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TERMS AND ABBREVIATIONS 

BCI Brain Computer Interface. It is a technology that allows communication 

between a human or animal brain and an external technology. 

DHO Damped harmonic oscillation. It is repetitive harmonic variation, typically 

in time, of some measure, which amplitude constantly decreases. 

ECG Electrocardiography. It is a process of recording the electrical activity of the 

heart over a period of time using electrodes over the skin. 

ECoG Electrocorticography. It is a type of electrophysiological monitoring that 

uses electrodes placed directly on the exposed surface of the brain to record 

electrical activity from the cerebral cortex. 

EDA Electrodermal activity. It is the property of the human body that causes 

continuous variation in the electrical characteristics of the skin. 

EEG Electroencefalography. It is a noninvasive electrophysiological monitoring 

method to record electrical activity of the brain. 

EMD Empirical mode decomposition. It is a signal decomposition method, which 

extracts so-called intrinsic mode functions of a complex signal. 

EMG Electromyography. It is an electrophysiological monitoring method to 

record electrical activity of the skeletal muscles. 

EOG Electrooculography. It is a technique for measuring the corneo-retinal 

standing potential that exists between the front and the back of the human 

eye. 

EP Evoke potentials. It is an electrical potential recorded from the nervous 

system of a human following presentation of a stimulus. 

ERP Event-related potentials. It is the measured brain response that is the direct 

result of a specific stimulus event. 

GUI Graphical user interface. It is a form of user interface that allows users to 

interact with electronic devices through various graphical elements and 

visual indicators. 

HAMM Human-assistive multimodal model. It is a software development 

framework suitable for multimodal systems where input modalities are 

based on physiological signals.   

HASCM Human-assistive single channel model. It is a software development 

framework suitable for single channel-based physiological computing 

interfaces. 

HCI Human–computer interaction (or Human-Computer interface). It is a 

scientific domain which analyses the design and use of computer 

technology, focused on the interfaces between users and computers. 

HI Humanistic Intelligence. It is a type of intelligence that results from a 

feedback loop between a computational process and a human being, where 

the human and computer are inextricably intertwined. 

HMI Human-Machine Interface. It is an interface which is capable of handling 

human-machine interactions. 

HRV Heart rate variability. It is a physiological property of the heart, which 

shows the variation in the time interval between heartbeats. 

IMF Intrinsic mode function. It is any function with the same number of extrema 

and zero crossings, whose envelopes are symmetric with respect to zero. 
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IR Infrared radiation. It is electromagnetic radiation with longer wavelengths 

than those of visible light. 

IR-PCR Infrared-induced pupil corneal reflection. It is PCR eye tracking technique 

based on infrared illumination. 

NCI Neural—control interface. It is a technology that allows communication 

between an external system and human based on physiological signals of 

neural origin. 

NUI Natural User Interfaces. It is a user interface that is effectively invisible and 

remains invisible as the user continuously learns increasingly complex 

interactions. 

PCR Pupil – corneal reflection. It is an eye tracking technique, in which vector 

between the pupil center and the corneal reflection is used to compute the 

point of regard. 

PCS Physiological computing system. It is a system that incorporates 

physiological data from humans into its functionality or displays these data 

at the interface. 

POG Point of gaze. It is a gaze position measured by eye tracking device. 

SCP Slow Cortical Potentials. Slow cortical potentials are slow event-related, 

direct-current shifts in the EEG, originating from the large cell assemblies 

in the upper cortical layer. 

SSVEP Steady state visually evoked potentials. They are signals that are natural 

responses to visual stimulation at specific frequencies. 

TF Fatigue threshold. It is an eye fatigue metric that is calculated using an 

empirical formula that depends on the average spatial accuracy of an eye 

tracker so that the threshold can scale with noisier signals. 

UI User interface. It is the space where interactions between humans and 

machines occur. 

VOG Videooculography. It is a non-invasive, video-based method of measuring 

horizontal, vertical and torsional position components of the movements of 

both eyes. 

TSP Travelling salesman problem. It is an NP-hard problem in combinatorial 

optimization, which asks the following question: “Given a list of cities and 

the distances between each pair of cities, what is the shortest possible route 

that visits each city and returns to the origin city?” 
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1 INTRODUCTION 

1.1 Relevance of the work 

Human-computer interface (HCI) based on physiological interaction, also 

known as physiological computing, is a very important research area in computer 

science. This type of interface goes beyond the typical human-computer interaction. 

Physiological interfaces incorporate human body characteristics into their 

functionality. Physiological characteristics of the human body could be determined as 

any quantitative data of physiological nature that are recorded from the human. The 

concept of physiological interaction or physiological computing systems (PCS) 

encompasses such well-known paradigms as brain-computer interface (BCI), neural 

computer interface (NCI), gaze tracking interface etc. 

The initial focus of the PCS-based interfaces was on people with disabilities, 

since their condition often requires an alternative mode of communication. Recently, 

we can observe an increasing number of applications that primary focus on healthy 

users. BCI games and entertainment application, for instance, are expected to 

constitute a large market of potential users (both healthy and disabled) [Ahn et al., 

2014]. Although eye tracking has been known as a useful research utility, recent 

studies reveal that eye tracking provides a more challenging and immersive 

experience to the PC game players [Antunes and Santana, 2018]. EMG-based 

interfaces were mostly applied to control of prosthetics [Castellini and van der Smagt, 

2009, Cipriani et al., 2008], but nowadays we can find applications of EMG-based 

interfaces for smartphones [Lee et al., 2015] and serious games [Ghassemi et al., 

2019]. 

One of the main reasons why PCS-based interfaces are more often used in 

entertainment applications is the growing number of consumer-grade electronic 

devices for physiological signal scanning. For a long time, systems were bulky, 

expensive and laboratory-oriented. Recently more consumer-affordable devices based 

on physiological computing and eye tracking emerged in the market (e.g. Tobii eye 

trackers for gaze tracking, Emotiv EPOC+ for BCI applications, MYO gesture control 

armband for electromyography (EMG)-based control). The gaze tracking systems 

have become more user-friendly and significantly cheaper. However, in many cases 

higher affordability has been achieved at the expense of accuracy [Maskeliunas et al., 

2016]. 

The control of interfaces based on PCS is rather a demanding task since a user 

has to carry out often unnatural activity, which results in high cognitive and physical 

load. The performance of a user controlling this kind of interface varies due training, 

emerging fatigue or change in mental state. Mental and physical fatigue have negative 

impact to performance, while training affects user performance positively. 

Fatigue is described as extreme tiredness resulting from mental or physical 

exertion or illness [Pageaux and Lepers, 2016]. It is common for almost every human 

physical activity. While controlling a personal computer (PC) in conventional ways, 

a user experiences fatigue after a relatively long period of time. Fatigue while 

controlling PC or any other digital device using human – machine interface based on 
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physiological computing usually emerges much faster. Fatigue effects in the EMG-

based interfaces are usually concerned with tension of specific muscles, which are 

responsible for muscle control. Users of the eye-tracking-based human – machine 

interfaces are usually affected by fatigue which eye muscle tension or even tiredness 

related with continuous looking at a PC screen and low blinking rate cause. In the 

field of BCI a user encounters mental fatigue because control of BCI applications 

requires significant mental concentration. User fatigue results in the decrease of 

performance and accuracy of system control, so that a user is able to perform high 

quality control just for a relatively short period of time (measured in minutes or hours. 

To expand time period of high-quality control in human – machine interface, 

intelligent user interfaces (UI’s) are developed or, if possible, multimodal interfaces 

are applied.  

