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Abstract. Conventional large vocabulary automatic speech recognition (ASR) systems require
a mapping from words into sub-word units to generalize over the words that were absent in the
training data and to enable the robust estimation of acoustic model parameters. This paper surveys
the research done during the last 15 years on the topic of word to sub-word mappings for Lithua-
nian ASR systems. It also compares various phoneme and grapheme based mappings across a broad
range of acoustic modelling techniques including monophone and triphone based Hidden Markov
models (HMM), speaker adaptively trained HMMs, subspace gaussian mixture models (SGMM),
feed-forward time delay neural network (TDNN), and state-of-the-art low frame rate bidirectional
long short term memory (LFR BLSTM) recurrent deep neural network. Experimental comparisons
are based on a 50-hour speech corpus. This paper shows that the best phone-based mapping signif-
icantly outperforms a grapheme-based mapping. It also shows that the lowest phone error rate of
an ASR system is achieved by the phoneme-based lexicon that explicitly models syllable stress and
represents diphthongs as single phonetic units.

Key words: speech recognition, grapheme, phoneme, G2P conversion, HMM, SGMM, TDNN,
BLSTM, Lithuanian.

1. Introduction

Conventional large vocabulary automatic speech recognition (ASR) systems require
a mapping from words into sub-word units to generalize over the words that were absent in
the training data and to enable the robust estimation of acoustic model parameters. Map-
ping words into phones by constructing pronunciation dictionaries that take into account
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sound assimilation rules and coarticulation effects was the dominant approach for many

years. This approach has the advantage of trying to match the process of speech produc-

tion. Mapping words into graphemes (letters) is an alternative approach (Kanthak and Ney,
2002; Killer et al., 2003) advocated by some recent studies (Collobert et al., 2016). It has

the advantage of skipping the process of dictionary build-up that is costly and requires
an involvement of linguistic experts. Grapheme based ASR systems showed relatively

good performance for Lithuanian ASR as well (Gales et al., 2015; Lileikytė et al., 2016;
Alumae and Tilk, 2016; Salimbajevs and Kapočiūtė-Dzikienė, 2018). Finding the best

lexicon of sub-word units for any particular language is a complex problem that can be

answered only through an experimental investigation. ASR systems based on different
word to sub-word unit mappings have to be built and their performance has to be com-

pared. Much of the complexity originates from the fact that the optimum sub-word unit
lexicon may depend on the size of the training corpus and on the setup of an ASR system,

i.e. on selected acoustic modelling technique, amount of linguistic knowledge incorpo-
rated into the system, and performance comparison criteria. Experimental investigation is

also costly in terms of computation time.
Multiple different word to sub-word unit mappings for the purposes of Lithuanian ASR

were investigated and compared during the last 15 years. Studies addressing this topic

often arrived to opposite conclusions or these conclusions were not supported by the tests
of statistical significance. Thus, the practical question about which mapping should be

chosen or tried first if someone has sizeable amounts of acoustic data (50 hours and more)
and intends to build an ASR system remains open.

This study aims to obtain an additional insight into this question. The first distinc-
tion of this study is that we follow a “divide and conquer” approach to the ASR tuning.

We eliminate lexical and syntactic-semantic layers of the ASR system and evaluate word
to sub-word unit mappings on the basis of the performance of an acoustic model alone.

Given that the language model (LM) and pronunciation dictionary are absent, we use

Phone Error Rate (PER) rather than Word Error Rate (WER) as the ASR performance
criterion. We believe that such approach makes our findings independent from the lex-

ical content of the training/evaluation data. Second, we carefully prepare the data. Our
investigations are based on a solid 50-hour speech corpus. Allophone-level annotations of

the corpus have grapheme-to-phoneme (G2P) conversion ambiguities resolved by means
of advanced G2P conversion tools. The third distinction of this study is that we compare

word to sub-word mappings on the basis of a broad range of acoustic modelling techniques

including state-of-the-art deep learning techniques. Finally, we dedicated lots of compu-
tational resources for the cross-validation experiments to verify the statistical significance

of our findings.
The paper is organized as follows: Section 2 presents the background, describes the

relationship between graphemes, phonemes and allophones of Lithuanian, and presents
the prior work, Section 3 presents our methods, describes phonemic and graphemic map-

pings investigated in this paper, and presents the experimental setup, Section 4 presents
the results, and finally the discussion and conclusions are presented in Section 5.
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2. The Background

2.1. Lithuanian Graphemes, Phonemes and Allophones

Traditional Lithuanian spelling is based on the set of 32 graphemes: a, ą, b, c, č, d, e, ę,
ė, f, g, h, i, į, y, j, k, l, m, n, o, p, r, s, š, t, u, ū, ų, v, z, ž that includes 9 diacritic sym-
bols.2 Lithuanian orthography is essentially phonological, i.e. standardized spelling re-
flects the essential phonological changes but also tolerates phonological inaccuracies. The
definition of Lithuanian phoneme is subject to debate among linguists. Girdenis (2014)
describes Lithuanian as having 58 phonemes (13 vowels and 45 consonants) whereas
Pakerys (2003) talks about 49 phonemes (12 vowels and 37 consonants). This study is
not concerned by different phoneme definitions, because it focuses on allophones and
their sets. The following considerations summarize the essence of the relationship among
graphemes, phonemes and allophones and illustrate the main difficulties of Lithuanian
G2P conversion:

• Lithuanian consonants are either palatalized, or non-palatalized. Palatalization prop-
erty of a consonant is not exposed by its grapheme symbol,3 but can be inferred
from its right context. One right standing grapheme is often enough, as consonants
are always palatalized before graphemes e, ę, ė, i, į, y, j. However, in rare cases four
right standing graphemes are required to infer this property correctly, e.g. perskrido

[1"pæ:rjsjkrjIdo:] (flew over).
• Lithuanian vowels are either short (lax), or long (tense). Duration property of a vowel

is not exposed by graphemes a, e, o (see Table 1).
• Grapheme pairs ie, uo, ai, au, ei, ui make up a diphtong (e.g. paukštis [2"p5u;kSjtjIs]

(bird)) or hiatus (e.g. paupys [p5.U2"pji:s] (riverside)) if they are within the same
syllable or span syllable boundaries respectively.

