedure (performed only once at
the very beginning of each data transfer session) and probably due to the additional computations
performed on the sending device.
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Figure 6. Comparison of time needed to transfer 1 MB of data using different transport protocols.

The main criterion for selecting the parameters of Californium CoAP library was that the maximum
size of any packet on the network media should not exceed 1024 bytes (excluding the overhead data
introduced by the whole network protocol stack starting with the CoAP itself). The Californium
library parameters used in this experiment were the following: MAX_MESSAGE_SIZE = 1024 (default),
PREFERRED_BLOCK_SIZE = 512 (default), MAX_RESOURCE_BODY_SIZE = 8192. Only the first
parameter was doubled for M64 protocol and quadrupled for M128 protocol, as these transport
protocols divide CoAP messages into smaller network packets by themselves. The final result of
network packet size and transfer mode used depending on the size of the user data transferred using
CoAP protocol is summarized in Table 1.

Table 1. Data transfer mode used in various cases of transport protocol and user data sizes.

User Data
Size, B

UDP, DTLS M64 M128

Transfer
Mode

Max. Packet
Length on
Media, B

Transfer
Mode

Max. Packet
Length on
Media, B

Transfer
Mode

Max. Packet
Length on
Media, B

≤1024 Plain packet 1024 Plain 3
packets 512 Plain 5

packets 256

1025–2048 Block-Wise
transfer 512 Plain 3

packets 1024 Plain 5
packets 512

2049–4096 Block-Wise
transfer 512

Block-Wise
transfer

(3 packets
per block)

512 Plain 5
packets 1024

>4096 Block-Wise
transfer 512

Block-Wise
transfer

(3 packets
per block)

512

Block-Wise
transfer

(5 packets
per block)

512

The performance evaluation results clearly show that when using user data sizes above 1024 B,
the CoAP block transfer mode kicks in and causes a significant decrease in overall transfer performance.
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The only difference here is that M64 and M128 transport protocols allow to start using block transfer
mode starting from bigger user data sizes (2048 bytes and 4096 bytes, respectively).

We used the NetEM [67] (Network Emulation) tool to assess the performance of the SSATP
protocol’s modifications in lossy network conditions. NetEM was used on the CoAP server side (the
Raspberry Pi) to emulate random network packet loss. The receiver collected all data packets and
restored missing data packets (if any). The results are shown in Figure 7.

Figure 7. Comparison of user data losses using different transport protocols in lossy network.

During this experiment, the non-confirmable CoAP messages were used to transfer 1 MB of user
data in 1024 B chunks, so block transfer mode was not engaged in all cases of different transport
protocols. Results show that both implementations of the SSATP protocol allow to achieve less overall
data loss in non-ideal network settings by using the redundant data packets.

The M128 modification is a better choice in poor quality networks only if average network data loss
does not exceed 10%. Starting from 15% of network loss, M128 protocol shows even worse results than
plain UDP and DTLS. For example, in networks with average 25% of data packets loss, M128 delivers only
64.6% of data packets, while UDP and DTLS settle around 75%. The M64 implementation tells a different
story, even in the case of 40% of average data loss in the network infrastructure, the M64 manages to get
significantly better final reliability compared to the plain UDP or DTLS (66.2% vs. 60% respectively).

To summarize the differences of energy requirements induced by different transport protocols,
we used all four protocols with user data sizes of 1024B, 2048B, and 4096B to transfer 1 MB of useful
data from the server to the client. Moreover, the quiescent energy used to power the USB Wi-Fi adapter
(which is significant, as seen from Figure 5) was not included in this evaluation, thus leaving only the
energy used for the transmission of the data. The results are summarized in Figure 8.
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Figure 8. Comparison of energy consumption.

From the results, we can clearly see that M64 and M128 protocols use more energy in the case of
data packets of 1024 bytes. This is because in all four cases, CoAP is not using block transfer mode,
but the M64 and M128 transport protocols add additional redundancy data packet to each data segment
and uses a higher count of smaller data packets to transfer the same amount of user data. The situation
changes, if the 2048 B and 4096 B data packets are used. In these cases, M64 and M128 benefits from
avoiding block-wise transfer mode, thus causing fewer request/response exchanges on the CoAP level,
and consequently, significantly decreasing the total energy required to transfer the same amount of
user data.

5. Conclusions and Future Work

A new lightweight secure self-authenticable transfer protocol (SSATP) was proposed in this paper.
This protocol is intended to be used as a transport protocol for CoAP in constrained environments,
primarily for Fog computing communications between Edge nodes and Fog nodes. The SSATP protocol
is well suited for applications where block-wise transfer of CoAP protocol dominates and/or network
infrastructure is lossy.

SSATP is a lightweight secure communications protocol, which provides authentication and
confidentiality to the user data. It uses a covert-channel-inspired method to embed data flow
management and security data in modified UDP packets’ header fields. The protocol provides security
properties comparable to DTLS and does not use handshake procedure or asymmetric ciphers. It is
well suited for constrained devices as it uses only symmetric ciphers and hash functions.

Two modifications of the SSATP protocol were implemented and experimentally compared with
plain UDP and DTLS used as transports for the CoAP protocol. The analysis of the results shows
that the proposed modifications provide very similar performance characteristics when compared to
the plain UDP and are marginally faster when compared to DTLS. However, in the cases where the
CoAP protocol starts to use the block-wise transfer mode, both SSATP protocol implementations are
significantly faster than UDP, even when considering that SSATP additionally provides authentication
and confidentiality for the user data.

In network environments, where significant data loss is expected, SSATP uses an additional
redundant data packet to provide increased data transfer reliability. The experimental results show that
both modifications are preferable to plain UDP and DTLS in network environments, where an average
data loss is up to 10%. On the other hand, the M64 modification provides significantly better data
transfer reliability in the networks with up to average 20% packet drop.
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Our energy consumption experiments show that both modifications of the SSATP protocol consume
slightly more energy when CoAP protocol is used in its standard mode. This is the consequence of the
fact that both modifications use additional packet with redundant information. However, the picture
changes when the CoAP block-wise mode is used. In this case, both modifications of the SSATP
protocol consume less energy when compared to plain UDP and DTLS.

A number of interesting aspects of the proposed protocol could be investigated in the future.
It is unclear how the SSATP will perform in the real-life sensor networks with many Edge devices all
trying to communicate with their respective Fog nodes. It would also be interesting to see the power
consumption differences on the Edge devices themselves while executing different protocols, and to
compare the performance of the protocol on devices with different processing power.

The new proposed CoAP standard modifications [68] specify the requirements to use CoAP over
TCP and TLS. In the future, we will compare the performance of these implementations.

Our final conclusion and recommendation is that the SSATP protocol should be used as transport
for the CoAP protocol in the situations where network infrastructure is unreliable and/or large user
data blocks are frequently transferred using the CoAP protocol’s block-wise mode.
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