The training effect opposes the fatigue effect. Therefore, the period of high-

quality control might be expanded by performing consistent training. Concepts of 

fatigue and training are common for physiology research. The analytical models of 

sport athlete’s performance, which encompass the muscular fatigue and training 

components, have been proposed by Banister and other researchers [Banister et al., 

1975, Calvert et al., 1976, Morton et al., 1990, Busso et al., 2002] in the eighties of 

the twentieth century and elaborated later. Nowadays this research has not lost their 

relevance. Moreover, they can be applied in new research areas, such as physiological 

computing, multimodal interface, BCI and NCI.  

1.2 Object of the work 

The object of this work is an intelligent model of user performance-aware HCI. 

1.3 Aim of the work 

To enable the monitoring, analysis and increase of performance of users 

working with physiological computing-based user interfaces by proposing the concept 

and model of the adaptive human-oriented HCI.  

1.4 Tasks of the work 

For the aim of the thesis to be achieved, the following objectives have been set 

out: 

1. Perform the analysis of the existing HCI models related to physiological 

computing. 

2. Carry out the analysis of the existing human performance models. 

3. Develop an extension to the existing physiological models to allow for the 

development of an adaptive user performance-aware interfaces. 

4. Adapt the performance models for EMG-based HCI and gaze tracking-based 

HCI. 

1.5 Scientific novelty 

In this work the following novel results are presented: 

1. The extension of the biocybernetic loop concept, called human-assistive HCI 

model, has been proposed. The model has two variants: human-assistive 
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single channel model (HASCM) and human-assistive multimodal model 

(HAMM). HASCM is applied to the users who can use only one input 

modality. HAMM is applied to users who can use more than one input 

modality. The novelty of the proposed model lies in two aspects: (i) the 

aforementioned model is derived from the concept of the biocybernetic loop, 

but it is more specific in the sense that it provides practical framework for 

user interface design, (II) the proposed model incorporates the performance 

evaluation in the human-computer communication process. 

2. The analytical model of athlete performance proposed by Banister et al. 

[Banister et al., 1975] was adapted to PCS research area. Based on this 

analytical model and experimental results, the analytical performance model 

for a speller based on eye tracking, has been derived. The derived model of 

eye tracking performance could be applied to develop human-assistive 

interface systems. 

3. The analytical DHO model, applied to evaluate performance of sport’s 

athletes, was adapted to evaluate the performance of users in the context of 

PC game based on eye tracking. This model is suitable for long-term analysis 

of performance dynamics. Findings show that this model well describes long-

term fatigue and training effects and short-term recovery of user performing 

abilities. 

4. To denoise and smooth the raw performance data of a PC game based on gaze 

tracking, a signal decomposition method, called BoostEMD [Damasevicius 

et al., 2015] has been developed. BoostEMD is an extension of a widely 

known Empirical Mode Decomposition (EMD) method, which is used to 

decompose time series representing a physiological signal into constituent 

mono-component signals, also known as Intrinsic Mode Functions (IMFs). In 

BoostEMD approach, the initial IMFs are further decomposed in lower order 

IMFs applying the principles of the EMD method and some additional signal 

transformation, called boosting [Damasevicius et al., 2015].  

1.6 Practical value 

Human-assistive HCI model provides a framework for the development of 

human – machine interfaces based on physiological computing. Using human-

assistive HCI model, user interfaces based on the performance characteristics of 

physiological interaction can be designed. The aim of this model is to enhance time 

period of continuous accurate control of the human – machine interface based on 

physiological computing. 

Typically, one of the biggest application areas of user interfaces, based on 

various physiological signals, is the systems for disabled. In general, such assistive 

technologies can be applied everywhere (both at work and home) in our everyday life 

to increase the quality of our life, sustain work productivity as well as for 

entertainment. Using such a system user starts feeling fatigue relatively fast, therefore, 

performance of the system control decreases as well. The performance of a user 

depends on individual characteristics. The proposed human-assistive HCI model aims 
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to adapt the interface to individual user needs and abilities and helps to prolong the 

time of effective usage of a certain interface. Moreover, some specific performance 

evaluation methods, suitable for interfaces based on eye tracking and EMG recording, 

have been adapted from other domains.   

1.7 Thesis statements 

1. The proposed Human-assistive HCI model could be applied to develop 

human – machine interfaces based on physiological signal control. 

2. Empirically determined analytical performance model developed by Banister 

et al. fits well user performance data obtained by using virtual keyboard 

interface based on eye tracking.  

3. Empirically determined analytical DHO performance model fits well user 

performance data obtained by applying a PC game based on eye tracking.  

4. The proposed BoostEMD signal decomposition method can smooth the raw 

performance data of the PC game based on gaze tracking better than other 

analyzed smoothing methods (moving average, Savitzky-Golay and median 

filters). 

1.8 Scientific approval 

The experimental results were presented and discussed in 4 international 

scientific conferences: 

1. XV International Conference on Human Computer Interaction, Interacción 

2014, Tenerife, Spain. 

2. 2014 Federated Conference on Computer Science and Information Systems, 

FedCSIS 2014, Warsaw, Poland. 

3. The 19nd International Conference ELECTRONICS 2015, Palanga, 

Lithuania. 

4. 12th International Conference on Intelligent Computer Communication and 

Processing, ICCP 2016, Cluj-Napoca, Romania. 

The full list of publication can be found in chapter titled “LIST OF 

PUBLICATIONS OF MINDAUGAS VASILJEVAS ON DISSERTATION 

TOPICS”. 

1.9 Notation of diagrams 

All diagrams in this document are presented based on the below provided 

notation. 

Table 1.1 Notation of diagrams 

Concept Notation Description 

Layer, component 

[Text]

 

Describes a static concept of 

systems. Layers and components are 

responsible for a specific set of actions 

of a particular system. 

Medium 

[Text]
 

Describes physical or virtual 

communication environment. 
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Process 

[Text]

 

Describes actions – a dynamic 

behavior of the system. 

Data flow 

 

Describes data type and (or) 

their flow direction. 

Multiple data flow 

 

Describes multiple 

(undetermined number) types of data 

and their direction. 

 

1.10 Thesis organization 

The work consists of 5 chapters. Total scope of the thesis is 130 pages, 49 

figures, 11 tables and 227 literature review sources. 

Chapter 1 provides the introduction of the thesis, encompassing a short summary 

of work relevance, aim, tasks, scientific novelty, practice value, thesis statements and 

scientific approval. 

Chapter 2 gives the analysis of the research object. It is divided into two main 

sections. The first section provides an overview of PCS paradigms, which enable 

adaptability, and analysis of physiological signals suitable for fatigue estimation. The 

second section focuses on the analysis of fatigue detection in different scientific 

domains. 

Chapter 3 describes the proposed Human-assistive HCI model. Two versions of 

this model (HASCM and HAMM) are described in separate sections. 

Chapter 4 describes 3 different experimental researches that aim at adaptation 

of Human-assistive HCI model.  

Chapter 5 provides general conclusions of this work. 

The structural organization of the dissertation is demonstrated in Fig. 1.1. 
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2. Literature analysis

Analysis of 
physiological signals 

suitable for HCI

Analysis of Fitness 
and Fatigue models 
from other domains

3. Theoretical model

Description of 
Human-assistive HCI 
model suitable for 

development of 
asisstive HCI system

5. General conclusion

4. Experimental research

Evaluating user 
performance in gaze 

spelling task

Evaluating user 
performance in PC 
game based on eye 

tracking

Application of 
Human-assistive 

model for 
development of 

EMG-based speller

   

Figure 1.1 Structural organization of the dissertation  
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2 ANALYSIS OF LITERATURE 

In this chapter the analysis of literature is carried out. First, the basic concepts 

of physiological computing and input modalities are overviewed. Second, the analysis 

of performance estimation methods in both physiology and HCI domain is conducted. 

Finally, the idea of combining bio-cybernetic loop and human performance models is 

elaborated. 