• Grapheme pairs al, am, an, ar, el, em, en. er, il, im, in, ir, ul, um, un, ur make up a
mixed diphthong if they are within the same syllable.

• Syllable boundaries are not exposed by standard spelling.
• Lithuanian syllables are either stressed, or unstressed. Stress falls on a nucleus of the

syllable, where nucleus may be a vowel, a diphthong or a mixed diphthong. Lithua-
nian phonetics distinguishes between two syllable accents: acute and circumflex. If
a diphthong or a mixed diphthong is stressed, the acute and the circumflex make
their respective first (vowel) and the second (vowel or consonant) components more
prominent. Syllable accent is not exposed by standard spelling.

• Traditional Lithuanian spelling uses irregular affricate encoding. Affricates are en-
coded either by graphemes such as c ([

>
ts,

>
tsj]), č ([

>
tS,

>
tSj]) or by digraphs: dz ([

>
dz,

>
dzj]), dž ([

>
dZ,

>
dZj]).

2Linguistic entity, like a grapheme or word written according to Lithuanian orthography is given in italics.
International Phonetic Alphabet (IPA) based phonetic transcription is enclosed within square brackets. SAMPA-
LT based allophonic transcription is given in plain text.

3In certain cases, palatalization is indicated by the grapheme i written after the palatalized consonant, e.g.
geriu (drink), gražios (nice), i.e. palatalization is represented by a digraph.
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Table 1
The relationship of Lithuanian graphemes and vowels. Graphemes a, e, o represent both short and long vowels.

Grapheme a ą e ę ė i į, y o u ų, ū

Phoneme [5], [A:] [A:] [E], [æ:] [æ:] [e:] [I] [i:] [O], [o:] [U] [u:]

• Digraph ch encodes sounds [x] and [xj].

The considerations above imply that G2P conversion of Lithuanian is quite complex.
G2P converter that relies on a word spelling and grapheme rewrite rules (Greibus et al.,
2017; Lileikytė et al., 2018), henceforth referred to as a shallow G2P converter, is in-
capable of resolving ambiguities related to vowel duration, syllable stress, and syllable
boundaries and consequently is incapable of producing detailed and consistent allophone
sequences. Only G2P converter making use of supplementary pronunciation dictionaries
(Skripauskas and Telksnys, 2006) or of accentuation algorithms (Norkevičius et al., 2005;
Kazlauskienė et al., 2010), henceforth referred to as a knowledge-rich G2P converter,4

might be capable of disambiguating and modelling these phonological properties cor-
rectly.

2.2. Related Work

The problem of finding the best word to sub-word unit mapping for the applications of
Lithuanian ASR was first addressed by Raškinis and Raškinienė (2003), followed by Šilin-
gas (2005), Laurinčiukaitė and Lipeika (2007), Gales et al. (2015), Greibus et al. (2017),
Lileikytė et al. (2018), and Ratkevicius et al. (2018).

All abovementioned studies have used very different ASR setups (see Table 2). First,
different proprietary speech corpora were used for ASR system training and evaluation
(Laurinčiukaitė et al., 2006; Harper, 2016; Laurinčiukaitė et al., 2018). Second, ASR
setups were based on different acoustic modelling techniques, such as monophone HMM
system (Šilingas, 2005; Ratkevicius et al., 2018), triphone HMM system (Raškinis and
Raškinienė, 2003; Šilingas, 2005; Laurinčiukaitė, 2008; Greibus et al., 2017), or hybrid
HMM – neural network models (Gales et al., 2015; Lileikytė et al., 2018). Third, different
evaluation methodologies were used. Raškinis and Raškinienė (2003), Laurinčiukaitė and
Lipeika (2007), Ratkevicius et al. (2018) and this study prefer accuracy estimation through
cross-validation, whereas other studies estimate recognition accuracy on a held-out data,
an approach that is less computation intensive. Fourth, different evaluation criteria were
used. Studies differ by comparing PER (Šilingas, 2005), WER (Raškinis and Raškinienė,
2003; Šilingas, 2005; Laurinčiukaitė and Lipeika, 2007; Gales et al., 2015; Lileikytė et

al., 2018; Ratkevicius et al., 2018), and sentence error rate (Greibus et al., 2017). Fifth,
ASR setups incorporated different language models such as word loops (Raškinis and
Raškinienė, 2003; Šilingas, 2005; Laurinčiukaitė and Lipeika, 2007; Ratkevicius et al.,
2018), word n-grams (Gales et al., 2015; Lileikytė et al., 2018), command lists (Greibus
et al., 2017), and phone n-grams (this study).

4Grapheme-to-allophone converter would be a more appropriate name.
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Table 2
Comparison of experimental setups used to compare phonemic, graphemic and syllabic lexicons in various

studies (WER – Word Error Rate; PER – Phone Error Rate; ATWV/MTWV – Actual/Maximum
Term-Weighted Value5 ; SER – Sentence Error Rate).

Study Corpus Evaluation Comparison Language Acoustic modelling
type criteria model technique

Raškinis and
Raškinienė,
2003

1 h of isolated
words,
4 speakers

4-fold
cross-validation,
15 min per
round

WER Word-loop Triphone HMM

Šilingas, 2005 9 h of
broadcast
speech

Held out data,
14 min

WER, PER Word-loop Monophone HMM,
Triphone HMM

Laurinčiukaitė
and Lipeika
2007

23 speakers6 10-fold
cross-validation,
1 h per round

WER Word-loop Triphone HMM

Gales et al.,
2015

3–40 h of
convers.
telephone

Held out data,
10 hours

WER Word
n-gram

Triphone HMM,
Hybrid
HMM-DNN
system

Lileikytė et al.,
2018

speech WER,
ATWV/
MTWV

Word
3-gram

Triphone HMM,
Hybrid
HMM-DNN
system

Greibus et al.,
2017

46.5 h of read
speech,
348 speakers

Held out data,
6.78 hours

SER Command
list

Triphone HMM

Ratkevičius
et al., 2018

2.5 h of
isolated words

5, 10-fold
cross-validation

WER Word-loop Monophone HMM

This study 50 h of read
speech,
50 speakers

10-fold
cross-validation
1 hour per round

PER Fully inter-
connected
triphones;
phone
3-gram,
4-gram

Triphone HMM,
LDA+MLLT
Triphone HMM,
SAT-HMM,
SGMM, Hybrid
HMM-TDNN,
BLSTM (recurrent
DNN)

Though word to grapheme mappings investigated by different studies are quite sim-
ilar, word to phoneme mappings are different and mostly incompatible across studies.
Each study makes its own choices about whether to and how to represent stress, duration,
palatalization, affricates, diphthongs and mixed diphthongs in a phonemic lexicon (see
Table 3). Laurinčiukaitė and Lipeika (2007) go beyond word to phoneme mappings and
investigate word to sub-word unit mappings, where sub-words may be phonemes, syllables
and pseudo-syllables.