 This chapter is organized as follows: section 2.1 provides the overview of 

human-machine interfaces, section 2.2 provides the overview of input modalities used 

in physiological computing, section 2.3 presents the analysis of user performance 

estimation methods, section 2.4 presents the idea of combining bio-cybernetic loop 

and human performance models, finally, section 2.5 provides the conclusion of the 

chapter. 

2.1 Overview of Human – machine interface  

2.1.1 Biofeedback 

In the first treatise on cybernetic theory and communication as well as control 

in biological and mechanical systems by Wiener in 1948, the theory of feedback is of 

the core importance. The concept of feedback here relies on the recognition that the 

controller of the system can control an appointed variable if it can access information 

about that variable. Starting with the seventh decade of the 20th century the perception 

of humans as able to exercise conscious influence over apparently unconscious 

physiology was seriously dealt with and it was found out that feeding back 

physiological information to a subject ensured successful physiological control 

[Allanson and Fairclough, 2004], and this process is called feedback. It relates to a set 

of therapeutic procedures that handle electronic or electromechanical tools to 

measure, process and provide information with educational and reinforcing features 

about both normal and abnormal neuromuscular and autonomous activity to people 

and their therapists. This helps people to increase awareness of, trust in and control 

over their physiological processes. With reference to physiological signal feedback 

loop for a system that includes computer-based signal presentation, the computer is to 

fetch physiological signals from the sensing hardware, pre-process the signals and 

exhibit them in real time.  

Recently computer-based systems for presentation of physiological signals are 

to carry out two separate applications, namely clinical biofeedback and physiological 

signal-driven hands-free human-machine interaction. The same signal pre-processing 

and presentation requirements apply for both applications.  

A long-known application domain for physiological signal-driven hands-free 

human-machine interaction is EMG-based prostheses [Farina, 2014]. In this case 

artificial limbs are controlled by healthy muscles from another body place. 

Biofeedback is considered as a current position of an artificial limb. Nowadays 

biofeedback is exploited in medicine [Windthorst et al., 2017, Sjödahl et al., 2015], 

PC games [Parnandi and Gutierrez-Osuna, 2017, Lobel et al., 2016], sports training 
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[Ortega and Keng, 2018, Paul and Garg, 2012], psychology (e.g. for stress reduction) 

[Dillon et al., 2016].  

A general scheme of biofeedback is presented in Fig 2.1. 

Physiological 
signals

Feedback

Signal 
representation

Signal analysis

Application

 

Figure 2.1 A general scheme of biofeedback 

The general workflow of biofeedback starts with recording physiological 

signals. Afterwards, these signals are quantified and processed to produce suitable 

representation of the signals for specific application. Signal analysis as well as its 

representation are strongly related with application (e.g. in medical application 

sampled signals are usually represented in a complex form as time series, whereas in 

PC games representation of the signals is simplified and can be transformed to colors, 

emoticons, sounds, etc.). A user receives the feedback as determined by the 

application. Feedback can be provided as visual, auditory or tactile information. 

2.1.2 Biocybernetic loop 

The concept of the biocybernetic loop originating from a cybernetic model of 

control and communication within a closed loop unifies all physiological computing 

systems. In the feedback loop data are processed in collection, analysis and translation 

phases, the realization of which depends on the category of a physiological computing 

system. At the first stage user-worn sensors aim at collection of data, quantification 

of which as well as identification of artifacts are the main processes of the second 

phase. To be more precise, quantification of the incoming data in real time and 

identification of periods with irrelevant or incorrect data are the role that the analysis 

algorithm should play. For the analysis stage much attention is paid to a certain aspect 

of psychology or behavior. The final phase explains the way physiological units of 

measurement are changed into a computer command to be carried out at the human-

computer interface. For EMG-based interfaces and certain categories of BCI (e.g. 

where the cortex helps to capture motor functions), the biocybernetic loop aims at 

changing patterns of physiological activity into a certain command [Fairclough, 

2017].  

The concept of the biocybernetic loop encompasses biofeedback (see section 

2.1.1). Recording of physiological signals and providing various feedback to the user 
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are common stages of biocybernetic loop and biofeedback. However, a biocybernetic 

loop is a more complex paradigm. It has additional stages: classification and 

adaptation. The classification stage aims to classify physiological signals to the 

interface control commands. In the adaptation stage functionality, or appearance of 

the system can be modified based on classification results or direct real-time 

measurement of psychophysiology [Allanson and Fairclough, 2004]. 

Biocybernetic loop may be designed to: (1) promote and sustain a state of 

positive engagement with the software/task, (2) minimize any health or safety risks to 

the user that are inherent within the HCI [Serbedzija and Fairclough, 2009]. Moreover, 

the biocybernetic loop might provide the following adaptations [Serbedzija and 

Fairclough, 2009]: 

• awareness of user state (seconds/minutes/hours) 

• adaptation to stable traits (hours/days/weeks) 

• adaptation to trait changes (months/years) 

Other categories of physiological computing count on the accurate recognition 

of spontaneous psychological states to communicate system adaptation, e.g. affective 

computing technologies the function of which is to detect changes in emotional states 

[Cambria, 2016]. The adaptive controller is responsible for converting real-time 

physiological data into computer control, and for pattern-matching algorithms 

adaptive control is hence direct. For biocybernetic adaption the role of the controller 

changes. These systems are developed for promoting positive states and forbidding 

the unwanted. The impact between the user and system changes since biocybernetic 

control is for shaping and manipulating the psychological state of the user. If the user 

faces great mental workload, the system interferes to reduce workload and keep the 

situation stable. If the system user experiences failure, the system might either offer 

help or adapt itself to reduce the challenge. Certain change in a human-computer duo 

seeing the computer as a partner or team-player as opposed to a servant-like system is 

the net result of the closed-loop design. 

At different levels of HCI the functions of the biocybernetic loop are different, 

e.g. with reference to muscle interfaces and BCI, the biocybernetic loop functions as 

a tool to communicate commands to the interface [Chai et al., 2018, Chowdhury et 

al., 2017, Lin et al., 2016]. At the meta-level of the HCI, biocybernetic adaptation 

alters parameters of the interactions (e.g. game difficulty) [Ewing et al., 2016, 

Labonte-Lemoyne et al., 2018] or intervenes into the system actively (e.g. offers help) 

[Conrad and Bliemel, 2016]. Hence, in general, the aim of the biocybernetic loop is 

to adjust settings and make interventions to result in the desired interaction. It is both 

a model of information flow and all-enclosing concept for physiological computing 

systems being responsible for having raw physiological data converted into proper 

response from computer software. The process covering the biocybernetic loop relates 

to the listed issues [Fairclough, 2017]:  

1. physiological measures must be valid for psychological concepts; 

2. there must be unobtrusive hardware that can capture these measures in the 

field with enough fidelity; 
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3. data must be analyzed and categorized in near-real time to deliver user 

representation to the system;  

4. changes in user representation must be converted into software control and 

adaptation that is both responsive and coherent. 

The scheme of the biocybernetic loop [Karran, 2014] is presented in Figure 2.2. 

It has 4 components: inference, classification, adaptation and interaction. 

 

Inference Classification

AdaptationInteraction

 
 

Figure 2.2. The scheme of the biocybernetic loop [Karran, 2014] 

Each component of the biocybernetic loop is explained below:  

1. Inference. Linking the target psychological state with a physiological 

measure is the main concern of the stage. A psychophysiological construct 

that best describes the target psychological state (e.g. a state of high cognitive 

workload) is created and physiological measures which define the most valid 

operationalization of that psychological state are selected. Choosing sensor 

technology and signal processing techniques, which must be suitable for 

application in the field and provide high signal fidelity, is essential for this 

stage of the loop. The selection of features of the inference model plays the 

most significant role to the effectiveness of the loop. If the physiological 

measures do not capture the psychological construct with enough sensitivity 

and reliability, the inference model does not provide a clear link between the 

user state and system operation [Karran, 2014]. 