5Actual/maximum term-weighted value is used to evaluate keyword spotting performance.
6Data of 10 speakers makes up 89% of the corpus. Every speaker is present in both training and test data.
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Table 3
Comparison of phonemic lexicons that were investigated by various studies. Symbols in the table denote

fine-grained (✚), partial (✓), and absent (O) modelling of some phonetic property.

Study

Phonemic
lexicon
as referenced
by authors S

yl
la

bl
e

st
re

ss
7

(v
ow

el
s

&
di

ph
th

.)

V
ow

el
8

du
ra

ti
on

F
ro

nt
in

g
of

ba
ck

9

vo
w

el
s

S
yl

la
bl

e
st

re
ss

10

(c
on

so
na

nt
s)

C
on

so
na

nt
11

pa
la

ta
li
za

ti
on

A
ff

ri
ca

te
12

m
od

el
li
ng

D
ip

ht
ho

ng
13

m
od

el
li
ng

M
ix

ed
di

ph
th

on
g1

4

m
od

el
li
ng

N
um

be
r

of
ph

on
et

ic
un

it
s

Raškinis A ✚ ✚ ✚ ✚ ✚ ✚ ✚ O 115
et al. AB ✓ ✚ ✚ ✚ ✚ ✚ ✚ O 101
2003 ABC O ✚ ✚ O ✚ ✚ ✚ O 73

ABD ✓ ✚ ✚ ✚ O ✚ ✚ O 76
ABCD O ✚ ✚ O O ✚ ✚ O 50

Šilingas, BFR1 ✚ ✚ O ✚ ✚ ✚ ✚ ✚ 229
2005 BFR2 ✚ ✚ O ✚ O ✚ ✚ ✚ 140

BFR3 O ✚ O O O ✚ ✚ ✚ 86
BFR4 O ✚ O O ✚ ✚ ✚ ✚ 139
BFR5 ✚ ✚ O O ✚ O ✚ O 87
BFR6 ✚ ✚ O O O O ✚ O 71
BFR7 O ✚ O O O O ✚ O 41

3pt] Greibus FZ1.3 O ✓ ✚ O O ✚ O O 36
et al., FZ15.5 O ✓ O O ✚ ✚ O O 61
2017 FPK1 ✚ ✚ ✚ ✚ ✚ ✚ ✓ O 93

Lileikytė FLP-32 O ✓ O O O O O O 29
et al., FLP-36 O ✓ O O O ✚ O O 33
2016 FLP-38 O ✓ O O O O ✚ O 35

FLP-48 O ✓ O O ✚ O O O 45

This detailed ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✓ 130
study no stress O ✚ ✚ O ✚ ✚ ✚ ✓ 79

no palatalization ✚ ✚ ✚ ✚ O ✚ ✚ ✓ 98
no mixed ✚ ✚ ✚ ✚ ✚ ✚ ✚ O 122
dipthongs
no diphthongs ✚ ✚ ✚ ✚ ✚ ✚ ✓ ✓ 112
no affricates ✚ ✚ ✚ ✚ ✚ O ✚ ✓ 122

7Lexicon includes allophones to represent differently stressed variants of all vowels and diphthongs (✚), or
only diphthongs ai, au, ei, ui (✓). Lexicon ignores the opposition of stressed vs. non-stressed sounds (O).

8Lexicon includes allophones to represent the opposition of short vs. long vowels and phone symbols in the
actual transcription reflect this opposition consistently (✚), or to the extent that is possible with a shallow G2P
converter (✓).

9Lexicon represents (✚) or ignores (O) the opposition of fronted vs. regular back vowels (e.g. [Offi], [Uffi] vs.
[O], [U]).

10Lexicon represents (✚) or ignores (O) the opposition of stressed vs. non-stressed consonants.
11Lexicon represents (✚) or ignores (O) the opposition of palatalized and non-palatalized consonants.
12Lexicon represents affricates by a single (✚) or two (O) consonants.
13Lexicon includes allophones to represent all diphthongs (✚), or only diphthongs ie, uo (✓) by a single

phone. Lexicon encodes all diphthongs by a sequence of two phones (O).
14Lexicon represents mixed diphthongs by different dedicated allophones (✚). Lexicon models mixed diph-

thongs by the sequence of two constituent phones (O) but it also models sonorants which make part of a mixed
diphthong as distinct allophones (✓).
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Given such a variety of the experimental setups it is not surprising that different studies
came to different and even opposite conclusions. For instance, Raškinis and Raškinienė
(2003) achieved the best WER by the word to phoneme mapping that ignored stress
and preserved palatalization (see Table 3, ABC phonemic lexicon), whereas (Šilingas,
2005) achieved best WER by preserving stress and ignoring palatalization (see Table 3,
BFR6 phonemic lexicon). Greibus et al. (2017) achieved best SER by ignoring both stress
and palatalization. Gales et al. (2015) found that grapheme-based system outperforms
phoneme-based system, whereas Šilingas (2005), Greibus et al. (2017) and Lileikytė et

al. (2018) came to an opposite result. Laurinčiukaitė and Lipeika (2007) found that map-
ping into a mixture of phonemes and syllable-like units improves WER.