2. Classification. The identification of the psychophysiological state in real-

time or near real-time is concerned at the stage. It is important that 

information passed from this stage be up-to-the minute if dynamic 

functioning is expected from the loop. Hence, the choice of classification 

algorithm becomes crucial at this point. The classifier must be capable of 

processing and categorizing information in a both accurate and timely 

manner. The cost of misclassification of user responses requires careful 

examination as ultimately the classifier feeds forward judgements into the 

adaptation engine and thus shapes the efficacy of system adaptation in 

response to user behavior [Karran, 2014].  
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3. Adaptation. The psychophysiological response has previously been 

measured and classified at this stage. The results from the classification are 

employed to find out the form of adaptations to be used at the interface. 

Therefore, adaptation is concerned with the application of the governing rule 

set or purpose of the loop, namely, what actions should be taken at the 

interface in response to classification findings about the user‘s state [Karran, 

2014].  

4. Interaction. The process of adaptation is a form of the interface between the 

user and the system. The form of adaptation will shape user perceptions of 

system efficacy from the psychophysiological inference to classification and 

adaptation. It must be carefully designed to provide a timely and relevant 

action or feedback at the interface to cause user confidence [Karran, 2014].  

2.1.3 Humanistic intelligence 

Humanistic Intelligence (HI) is intelligence that arises because of a human being 

in the feedback loop of a computational process, where a human and a computer are 

inextricably intertwined [Minsky et al., 2013]. HI is expressed through three main 

operational modes: constancy, augmentation, and mediation [Mann, 2001].  

• Constancy: HI manifests itself as operationally constant; which means that 

despite power-saving modes it never shuts down. Furtheron, it is 

interactionally constant, which refers to always active inputs and outputs 

of the device. It is important to note that interactionally constant implies 

operationally constant, but vice versa is not the case. The problem of 

insufficient comprehension of the significance of the above-mentioned 

constants has led to the development of portable devices which in their turn 

stimulate the progress of new forms of intelligence that help the user in new 

ways. 

• Augmentation: computing is perceived as the main task in the sense of 

traditional computing, while HI-based intelligent systems see computing as 

a separate part. From the HI point of view computing itself is not the result; 

a human being should be doing something else while computing. Thus, the 

computer should augment the intellect, but the primary task should not be 

ignored.  

• Mediation: exemplar manifestations of HI show the human being 

encapsulated [Mann, 2001]. Nonetheless, the basic notion of mediation 

makes encapsulation of any degree possible for it can offer the user 

encapsulation of higher extent than traditional portable computers. The 

mode is like the augmentation mode in the sense of implicit spatio-temporal 

contextual awareness from sensors. The encapsulation as provisioned by 

mediation has two characteristics, one or both of which can be implemented 

in varying degrees. The first one is solitude which means that the 

embodiment of HI starts playing the role of an information filter due to our 

ability to mediate our perception. To a less intense extent it might merely 

enable to slightly change aspects of our reality perception. Furtheron, we 
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are given a possibility to augment or improve desired inputs. This control 

supplements greatly to user empowerment seen as the most crucial HI issue. 

The second aspect is privacy, which suggests that information that leaves 

our encapsulated space might be modified or controlled rather than 

absolutely concealed or blocked. Also, the embodiment of HI can be a 

mediator for interacting with untrusted systems and hides our otherwise 

transparent movements in cyberspace and the real world. The system 

becomes less defenseless against direct attacks if the synergy between the 

user and computer is close enough. It is important to note that due to the 

element of the HI encapsulation, diverse physiological quantities can be 

measured.  

• Combined modes imply that all three modes are correlating, e.g. constancy 

is demonstrated via augmentation and mediation. The latter two should not 

necessarily be implemented in isolation, as real embodiments of HI 

generally include elements of augmentation and mediation. Thus, HI is the 

basis for combination and empowerment of various aspects of each of the 

mode discerned.  

In general, six basic signal flow paths are distinguished speaking about 

intelligent systems embodying HI (see Fig. 2.3). Each path characterizes an HI 

attribute:  

• Unmonopolizing: a person is not dissociated from the real world as, for 

instance, in the game of virtual reality; 

• Unrestrictive: the device does not interfere with other tasks carried out; 

• Observable: the output medium is regularly noticeable; 

• Controllable: a person can always control the device, even in automated 

processes, e.g. an application opens 20 documents after the user presses 

‘Enter’; 

• Attentive: the device is environmentally aware, multimodal and multisensory 

which means increased awareness of the situation; 

• Communicative: the device can serve as a communication medium and 

enables the user to communicate directly to other or helps in delivering 

expressive or communicative media. 
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Figure 2.3. The six signal flow paths for intelligent systems embodying HI [Mann, 

2001] 

2.1.4 Speller as a typical human – machine interface application 

Originally, the analysis of a speller application was presented in [Vasiljevas et 

al., 2014a, Vasiljevas et al., 2014b, Damaševičius et al., 2015]. 

2.1.4.1 Analysis of the requirements for speller applications 

The requirements for speller application can be categorized at different levels 

depending upon the physical abilities of its users [Quek et al., 2012]: 1) Users with no 

physical disability, who may use NCI for entertainment or other conditions where 

physical movement is restricted. 2) Users with minor impairments (such as older 

persons). 3) Users with severe physical disabilities, who may wish to use NCI as a 

secondary input. 4) Users who are almost locked-in (having limited muscle control), 

who may need to use NCI as a method for communication.  

First, the speller must follow general requirements for smart systems to be 

integrated into the AAL environments. Next, the specific requirements for impaired 

users (and, specifically, for older persons) must be followed. Impaired users need 

assistance such as automatic learning of user’s behavior to estimate his/her current 

needs. 

Since humans often make mistakes or errors in interacting with machines, for 

any human-operated system, user interfaces should be designed such that prevent 

errors whenever possible, deactivate invalid commands, make errors easy to detect 

and show users what they have done, and allow undoes, reverse, correct errors easily 

[Mann, 2001]. 

For smart systems, the following principles (also called “operational modes”) of 

Humanistic Intelligence Framework [Mann, 2001] must be satisfied:  
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1) Constancy: the interface should operate continuously to read signals from 

human to computer and to provide a constant user-interface.  

2) Augmentation: the primary task relies on increasing the intelligence of the 

system rather than computing tasks.  

3) Mediation: the interface mediates between human senses, emotions and 

perceptions and acts as an information filter by blocking or attenuating undesired input 

to decrease negative effects of interaction (such as fatigue, information overload, etc.) 

as well as to increase positive effects (such as user satisfaction) by amplifying or 

enhancing desired inputs. 

According to Lopes [Lopes, 2001], the user interface for the disabled must: 

support user variability allowing to provide the means to adapt to user-specific 

requirements; support of a wide range of input devices and output modes; provide 

minimal user interface design; promote interaction and retain user attention on the 

tasks; and provide strong feedback mechanisms that may provide rewarding schemes 

for correct behavior (results). 

The requirements for interfaces for impaired users can be formulated as follows 

[Marinc et al., 2011]: 1) Limited access to details: complex and vital details of the 

system must be hidden to avoid user overwhelming and trapping. 2) Self-learning: 

detected common patterns in the behavior of the user should be used to automatically 

create rules or shortcuts that speed and ease up the use of the system. 3) System 

interruption: in most cases impaired users have no idea how the system is working, 

therefore, easy cancellation of the system activities must be ensured.  

In the questionnaire-based study of potential BCI user requirements towards 

assisted technologies [Zickler et al., 2010], the participants rated participants rated 

“functionality” (aka effectiveness) as the most important requirement, followed by 

“possibility of independent use” and “easiness of use”. 

2.1.4.2 Overview of speller systems and interfaces 

The research in developing and improving speller systems focuses on improving 

accuracy of spelling, increasing speed of information transfer, developing usable and 

effective speller interfaces, and combining EEG/EMG-based input with input 

automation techniques such as word complete and automatic correction of 

misspellings. For example, Akram et al. [Akram et al., 2013] propose a modified T9 

(Text on Nine keys) interface with a dictionary to give words-suggestions to the user 

while typing. Eight keys are associated with several characters and a dictionary is used 

to suggest words according to the sequence of keys a user presses. Ahi et al. [Ahi et 

al., 2011] use a custom-built dictionary of 942 four-lettered words integrated into the 

classification system of P300 speller for automatic correction of misspellings. 

However, the dictionary is used only for word correction and the user has to spell all 

the characters of a target word. Höhne et al. [Höhne et al., 2011] use a German 

language T9 system with an auditory event-related potential based speller. The user 

spells on a 3×3 scheme with audio stimuli and suggestions are shown after the user 

spells a complete word. Mathis and Spohr [Mathis and Spohr, 2007] use tree data 

structures constructed from a newspaper corpus to automatically complete the spelled 
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words. In this way, identification of all letters becomes unnecessary, and spelling of 

a word takes less time. However, such a word completion system assumes that the 

first letter is identified by the classifier correctly, and in case the first letter is 

misclassified, the system generates erroneous results. Ulas and Cetin [Ulas and Cetin, 

2013] propose an approach for incorporation of such information into a BCI-based 

speller through hidden Markov models (HMM) trained by a language model. To sum 

up, implementations of the speller application can be characterized by: 

Type of data: EEG [Tomioka and Müller, 2010], EMG [Lalitharatne et al., 

2013], ECoG [Speier et al., 2013], EOG [Liu et al., 2011]. 

Type of the analyzed signal: P300 event-related potentials (ERPs), which are 

series of peaks and troughs appearing in the EEG in response to occurrence of a 

discrete event, such as presentation of a stimulus or psychological reaction to a 

stimulus [Adams et al., 2009], Error-related Potentials (ErrPs) generated by the 

subject's perception of an error [Combaz et al., 2012], Steady-state visual evoked 

potential (SSVEP), which are signals that are natural responses to visual stimulation 

at the same (or multiples of) frequency of the visual stimulus [Hwang et al., 2012]. 

Modality: Auditory: the rows and columns of the letter matrix are represented 

by different sounds, such as spoken numbers [Furdea et al., 2009] or environmental 

sounds. Visual: subjects direct their eye gaze toward the letter they want to select. 

There are two cases: overt attention when eye gaze is directed towards the target letter, 

and covert attention when eye gaze is directed to a central fixation point [Brunner and 

Schalk, 2011]. Tactile: stimuli are applied to fingers that represent the letters of the 

alphabet. First, a group of letters is selected, then, one letter from this group is selected 

[Waal et al., 2012]. 

Interface:  

Single character (or Linear) speller: all letters are shown, and each letter is 

flashed individually until further selection is done [Ortner et al., 2011].  

Matrix Speller: All letters are arranged in a matrix. First, a speller flashes an 

entire column or a row of characters. Then, single letters are flashed in a sequence, 

and can be selected [Farwell and Donchin, 1988]. Different matrix sizes can be used, 

e.g., a 6x6 matrix containing all 26 letters of the alphabet and 10 digits (0-9), or even 

a full QWERTY keyboard [Hwang et al., 2012].  

Lateral single-character is a single-character paradigm comprising all letters of 

the alphabet following an event strategy that significantly reduces the time for symbol 

selection [Akram et al., 2013].  

Chekerboard Speller [Townsend et al., 2010]: the 8x9 matrix is virtually 

superimposed on a checkerboard  which the participants never actually see. The items 

in white cells of the 8 x 9 matrix are segregated into a white 6 x 6 matrix and the items 

in the black cells are segregated into a black 6 x 6 matrix. The items in the first matrix 

randomly populate the white or black matrices, and the users see random groups of 

six items flashing (as opposed to rows and columns in the Matrix Speller). Such layout 

controls for adjacency-distraction errors, because the adjacent items cannot be 

included in the same flash group.  
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Hex-o-Spell: the speller consists of six circles that all have the same distance to 

the point of fixation. The circles are flashed while users direct their attention to one 

of the circles. In the first step, the circle with the desired group of letters is selected. 

In the second step, letters are redistributed over the circles and the target letter is 

selected [Treder and Blankertz, 2010].  

Frequency-based layout accounts for the relative frequency of character 

occurrence in a language [Volosyak et al., 2009]. It has a virtual keyboard with 32 

symbols surrounded by five boxes flickering at different frequencies. These boxes 

correspond to commands for navigating the cursor and selecting the intended 

character. The application starts with a cursor at a central position corresponding to 

the most frequent character in English (i.e., “E”). Letters with the higher frequency of 

occurrence are positioned closer to the center while less frequent ones are further 

away. The user can navigate the cursor to the desired letter and confirm his/her choice 

with the “Select” command. The further the character is located from the center, the 

more command selections (cursor movements) are required. 

Stimulus type: the way each individual character changes (e.g., flashing, color 

change, etc.). For example, Rapid serial visual presentation (RSVP) is a method of 

displaying information (generally text or images) in which the text is displayed word-

by-word in a fixed focal position [Acqualagna and Blankertz, 2013]. 

Stimulus rate: the speed at which individual characters change. 

Stimulus pattern: grouping of the symbols in the interface (e.g., QUERTY or 

DVORAK layouts in a virtual keyboard). 

Character set (alphabet): includes all letters of the alphabet as well as some 

additional symbols (numbers, separation marks, etc.). 

Intelligence techniques: additional techniques for improving accuracy of the 

system and rate of communication such as using language model [Ulas and Cetin, 

2013], word autocomplete, spelling correction or word prediction. 

The result of the analysis can be considered as a taxonomy of speller application 

parameters, which can be used for developing new speller applications. Next, we will 

discuss the model of a PCS and its application to developing the EMG-based systems. 
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2.2 Input modalities 

2.2.1 EEG 

EEG signal is a physiological signal generated by the cerebral cortex of the 

human brain. In HCI applications non-invasive electrodes are usually placed on a 

human scalp to capture an EEG signal. Standard placement scheme of scalp electrodes 

is presented in Fig. 2.4 It is known as international 10-20 system.  

Figure 2.4. The International 10-20 system 

Higher resolution system is also applied for capturing EEG. It is known as 10-5 

system [Oostenveld and Praamstra, 2001]. 

In some cases, invasive electrodes are applied to measure an EEG signal. To 

place invasive electrodes surgical intervention is required. Electrodes are placed 

directly on the exposed surface of the brain to record electrical activity from the 

cerebral cortex. This approach is known as ECoG [Hassanien and Azar, 2015]. 

It is suggested that EEG reading techniques, when electrodes are placed in the 

skull on the top of human brain should be considered as a partially-invasive EEG or 

partially-invasive BCI [Ramadan et al., 2015]. However, a partially-invasive EEG 

requires nearly the same level of surgical intervention as in the case of the invasive 

EEG. 

EEG signal itself is divided into different bands: 

• Delta. Frequency range of 1-4 Hz. These are the slowest waves of EEG. They 

also tend to be the highest in amplitude and are usually observed in deep sleep 

phase. The waves commonly appear in infants and small children brain 

waves. 

• Theta. Frequency range of 4-8 Hz. They appear when the subject is relaxed 

or during meditation. These waves are usually observed in the frontal or 

temporal lobe of the brain. 

• Alpha. Frequency range of 8-12 Hz. These waves usually emerge when the 

subject is in a relaxed state with his eyes closed. This type of waves is 

observed in parietal, sometimes occipital lobes of the brain. 