Incompatible conclusions are partially due to the limitations of the experimental se-
tups. Some findings are based on a small training corpus (Raškinis and Raškinienė, 2003;
Ratkevicius et al., 2018) or on a limited carefully selected held-out data (Šilingas, 2005).
Other studies (Greibus et al., 2017; Lileikytė et al., 2018) are testing limited word-to-
phoneme mappings due to the usage of a shallow G2P converter which is unable to pro-
duce allophone-rich phonemic transriptions. Conclusions of many studies are dependent
on a single (though generally state-of-the-art at the time of investigation) acoustic mod-
elling technique. Finally, recognition accuracies obtained by the majority of studies are
not “pure” indicators of performance of different word to sub-word mappings as they are
strongly influenced by different amounts of linguistic constraints embedded into ASR se-
tups. For instance, Greibus et al. (2017) restrict their language model (LM) to a command
list, where commands share 271 unique word types, and Ratkevicius et al. (2018) restrict
their LM to a 10-digit word loop.

3. The Method

3.1. Investigated Phonemic and Graphemic Lexicons

In this study, we have adopted an experimental approach common to other similar studies
(Raškinis and Raškinienė, 2003; Šilingas, 2005). It consists of defining some phonemic
lexicon which serves as a reference point. Thereafter, reductions of this lexicon are derived
by elimination of various phonological properties (e.g. stress, palatalization) or by split-
ting compound phonetic units (e.g. diphthongs, affricates) into sub-parts and measuring
the performance of the ASR system for every reduced lexicon. Our reference phonemic
lexicon consists of 130 allophones (henceforth referred as to “detailed” lexicon). It is pre-
sented in Table 4 using SAMPA-LT (Raškinis et al., 2003) encoding.

We have compared the “detailed” lexicon against 5 reduced phonemic lexicons and
one graphemic lexicon in order to answer the questions about what is the best approach
to:

• Stress modelling (present vs. absent),

15N encodes velarized n ([N]).
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Table 4
Detailed list of Lithuanian allophones in SAMPA-LT encoding. Acute and circumflex are

encoded by double quote (”) and caret (∧) respectively. Column (:) distinguishes long
vowels from short ones. Palatalization is encoded by a single quote (’). Sonorants that

make part of a mixed diphthong are labelled by period (.).

(a) Vowels and diphthongs

Short Long

Unstressed Stressed Unstressed Stressed Stressed
(acute) (circumflex)

Vowels a, e, i, o, u "a, "e, "i, a:, e:, E:, "a:, "e:, "E:, ^a:, ^e:, ^E:,
"o, "u i:, o:, u: "i:, "o:, "u: ^i:, ^o:, ^u:

Fronted vowels io, iu "io, "iu io:, iu: "io:, "iu: ^io:, ^iu:

Diphthongs ie, uo, iuo "ie, "uo, "iuo ^ie, ^uo, ^iuo
ai, au, ei, "ai, "au, "ei, ^ai, ^au, ^ei,
eu, ui, iui "eu, "ui, "iui ^eu, ^ui, ^iui

(b) Plosives, fricatives and affricates

Non-palatalized Palatalized

Voiced Unvoiced Voiced Unvoiced

Plosives b, d, g p, t, k b’, d’, g’ p’, t’, k’
Fricatives z, Z, G, v, j s, S, x, f z’, Z’, G’, v’ s’, S’, x’, f’
Affricates dz, dZ ts, tS dz’, dZ’ ts’, tS’

(c) Sonorants

Non-palatalized Palatalized

Standalone Part of a mixed diphthong Standalone Part of a mixed diphthong

Unstressed Stressed Unstressed Stressed

Sonorants l, m, n, r l., m., n., ^l., ^m., ^n., l’, m’, n’, r’ l.’, m.’, n.’, ^l.’, ^m.’, ^n.’,
N.15, r. ^N., ^r. N.’, r.’ ^N.’, ^r.’

• Palatalization modelling (present vs. absent),
• Diphthong modelling (one vs. two phones),
• Mixed diphthong modelling (distinguishing vs. not distinguishing constituent con-

sonants),
• Affricate modelling (one vs. two phones),

and whether a phone-based ASR system outperforms a grapheme-based one.16 Answers
to those questions are important from the practical perspective. As mentioned previously,
extracting stress and syllabification data from word spelling is costly in terms of human
expertise.

16It may seem that a larger set of phonemes will always model pronunciation better with a sufficient corpus
size. This may be true in case of monophone-based single-GMM (i.e. the simplest) acoustic models where model
complexity directly depends on the number of phoneme symbols. Triphone acoustic models based on reduced
lexicons may have more triphones than acoustic models based on detailed lexicons. Complexity of a triphone
acoustic model, which can be expressed as a number of different acoustic states or a number of probability
density functions (pdfs), isn’t directly related to the size of the symbol set. Pdf clustering procedure (to alleviate
the data scarcity problem) usually makes all triphone models of approximately the same size/complexity for a
given fixed corpus size.
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Fig. 1. The process of deriving phonemic and graphemic transcriptions from the input ortographic transcription.
Arrow symbol denotes a broad “replace” operator (inclusive of “split” and “merge”).

The process by which different phonemic and graphemic transcriptions were obtained
is described in Fig. 1. First, word-level ortographic transcription was processed by the
knowledge-richG2P converter (Kazlauskienė et al., 2010) resulting in allophone sequence
that observes intra-word sound assimilation rules. Thereafter optional sound assimilation
rules were applied at word boundaries in an automatic way on a basis of a maximum-
likelihood criterion. This resulted in “detailed” phone-level transcription encoded by
SAMPA-LT symbols that served as our reference word-to-phoneme mapping. Reduced
phonemic transcriptions were derived from the “detailed” transcription by subjecting it to
one or more editing operations (see Fig. 1).

Graphemic transcription was obtained from the word-level ortographic transcription
by means of a few editing operations that encoded graphemes by SAMPA-LT symbols.
This encoding was necessary in order to harmonize phonemic and graphemic transcrip-
tions for their comparison at a later stage (see 3.6). Graphemic lexicon may look like a
phonemic one, but this is a false impression. Graphemic transcription was not subjected
to sound assimilation rules, and the changes in graphemic transcriptions are simple and
mostly reversible transliterations.



582 G. Raškinis et al.

3.2. Speech Data and the ASR Cross-Fold Validation Setup

Our experiments were based on a 50-hour speech corpus that was compiled at Vytautas
Magnus University. The corpus consisted of 50 speakers (25 males and 25 females) each
reading book excerpts for approximately 1 hour.17 Word-level transcriptions of this cor-
pus were manually adjusted to match misspellings and missacentuations present in audio
recordings.