• Beta. Frequency range of 12-30 Hz. Such waves are strongly related with 

mental activity and psychical stress. These waves are observable in the frontal 

lobe of the brain. 
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• Gamma. Frequency range of 30-150 Hz. These waves are the highest in 

frequency. Sometimes they can be subdivided in smaller bands (e.g. High 

Gamma with frequency range of 80 – 150 Hz). They are observable in the 

frontal lobe of the brain and related with various mental activities (e.g. 

perception of senses, understanding of meanings and words, etc.). 

Some authors divide EEG in an even complex set of bands distinguishing Mu 

rhythms (frequency range of 8-13 Hz) [Pfurtscheller et al., 2006, Fox et al., 2016] and 

SCP (frequency range of 0-1 Hz) [Leins et al., 2007]. 

Human – computer interface, whereby EEG signals are used as an input, is 

called Brain – Computer Interface (BCI). A typical scheme of BCI is presented in 

Fig.2.5. This abstract scheme is common for nearly every HCI based on physiological 

data. 
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Figure 2.5. A typical scheme of BCI 

The stage of the EEG signal acquisition is specific for this type of the spelling 

system. EEG signal is captured using the techniques described above. The stage of 

preprocessing is responsible for signal filtering and feature extraction. In data 

classification stage various machine learning algorithms are applied for recognition 

of the control commands. A type and number of the control commands depend on an 

application. One of the most widely spread BCI application is a speller [Dal Seno et 

al., 2010, Yin et al., 2013, Yin et al., 2015, Benda et al., 2017]. In case of a speller, 

control commands could be letters, rows and columns in a symbol matrix or 

navigation commands in a specific set of symbols. Another popular application refers 

to wheelchair control [Carlson and Millan, 2013, Singla et al., 2014, Waytowich and 

Krusienski, 2017], computer games [Nijholt et al., 2009, Marshall et al., 2013, Wong 

et al., 2015], neuromarketing [Wriessnegger et al., 2015], etc. Abdulkader et al. in 

their study classify BCI application into these groups: medical, neuroergonomics and 

smart environment, neuromarketing and advertisement, educational and self-

regulation, games and entertainment, security and authentication [Abdulkader et al., 

2015]  

There are two modes of EEG signals for speller control: 

• Spontaneous potentials. These signals are generated by the cerebral cortex 

without any stimulus presented to the test subject. Spontaneous potentials 



32 

 

provide information about mental state, different cognitive processes and 

activation processes. Furthermore, different thoughts, actions and mental 

states can affect EEG rhythms [Martišius, 2016]. The fact that a specific 

thought can affect the shape of an EEG signal and sustain some pattern over 

a prolonged period, allows us to see a signal as a control command. In 

literature the most common way to control a BCI speller using spontaneous 

potentials is motor imagery [Pfurtscheller and Neuper, 2001]. Similar systems 

have been presented by Sitaram et al, Perdikis et al and D’albis et al. [Sitaram 

et al., 2007, Perdikis et al., 2014, D’albis et al., 2012]. 

• Event-related potentials (ERP). These signals are generated by the cerebral 

cortex when a test subject is stimulated. One can observe a significant change 

of brain waves after a specific stimulus. The stimulus can be sensory (also 

known as evoke potentials or EPs), imaginative or evoked by real physical 

activity, i.e. movement of limbs or other body parts. EPs could be raised by 

auditory, visual or somatosensory stimulus. Also, EPs can be classified 

regarding the frequency of stimulation. If stimulation frequency is less than 2 

Hz, an observed signal is considered as transient EP. In a similar way, if 

stimulation rate is higher than 6 Hz, a response known as steady state EP will 

appear [Martišius, 2016]. A specific case of a BCI speller called steady-state 

visually evoked potentials (SSVEP) speller is worth mentioning, as recently 

its development has attracted researchers’ attention [Yin et al., 2013, Hwang 
et al., 2012, Yin et al., 2015, Cecotti, 2010]. The basic principle of that kind 

of a speller is to perform control tasks, when different visual regions are 

represented on the screen. To control the speller test, a subject must point his 

gaze and focus to a certain region.  

In scientific studies of BCI, various EEG recording equipment are used. While 

the high-resolution EEG recording systems are expensive, there is a number of studies 

where consumer-grade EEG devices are used (e.g. Emotiv EPOC, Neurosky 

MindWave etc.). Our research shows that these devices are limited in terms of 

accuracy and feedback. Also, it may increase BCI illiteracy [Maskeliunas et al., 2016]. 

2.2.2 EMG 

Electromyography (EMG) is an electrodiagnostic medicine technique for 

capturing and evaluating the electromyogram. Electromyogram itself is a 

physiological signal produced by muscle cells of skeletal muscles [Kamen and 

Kinesiology, 2004]. The source of an EMG signal is the potential of a single muscle, 

which value is approximately 90 mV. The amplitude of a surface EMG signal can 

vary from less than 50 µV to 30 mV [Nigg and Herzog, 2007]. The frequency of an 

EMG signal that represents a significant EMG activity is in the range of 5 – 450 Hz 

[Komi and Tesch, 1979, Merletti and Di Torino, 1999]. In literature it is considered 

as one of the best understood and promising source of a physiological signal suitable 

for human – machine interaction [Allanson and Fairclough, 2004].  

There are two techniques for capturing an EMG signal: 
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• Surface EMG recording. In this technique pre-gelled surface electrodes are 

applied for capturing an EMG signal. Surface electrodes are placed on the 

subject’s skin. Since the potential difference is measured, two or more 

electrodes are needed. Skin and fat serve as low-pass filters; hence the signal 

provides only limited assessment of muscle activity. In case of a classification 

task, surface technique performs poorly compared to an intramuscular 

technique [Smith and Hargrove, 2013].  

• Intramuscular EMG recording. In this technique monopolar needle 

electrodes are usually applied. These electrodes penetrate the skin above a 

specific muscle. The EMG signal captured using intramuscular electrodes has 

a wider band of frequency compared to a signal captured using surface 

electrodes. The frequency also depends on a specific muscle and the type of 

a muscle activity (dynamic or isometric). An EMG signal recorded using 

intramuscular technique gives better results in classification [Smith and 

Hargrove, 2013].  

Most common EMG application for human – computer interaction is control of 

artificial prosthesis [Saridis and Gootee, 1982, Park and Lee, 1998, Farina et al., 

2014]. Often an EMG signal serves as an alternative or concurrent input channel for 

Hybrid BCI system. In this type of a BCI system additional electrophysiological signal 

channels are added. Different channels can be recorded simultaneously, or one can 

switch between different input channels. Recently Hybrid BCI with an additional 

EMG channel for various applications is often discussed in literature [Minati et al., 

2016, Tang et al., 2016, Li et al., 2013, Lin et al., 2015]. A Hybrid BCI system with 

an additional EMG channel for speller application was proposed by Lin et al [Lin et 

al., 2015, Lin et al., 2016]. In this system both EMG and EEG SSVEP modalities are 

used for speller control simultaneously. Both signals are fused using “AND” strategy 

[Lin et al., 2016]. 

Single modality EMG-based speller with adaptable stimulus rate and dictionary 

support can perform similarly as hybrid BCI spellers in terms of input speed, accuracy 

and information transfer rate [Vasiljevas et al., 2014a]. Input speed can be increased 

using concepts instead of symbols [Damaševičius et al., 2015].  

A variety of studies have proven that a facial EMG can be used to measure and 

determine emotional response to various stimuli [Dimberg et al., 2000, Van Boxtel, 

2010, Gruebler and Suzuki, 2014]. In more recent studies facial EMG technique have 

been applied for moral evaluation of written information [Hart et al., 2018]. 

EMG can be considered as one of the best adopted input modalities in 

physiological computing. For a long period of time various EMG-biofeedback devices 

have been used for rehabilitation after stroke [Woodford and Price, 2007], treatment 

of tension headaches [Flor et al., 1983], fibromyalgia syndrome [Ferraccioli et al., 

1987], etc. Recently, widely available commercial EMG devices like Mio armband 

(https://www.myo.com/) and Somaxis Myolink (http://www.somaxis.com/) can be 

used on a daily basis for gaming, interacting with computers and fitness purposes as 

well as for physiotherapy [Sathiyanarayanan and Rajan, 2016]. 

https://www.myo.com/
http://www.somaxis.com/


34 

 

2.2.3 EOG  

EOG stands for electrooculography. It is a technique for recoding EOG signal. 

By its nature EOG signal is an electrophysiological signal generated by eye 

movements or a measure of the potential difference between the cornea and the retina 

of the eye [Allanson and Fairclough, 2004]. Voltage is generated due to the potential 

difference between cornea and Brunch membrane [Creel, 2015]. The recorded 

potentials are in the range of 15–200 µV, with nominal sensitivities of order of 20 

µV/deg of eye movement [Duchowski, 2007]. 

Recent electrode placement study for recording EOG signal has been presented 

by Lopez A. et al [Lopez et al., 2016], in which 4 different electrode placement 

schemes are analyzed. 

Table 2.1 Electrode placement schemes [Lopez et al., 2016] 

Placement view Description 

U

R L

REF

 

Three electrodes (R, U and L) are used for signal capturing. At 

this configuration two differential signals are generated (right 

– up and left – up). EOG is represented in two channels: R – 

U electrode pair provides channel 1 and U – L electrode pair 

provides channel 2. Additional electrode represents REF. It is 

the simplest configuration mainly used for low-accuracy 

system. Poor estimation quality of eye orientation and blinking 

is achieved using this configuration. 

REF

R L

U

D

 

In this configuration besides R and L electrodes, which 

represent right and left, U and D electrodes are placed above 

and below the eye. This configuration gives an opportunity to 

capture right, left, up and down eye movements and blinking. 

This type of placement is very common in an HCI application. 

EOG is represented in two channels of a differential signal: 

channel 1 (U - D) and channel 2 (R – L). 
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REF
U2

D1

U1

D2

 

This configuration of electrode placement also known as 

cross-channels configuration. Signals of the horizontal and 

vertical axes are recorded at the same time. The EOG is 

represented in two channels: channel 1 (U1 – D1), channel 2 

(U2 – U2). In order to get useful information, this approach 

requires more complex post-processing analyses. 

CR L
U1 U2

D2D1

REF

 

The configuration of 8 electrodes provides maximum EOG 

signal resolution and ability to capture various eye 

movements: right, left, up, down, down right, down left, up 

right and up left. 

These eye movements are represented by 4 channels of a 

differential signal: channel 1 (R – C electrodes), channel 2 (C 

– L electrodes), channel 3 (U1 – D1), channel 4 (U2 – D2). 

 

A single-channel EOG–based speller has been described by He et al. It argues 

that one can control a proposed system using eye blinks. Each symbol in GUI is 

presented as a blinking button. In order to select a certain symbol, the user must blink 

in synchrony with the flash of the button [He and Li, 2017]. 

Recently, EOG glasses (https://jins-meme.com/en/products/es/) have appeared 

in the market. Various studies were carried out in the field of HCI [Ishimaru et al., 

2014, Kunze et al., 2015, Ishimaru et al., 2016]. The study of using EOG glasses to a 

control speller application was carried out by Barbara and Camilleri. The performance 

of EOG glasses is compared with the performance of an eye tracker and EOG captured 

using wet electrodes. The letter input speed (letters per minute) and accuracy of letter 

typing were measured. The results show that letter input speed (7.11 lpm) achieved 

using EOG glasses is nearly as high as input speed (7.37) achieved using an eye 

tracker. Performance achieved using EOG with wet electrodes concede in both the 

letter input speed and accuracy metrics [Barbara and Camilleri, 2016]. 

Literature analyses show that the most common application of EOG (same as 

EMG) is for hybrid BCI systems, since the artifacts of EOG can be found in the 

recordings of EEG. Most of the researchers record EOG as a separate channel 

simultaneous with EEG. Most of the hybrid BCI – EOG systems apply evoked 

potential (EP) paradigm for speller or PC control [Postelnicu and Talaba, 2013, Koo 

et al., 2014, Usakli et al., 2009]. 

The main limitation of the EOG-based HCI is inability to provide point of gaze. 

Therefore, EOG usage for interfaces with displays is limited. Merino et al. described 

a method for detection of an eye movement direction using EOG signal, but still it is 

https://jins-meme.com/en/products/es/
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a limited approach, since four directions of eye movements are not very convenient 

for navigating the screen [Merino et al., 2010]. For pointing display interfaces gaze 

tracking techniques are more suitable. Despite this limitation, EOG is used for 

interfaces, in which a pointing display is unnecessary. EOG signals are widely applied 

in interfaces for wheelchair control [Champaty et al., 2014, Yathunanthan et al., 2008], 

driver fatigue detection [Khushaba et al., 2011, Chieh et al., 2005] and human 

identification using eye blinking. 

2.2.4 Gaze tracking 

Gaze tracking is probably the most natural way to control assistive interface 

with display. In general, there are two types of eye movement monitoring techniques: 

those that measure the position of the eye relative to the head, and those that measure 

the orientation of the eye in space [Duchowski, 2007]. 

Duchowski distinguishes between four types of eye movement measurement 

methodologies: scleral contact lens/search coil-based measurement, 

Videooculography (VOG)-based measurement, video-based combined pupil-corneal 

reflection (PCR) and electrooculography (EOG)-based measurement [Duchowski, 

2007]. EOG-based method was described in previous section (section 2.2.3). EOG-

based approaches have been excluded, since these are often referred to as a separate 

approach for HCI development or as a constituent part of the hybrid BCI. 

Furthermore, EOG is considered as an electrophysiological signal, which patterns can 

be recognized as different control commands (similar to EEG or EMG-based HCI). 

The application of EOG in the field of eye tracking has some limitations, since this 

technique measures movements of eyes relative to head position. Therefore, to 

provide point of regard, the head has to be fixed or its position has to be monitored 

simultaneously [Duchowski, 2007]. 

Some researchers distinguish only three types of eye movement measurement 

methodologies excluding video-based combined PCR approach [Zemblys, 2013]. 

VOG and video-based combined PCR are considered as one approach, since in most 

cases they share the same principle of eye movement capturing. The distinction 

between these two methodologies was made by Duchowski regarding the recording 

of different features of eye movements. Video-based combined PCR approach 

provides point of regard and VOG approach focuses on eye movement recording 

without providing point of regard [Duchowski, 2007]. Point of regard is essential for 

many HCI applications (e.g. speller), therefore, VOG method is not suitable for them.  
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As mentioned before, the most suitable approach of eye tracking for speller 

application and other HCI application is video-based combined PCR. In general, there 

are two types of video-based combined PCR eye trackers: table-mounted (see Fig. 2.6 

b) and worn on the head eye tracker (see Fig.2.6 a). 

Figure 2.6. Mounting type of video-based combined PCR eye trackers 

Video-based eye trackers can be also classified by the type of the light source, 

used for reflection generation. From this point of view there are two types of eye 

trackers: 

1. video-based visual light eye trackers: this type of eye trackers is applied to 

develop eye-aware or attentive user interfaces that do not strictly require 

accurate point of gaze tracking [Majaranta and Bulling, 2014]. This method 

uses one or more head-mounted or table-mounted video cameras. An eye 

pupil in this kind of a system is detected by usually color segmentation 

[D'Orazio et al., 2004] or a well-defined pattern recognition [Orozco et al., 2009, 

Vadakkepat et al., 2008]. 