We built multiple ASR systems based on different phonemic/graphemic lexicons and
tried to estimate their accuracies via a cross-validation technique. The cross-validation
round consisted of training an ASR system (building acoustic and phone-level language
models) on the speech and transcripts of 49 speakers and testing system accuracy on the
speech of the held-out (or test) speaker. Full leave-one-out (or 50-fold) cross-validation
was costly in terms of computational time. Instead, we approximated it with a “pes-
simistic” 10-fold cross-validation scheme. We call it “pessimistic” (with respect to the
leave-one-out cross-validation) because of the inclusion of the most problematic speakers
into the test set. The selection procedure clustered all speakers into 5 clusters of compa-
rable size and selected 2 worst rated speakers per cluster for inclusion into the test set
(2x5=10 in total).18 Identifiers of selected speakers and their ratings are given in Table 6.

3.3. Acoustic Models

It is reasonable to expect that a certain phonemic lexicon performs better when coupled
with some particular acoustic modelling technique. In order to investigate this relationship
and to assess the possible limitations of our conclusions we have built and compared the
ASR systems based on the acoustic models of 7 different types19 including:

1. Monophone HMM system (henceforth referred to as “mono” system) was the sim-
plest ASR system, where each phone was modelled by a single HMM. HMMs had
from 2 to 5 states (number of states was related to the average phone duration) and
shared left-to-right topology. The number of Gaussian probability density functions
(pdfs) per state was estimated as an exponential function of the state occupation
counts targeting 1000 pdfs in total. Speech data was parametrized by extracting 13
mel-frequency cepstral coefficients (MFCC) and their first-order and second-order
derivatives from 25 ms speech frames at 10 ms intervals. Per speaker cepstral mean
normalization was applied.

2. Triphone HMM system (henceforth referred to as “tri-mfcc” system) was trained
on the same features as “mono” system, but each phone was modelled by multiple

17Silent segments make 15–20% of the corpus depending on the speaker.
18Speaker rating was determined on the basis of WER obtained in our earlier recognition and adaptation

experiments (Rudžionis et al., 2013). Speaker clustering was based on the feature set that included insertion,
deletion and substitution errors.

19We have used an open-source Kaldi ASR toolkit (Povey et al., 2011a) for training and evaluating all ASR
systems. Some other techniques, mostly discriminative training approaches, have been tried but not described
in this paper, because their accuracy estimates correlated with the results of non-discriminative training.
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context-dependent HMMs (triphones). The system targeted 11000 Gaussian pdfs in
total. Triphone state tying was performed using decision-tree clustering technique
and resulted in approximately 2000 clusters (tree leaves).

3. TriphoneHMM system (henceforth referred to as “tri-lda” system) was trained in the
same way as “tri-mfcc” system, but was based on a different speech parametrization.
It consisted of splicing 13-dimensional MFCC vectors across 7 frames (3 frames
on each side of the current frame) resulting in 91-dimensional feature vectors, ap-
plying Linear Discriminant Analysis (LDA) to reduce vector dimensionality to 40,
and finally estimating the Maximum Likelihood Linear Transform (MLLT) (Gales,
1999) over multiple iterations. MLLT represents a square feature transformation
matrix with the objective function being the average per-frame log-likelihood of the
transformed features given the model.

4. Speaker-adaptively trained (SAT) triphone HMM system (henceforth referred to as
“tri-sat” system) differed from the previous one as speaker-specific feature-space
maximum likelihood linear regression (fMLLR) adaptation was added on the top
of LDA+MLLT speech parametrization. fMLLR is an affine feature transformation
whose estimation techniques are detailed in Gales (1998).

5. System based on the Subspace Gaussian Mixture Models (SGMM) is a general
HMM model where states share the same GMM structure (henceforth referred to
as “sgmm” system). The acoustic model is defined by vectors associated with each
state and by a global mapping from this vector space to the space of parameters
of the GMM. Thus GMM means and mixture weights are constrained to vary in a
subspace of the full parameter space (Povey et al., 2011b). This system was trained
on the top of fMLLR adapted speech features.

6. System based on a feed-forward deep neural network known as Time-Delay Neural
Network (TDNN) henceforth referred to as “tdnn” system. This system was trained
using procedure described in Zhang et al. (2014). First, “tri-sat” system was asked
to produce frame-level state labelling for the training speech. Thereafter, state la-
bels were used as targets to train the TDNN acoustic models. Speech data was
parametrized by extracting 40 mel-frequency filterbank coefficients, splicing 40-
dimensional vectors across 9 frames resulting in 360-dimensional feature vectors.
Thus, TDNN had 360 inputs and aproximately 1750 outputs20 corresponding to the
context-dependent phone state labels. In between the input and the output layers
TDNN had two hidden layers based on tangent non-linearity. TDNN was trained
for 20 epochs by reducing learning rate during the first 15 epochs.

7. System based on a recurrent deep neural network known as Low Frame Rate Bidi-
rectional Long Short Term Memory (LFR BLSTM). This system was trained us-
ing procedure described in Povey et al. (2016). Two additional speed perturbed
copies of training data were used for 3-fold data augmentation (Ko et al., 2015).
100-dimensional iVectors were extracted in online manner and were used as ad-
ditional inputs to the BLSTM network to perform instantaneous adaptation of the

20The exact number is dependent on the held-out speaker identity in a particular cross-validation round.
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Table 5
Average perplexities of the phone-level n-grams, measured on the held-out parts of the speech corpus.

Lexicon Categorial 3-gram 1-gram 2-gram 3-gram 4-gram

Detailed 31.45 60.66 18.05 12.23 9.46
No stress 27.00 45.37 14.57 10.97 8.81
No palatalization 33.17 44.24 17.96 12.32 9.44
No mix. diphthongs 32.05 56.35 18.59 12.36 9.53
No diphthongs 30.54 52.91 16.76 11.50 8.94
No affricates 30.89 59.12 17.83 12.11 9.35
Graphemes 23.55 22.14 12.79 9.67 7.86

neural network (Soan et al., 2013). LFR BLSTM architecture had 3 forward and 3
backward layers. The model was trained for 4 epochs by linearly reducing learning
rate throughout the training process. This ASR system is referred to as “blstm” in
the subsequent sections.

3.4. Phone-Level Language Models

We aim to build an experimental setup such that the ASR system is stripped from its
lexical and grammatical knowledge (list of words of a language and probabilities asso-
ciated to word sequences) that influences recognition accuracy, so that the accuracy of
the ASR system reflects the performance of the word to sub-word unit mappings under
investigation. It should be noted that phonotactic knowledge cannot be eliminated from
our comparisons because it makes an integral part of an acoustic (starting from triphones)
model. If we take a triphone acoustic model, extract the list of all triphones, and make a
fully-connected triphone network that respects adjacency constraints (i.e. triphone a-x+y
is connected to every triphone x-y+b in the list, where a, b, x, y denote any sub-word
unit of the lexicon) we obtain a phone 3-gram with the uniform probability distribution
over the outgoing links. It represents the set of categorial phonotactic constraints embed-
ded into an acoustic model. Let’s call it the categorial phone 3-gram. Table 5 compares
perplexities of the categorial and probabilistic phone-level n-grams.

We have taken the categorial phone 3-gram as our baseline decoding setup. In addition,
we performed decoding experiments with phone 3-grams and 4-grams to observe how
additional probabilistic phonotactic knowledge affected the ASR performance.21

Decoding with categorial 3-grams, probabilistic 3-grams and 4-grams exploited
phonotactic but not lexical or syntactic-semantic knowledge, so we believe that our com-
parisons were independent from the lexical content of the training/evaluation data.

To summarize, our experimental investigation consisted of building 7 (phone-
mic/graphemic lexicons) × 7 (acoustic model types) × 10 (speaker-specific cross-

21We did not perform decoding with phone 1-grams and 2-grams because their decoding accuracies are hard
to interpret. On the one hand, phone 1-grams and 2-grams are under-constrained with respect to the categorial
phonotactic constraints integral to the triphone acoustic model, and, consequently, the decoder is forced to syn-
thesize triphones that violate phonotactic constraints of the language. On the other hand, 1-grams and 2-grams
are more constrained by probabilistic knowledge than the categorial 3-gram by taking advantage of statistics of
the training corpus.
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validation rounds) = 490 different acoustic models and performing 490 (acoustic models)
× 3 (phone-level language models) = 1470 decoding experiments in total.

3.5. Scoring: Accuracy Estimation

We have used Phone Error Rate (PER) criterion to compare the performances of different
ASR setups. It was calculated according to:

PER =
S + I + D

N
100%, (1)

where S, I and D denote substitution, insertion and deletion errors respectively, and N is
the total number of phones/graphemes in the test data. S, I and D estimates were extracted
from automatic alignments of recognized and reference transcriptions.

3.6. Scoring: Transcription Normalization

Automatic alignment of recognized and reference transcriptions was preceded by the
transcription normalization step. This step consisted of projecting every individual
phoneme/grapheme onto a symbol or a sequence of symbols over the normalized alpha-
bet. Without projecting lexicons of different sizes into the common lexicon the compar-
ison would be biased against allophone-rich ASR setups as they naturally tend to result
in more substitution errors than ASR setups based on reduced lexicons. Moreover, with-
out normalization, substitution errors involving, e.g. stressed vs. unstressed or palatalized
vs. non-palatalized allophones of the same phoneme, will look like equally important as
phoneme substitutions.

Normalized alphabet contained 27 symbols (a b d e E: f g G x i i: j k l m n o p r s S
t u u: v z Z). It represented the intersection of all investigated lexicons, i.e. it contained
symbols that were common to all lexicons. Other allophone units were projected into this
alphabet by eliminating their phonetic properties or by spliting compound units (affricates,
diphthongs, fronted back vowels) into the sequences of 2 or 3 symbols.22 As the only
exception to this rule, we have eliminated symbols a: and e: from the normalized alphabet
even if these symbols were present in all investigated lexicons. The effect of this exception
was that a / a: and e / e: substitutions were no longer interpreted as errors. This was done
to eliminate the bias against the graphemic lexicon so that it was not penalized for the
failures to resolve duration ambiguities it was hardly able to resolve.23

The process of projecting phonemic and graphemic transcripts into scoring transcripts
over the normalized alphabet was realized by 4 steps:

1. Remove double quote(”), caret(^), single quote(’), period(.) from SAMPA-LT phone
descriptions;

22For instance, graphemic lexicon lacks the symbol o: (see Table 1 and bottom part of Fig. 1), so o: is not
included into the normalized alphabet, and all phonemic lexicons are projecting o: → o. The “no affricates”
lexicon lacks affricates ts, tS, dz, dZ, so other lexicons are projecting affricates into a sequence of two symbols.

23Acoustic models of graphemes a and ą are both trained on acoustic samples of [a:] (see Table 1).
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2. Split multi-symbol SAMPA-LT phone descriptions (ai, au, ei, eu, ie, ui, uo, iui, iuo,
dz, dZ, ts, tS) into forming symbols;

3. Split: iu → i u, iu: → i u:, io → i o, io: → i o:;
4. Replace: e: → e, a: → a, o: → o, N → n.

Though grapheme-based and phoneme-based reference transcriptions are mapped to
transcriptions over the same normalized alphabet, they are not identical. For instance,
Lithuanian word džiaugsis (will rejoice) is mapped to d Z e u k s i s (phonemic) and d Z
i a u g s i s (graphemic) over the same normalized alphabet. The difference stems from
the fact that phonemic transcriptions by definition are transcriptions subjected to sound
assimilation rules.24

4. Experimental Results

Let PERLX,AM,LM,SPK denote a Phone Error Rate that is obtained by the ASR setup based
on the lexicon LX, the acoustic modelling technique AM, the phone-level LM and cor-
responds to the cross validation round, in which the data of SPK speaker is decoded.25

Values of PERdetailed,*,categorial 3-gram,* and PERgraphemic,*,categorial 3-gram,* are shown in Ta-
bles 6a and 6b respectively for illustration purposes. Each table corresponds to the PER
values obtained by 70 different ASR setups (10 speaker specific cross validation rounds
× 7 acoustic modelling techniques).

To compare different word to sub-word unit mappings, we are mainly interested not in
the PER values themselves but in the differences between PERLX,AM,LM,SPK values for dif-
ferent choices of LX everything else being fixed (e.g. differences between corresponding
cells of Tables 6a and 6b).

Let’s define a discrete random variable:

XLX1, LX2, AM, LM =
{

PERLX2, AM, LM, i − PERLX1, AM, LM, i

PERLX1, AM, LM,i

}

, (2)

where index i ranges over speaker identities. This random variable represents a relative
increase (if it is positive) or relative decrease (if it is negative) of PER as a consequence
of replacement of the lexicon LX1 with a lexicon LX2 in the ASR setup that has acous-

24The original word spelling cannot be restituted neither from a phonemic, nor from a graphemic transcrip-
tion expressed over the normalized alphabet due to the one-to-many mapping, e.g. a t S i u: could be restituted
as ačiū (thanks), ačių, atšiū, atšių, ąčiū, ąčių, ątšiū, ątšių (nonsense words).

25LX ∈ {detailed, no-stress, no-palatalization, no-mixed diphthongs, no-diphthongs, no-affricates,
graphemic}, AM ∈ {mono, tri-mfcc, tri-lda, tri-sat, sgmm, tdnn, blstm}, LM ∈ {categorial phone 3-gram, prob-
abilistic phone 3-gram, probabilistic phone 4-gram}, SPK ∈ {ARM, BLA, CIZ, DEK, EID, JUK, LEO, MAL,
RUP, SKA}.

25The best speaker has the rating of 1 and the worst speaker has the rating of 50.
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Table 6
Phone error rates obtained by different ASR setups when decoding with categorial phone 3-gram. Columns

represent different acoustic modelling techniques. Rows represent 10 speaker-specific cross validation rounds.

(a) ASR setups based on “detailed” phonemic lexicon (PERdetailed,*,categorial 3-gram,*)

Speaker (rating26 ) mono tri_mfcc tri_lda tri_sat sgmm tdnn blstm

ARM (50) 53.89 48.90 45.61 33.36 31.46 28.82 32.14
BLA (39) 42.27 28.98 25.46 21.37 17.29 14.62 11.46
CIZ (37) 44.60 30.87 29.30 21.94 17.11 15.67 12.46
EID (43) 46.27 34.93 31.53 26.39 21.78 19.27 15.39
DEK (1) 30.59 17.02 14.61 12.38 9.84 9.06 6.89
JUK (46) 41.78 32.76 29.35 25.14 21.68 19.11 17.54
LEO (34) 40.27 27.38 22.97 18.31 14.72 12.85 6.50
MAL (49) 47.90 37.95 32.46 27.27 23.55 22.24 17.38
RUP (36) 35.39 24.30 21.59 17.46 13.45 11.65 8.78
SKA (47) 46.70 37.55 35.74 31.27 26.28 24.59 19.59

Average 42.97 32.06 28.86 23.49 19.72 17.79 14.82

(b) ASR setups based on graphemic lexicon (PERgraphemic,*,categorial 3-gram,*)

Speaker (rating) mono tri_mfcc tri_lda tri_sat sgmm tdnn blstm

ARM (50) 54.30 52.81 48.02 37.57 35.95 31.32 32.19
BLA (39) 42.37 33.29 29.80 25.57 21.36 17.14 12.94
CIZ (37) 46.98 34.82 32.93 26.05 21.47 18.60 12.03
EID (43) 48.40 38.47 34.96 30.16 25.79 22.41 16.56
DEK (1) 33.48 20.22 17.44 15.46 12.94 10.95 7.50
JUK (46) 45.08 35.70 32.72 28.66 25.72 21.38 18.46
LEO (34) 41.20 31.24 27.78 22.02 18.80 16.06 7.60
MAL (49) 48.35 40.08 35.44 30.59 26.94 24.23 18.48
RUP (36) 37.17 28.27 25.28 21.26 17.66 14.49 9.86
SKA (47) 49.89 40.55 38.55 34.64 29.94 26.91 20.28

Average 44.72 35.54 32.29 27.20 23.66 20.35 15.59

tic modelling technique AM and the phone-level language model LM fixed. Confidence
intervals for this random variable could be computed by:

XLX1, LX2, AM, LM ± t ×
SLX1, LX2, AM, LM√

n
, (3)

where XLX1,LX2,AM,LM and SLX1,LX2,AM,LM are the mean and standard deviation of the
random variable XLX1,LX2,AM,LM, n = 10 is the sample size and t = 2.262 is t-value for
the 95% confidence level with n− 1 degrees of freedom. Fig. 2 compares detailed phone-
mic lexicon with reduced phonemic lexicons and a graphemic lexicon. It shows means
and confidence intervals for random variables Xdetailed,LX,AM,LM given different LX, AM,
and LM values.

Plots of Fig. 2 reveal the following tendencies:

• Detailed phonemic lexicon significantly outperforms graphemic lexicon across all
investigated acoustic modelling techniques and all phone-level language models
(Fig. 2(a)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Mean relative increase in phone error rate and 95% confidence intervals after substituting detailed phone-
mic transcription with a) graphemic transcription; b) “no-stress”, c) “no diphthongs”, d) “no palatalization”,
e) “no affricates”, f) “no mixed diphthongs” phonemic transcriptions.

• Detailed phonemic lexicon that models diphthongs as a single unit significantly out-
performs reduced phonemic lexicon that models diphthongs as a sequence of two
units across all investigated acoustic modelling techniques and all phone-level lan-
guage models (Fig. 2(c)).

• Detailed phonemic lexicon that preserves distinction of stressed vs. non-stressed
vowels and the distinction of palatalized vs. non-palatalized consonants is perform-
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Fig. 3. Means and 95% confidence intervals of the phone error rate (PER).

ing significantly better with respect to the lexicons that ignore stress (Fig. 2(b)) or
palatalization (Fig. 2(d)). PER obtained with the LFR-BLSTM acoustic model is the
only, albeit statistically not significant, exception to this tendency. We hypothesize
that bidirectional recurrent neural network is capable of capturing enough future
context to model palatalization with a comparable accuracy to the lexicon that has
distinct labels for palatalized and non-palatalized consonants.

• “No stress”, “no diphthongs” and graphemic lexicons (Fig. 2(b), 2(c), 2(a)) become
even less attractive if decoder is provided with more phonotactic knowledge.

• “No affricates” phonemic lexicon (modelling affricates by two sub-word units)
slightly outperformsdetailed lexicon if ASR setup consists of GMM-based or TDNN
acoustic models and decoding is done with a categorial phone 3-gram (Fig. 2(e)).
Giving more phonotactical knowledge to the decoder (probabilistic phone 3-gram
or 4-gram) seems to reverse this tendency. BLSTM acoustic model is also in favour
of detailed lexicon. However, all observed differences between detailed and “no af-
fricates” lexicon are not statistically significant.

• It seems that distinguishing sonorants that make part of a mixed diphthong from
the regular ones may be slightly preferred (Fig. 2(f)). Though such preference is not
proven to be statistically significant.

• The LFR BLSTM acoustic model shows higher variability (Fig. 2(d)–2(f)) of the
relative increase in PER in comparison to other acoustic models. Higher variability
is due to the randomness of the BLSTM training procedure27 and usually lower
denominator values (variable XLX1, LX2, AM, LM in expression (2)).

Absolute PER values for different acoustic modelling techniques are shown in Fig. 3.

27We have observed that PER on the test subset may differ by as much as 0.5–1.0% for two random initial-
izations (training subset, validation subset, initial weights).
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Though many different acoustic modelling techniques have been tried in this study, we
do not make claims about their relative performance,28 because we would need to prove
that the optimum configuration was chosen for every acoustic modelling technique. Such
an investigation was out of the scope of this paper. However, it seems that ASR setups
based on the recursive deep neural network acoustic models compare well to the other
acoustic modelling techniques. This result is in-line with the general tendency in ASR
domain and represent the direction to go forward.

5. Discussion and Conclusions

This paper reviewed 15 years of research on the problem of the optimum word to sub-word
unit mapping for the purposes of the Lithuanian ASR. It presented a common framework
to compare different phonemic word to sub-word mappings. It also investigated and com-
pared multiple phonemic and graphemic word to sub-word mappings across a broad range
of acoustic modelling techniques.

Our investigationhas shown that phonemic mappings outperformgraphemicmappings
by a large margin. We assume that other studies, that have found graphemic mappings bet-
ter (Gales et al., 2015) or comparable (Lileikytė et al., 2018) in performance to phonemic
ones, came up to this result by contrasting graphemic mappings to phonemic mappings
lacking important features. For instance, phonemic lexicons investigated by Lileikytė et

al. (2018) lack stressed allophones, whereas the importance of distinguishing stressed and
non-stressed allophones is demonstrated in this study.

Though our investigation has not revealed which phonemic mapping is the best one, it
gave insights about which mappings should not be used. Phonemic mappings that model
diphthongs by two symbols and/or ignore stress were statistically significantly outper-
formed by the most detailed lexicon. What is the best approach to model palatalization,
mixed diphthongs and affricates is still subject to the future investigations.

Our findings were obtained in the framework of separately tuning an acoustic model
of the ASR system. Categorial phone 3-gram and PER criterion have helped us to elim-
inate lexical and syntactic-semantic layers of the ASR system and to evaluate word to
sub-word unit mappings on the basis of the performance of an acoustic model alone. It is
worth addressing the question of the best word to sub-word unit mapping in the framework
of jointly tuning the complete ASR system (acoustic and word-level language models to-
gether) and checking if the gains in PER observed with an isolated acoustic model translate
into the WER gains of the jointly optimized system.

Detailed lexicon was among the best performing lexicons investigated in this study.
Thus, we believe that data scarcity played no major role in our investigations and our find-
ings might be valid for corpora that are larger than 50 hours. It might be worth investigating
even more detailed word to sub-word unit mappings including syllables, sylable-like units,
consonant clusters, etc. following the suggestion of Laurinčiukaitė (2008).

28Decoding results obtained on the basis of LFR BLSTM acoustic models can not be directly compared to
other decoding results because this ASR setup was trained on 3 copies of speed-perturbed data.



Comparison of Word to Sub-Word Unit Mappings for Lithuanian ASR 591

Acknowledgements. Part of this research has been supported by a grant from the Research
Council of Lithuania under the National Lithuanian studies development programme for
2009–2015 through the project “A unified approach to Lithuanian prosody: the intonation,
rhythm, and stress” (reg. no. LIT-5-4).

References

Alumäe, T., Tilk, O. (2016). Automatic speech recognition system for Lithuanian broadcast audio. In: Human

Language Technologies – The Baltic Perspective: Proceedings of the Seventh International Conference,

Baltic HLT 2016, Vol. 289, pp. 39–45.
Collobert, R., Puhrsch, C., Synnaeve, G. (2016). Wav2Letter: an end-to-end ConvNet-based speech recognition

system. arXiv:1609.03193 [cs.LG].
Gales, M.J.F. (1998). Maximum likelihood linear transformations for HMM-based speech recognition. Com-

puter Speech and Language, 12(2), 75–98.
Gales, M.J.F. (1999). Semi-tied covariance matrices for hidden Markov models. IEEE Transactions on Speech

and Audio Processing, 7, 272–281.
Gales, M.J.F., Knill, K.M., Ragni, A. (2015). Unicode-based graphemic systems for limited resource languages.

In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5186–
5190.

Girdenis, A. (2014). Theoretical Foundations of Lithuanian Phonology. English translation by Steven Young.,
XVII, 413.
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Lileikytė, R., Gorin, A., Lamel, L., Gauvain, J., Fraga-Silva, T. (2016). Lithuanian broadcast speech transcription
using semi-supervised acoustic model training. Proceedings of Computer Science, 81, 107–113.
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Pakerys, A. (2003). Lietuvių bendrinės kalbos fonetika [Phonetics of standard Lithuanian]. Vilnius, Enciklope-
dija, 35, pp. 83–84.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian,
P., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K. (2011a). The Kaldi speech recognition toolkit. In: IEEE

2011 Workshop on Automatic Speech Recognition and Understanding (ASRU).



592 G. Raškinis et al.

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O., Goel, N., Karafiát, M., Ras-
trow, A., Rose, R. C., Schwarz, P., Thomas, S. (2011b). The subspace Gaussian mixture model – a structured
model for speech recognition. Computer Speech and Language, 25(2), 404–439.

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., Khudanpur, S. (2016). Purely
sequence-trained neural networks for asr based on lattice-free MMI. In: Proceedings of Interspeech-2016,
pp. 2751–2755.
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