2. video-based infrared-induced (IR) pupil-corneal reflection eye trackers 

(IR-PCR eye trackers): this eye tracking technique provides accuracy up to 

0.5° of visual angle [Majaranta and Bulling, 2014]. The accuracy of IR-PCR 

eye trackers is much higher as compared to video-based visual light eye 

trackers. Therefore, IR-PCR eye trackers has become a preferred technique 

for gaze-based interaction [Majaranta and Bulling, 2014]. This technique is 

based on measuring corneal reflection from IR source relative to the location 

of the pupil center. By measuring corneal reflection and pupil center location 

at the same time system allows some degree of head movement and can 

reduce inaccuracies. IR illumination can be aimed at on- or off-axis by 

creating “bright pupil” or “dark pupil” effect respectively. IR illumination 

helps to keep eye area well lit, which is necessary for the analysis of eye 

a) Example of head-mounted eye 

tracker [Raudonis et al., 2009] 
b) Example of table-mounted eye tracker Tobii Pro 

Spectrum (https://www.tobiipro.com/product-listing/tobii-pro-

spectrum/) 
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features, and does not disturb the test subject, since IR light is invisible to the 

human eye [Duchowski, 2007, Majaranta and Bulling, 2014]. 

The main application fields for eye tracking are: market research and advertising 

testing [Wedel and Pieters, 2008], usability research [Poole and Ball, 2006, Ehmke 

and Wilson, 2007], eye control for accessibility [Majaranta and Bulling, 2014], 

psychology and vision research [Armstrong and Olatunji, 2012], medical research, 

diagnostics and rehabilitation and car assistant system [Langner et al., 2016]. 

2.2.4.1 Gaze spelling related metrics 

Originally, the overview of gaze spelling related metrics was presented in 

[Vasiljevas et al., 2016]. 

Metrics include types of metrics for evaluating typing characteristics (input 

accuracy, error rate, information transfer rate) [Arif and Stuerzlinger, 2009] related to 

text entry task using gaze (‘gaze spelling’). 

Typing speed is measured in words per minute (wpm), where a word is any 

sequence of five characters, including letters, spaces, punctuation marks, etc. 

[MacKenzie and Soukoreff, 2003]. Both corrected errors and errors left in the entered 

text are considered.  

1 1
60

5

T
WPM

S

−
=         (2.1) 

Here, S is time in seconds measured from the first key press to the last, including 

backspaces and other edit and modifier keys. The constant 60 is the number of seconds 

per minute, and the factor of one fifth accounts for the average length of a word in 

characters including spaces, numbers, and other printable characters. Note that time 

is measured from the entry of the very first character to the last, which means that the 

entry of the first character is never timed. It is expected that due to fatigue typing 

speed should decrease. 

Error Rate (ER) is calculated as the ratio of the total number of incorrect characters 

in the transcribed text to the length of the transcribed text: 

100%
E

ER
T

=        (2.2) 

here E is the number of errors in the text T. This metric does not consider 

corrected errors. It is expected that due to fatigue the error rate should increase. 

Rate of Backspacing (BR) indicates how often the participants cancelled characters 

and correlates with errors to a degree. The rate of backspacing is calculated by 

dividing the total number of characters erased prior to the current position by the total 

number of characters typed:  
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100%
B

BR
T

=        (2.3) 

here B is the number of corrections in the text T. It is expected that due to fatigue 
BR should increase. 

Total Error Rate (TER) combines the effect of accuracy during and after text entry: 

100%
E B

TER
T E B

+
= 

+ +
    (2.4) 

 

2.2.5 Electrodermal activity 

Electrodermal activity (EDA) also referred to as galvanic skin response (GSR) 

is the marker of skin conductance that varies depending on moisture content of the 

skin. The skin becomes moist as sweat is released to the skin surface. Moisture content 

of the skin is directly proportionate to skin conductance: the wetter skin means the 

greater skin conduction. This individual’s physiological signal is significant for neural 

computer interface, since glands that produce sweat are controlled by the nervous 

system. 

Skin conductance is measured between two skin points through which very low 

electric current flows. Under Ohm’s law, the voltage across the two points and skin 

conductance are calculated. The signal of the galvanic skin response varies depending 

on emotional stimuli such as music, the scenes of violence, etc. [Allanson and 

Fairclough, 2004]. 

From a system-theoretical view point, methods of electrodermal recording can 

be allocated to the below listed three groups [Boucsein, 2012]:  

1. endosomatic recording: here only those properties of the electrodermal 

system which follow active changes of the system are examined. The 

electrical energy is pretended to originate in the polarized membranes in the 

skin.  

2. exosomatic recording with direct current: in this case the electrodermal 

system is supported with electrical energy from an external source, using 

either a constant voltage or a current. In the appropriate models, passive 

properties of a system, in which capacitors are charged and changes in the 

signal result from mainly resistive changes, play a key role.  

3. exosomatic recording using alternating current: this method is not of 

frequent use. Here responses of the electrodermal system to oscillatory 

signals, which also include changes in capacitors or charged membranes in 

the skin, are investigated. 

EDA measures belong to a group of passive physiological signals. It cannot be 

induced by purpose. Instead, it is triggered by the human nervous system. This implies 

that EDA is more suitable for psycho-physiological human state detection, e. g. driver 

fatigue [Craye et al., 2016], visual attention [Sakai et al., 2017], even depression and 

suicidal behavior [Sarchiapone et al., 2018], etc. 
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2.2.6 ECG 

An electrocardiogram (ECG) is the change of the electrical activity of the heart 

over a period of time. ECG scan is recorded after electrodes have been attached to the 

chest skin. ECG scan and interpretation are among the most popular medical tests. 

ECG signal is captured using dry or pre-gelled electrodes. Electrode placement 

methodology is standardized. The most popular electrode placement scheme is a 

standard 12-lead ECG [Chou and Knilans, 1996]. 

ECG is a direct means to measure the heartbeat rate (the number of 

contractions of the heart per minute (bpm)). One’s physiological condition can 

be determined by the value of the speed of the heartbeat. Heart rate variability 

(HRV) also serves as an indicator of physiological condition. It refers to 

variation in time interval between heartbeats. If the subject experiences stress 

or anger, the speed of his heartbeat increases significantly. The same thing can 

happen in performing a difficult mental task with time constraints and 

uncertainty.  

ECG measurements like HR and HRV represent a psycho-physiological 

state of the human. It is also highly related with human physical activity. The 

primal application of ECG which parameters were derived from was in 

medicine and diagnostics. In the HCI domain HRV together with other 

physiological signals is also an indicator of driver fatigue [Vicente et al., 2016]. 

Human emotional state and stress level could be also detected using HRV 

measurement [Thayer et al., 2012, Appelhans and Luecken, 2006]. HRV might be 

applied in computer games. The system receives feedback from the subject by 

evaluating the speed of his heartbeat, thus, it is possible to change the difficulty 

of game levels and overall game appearance [Dekker and Champion, 2007]. 

2.3 Performance and its estimation methods 

This section provides the analysis of performance estimation methods for both 

sports and HCI domain, mainly focusing on PCS as HCI sub-domain. The primary 

focus of this analysis is not to cover all aspects of user or athlete performance 

estimation, but to conduct the comprehensive overview of mathematical impulse-

response (IR) models, which are applied to performance modeling in athletic training. 

IR models assume that performance is affected by the sum of two factors: (1) fitness, 

which has a positive impact on performance, and (2) fatigue, which has a negative 

impact on performance. The nature of fatigue and its detection methods are also within 

the scope of this analysis.  

This section is organized as follows: first, we provide an overview of the 

performance evaluation methods in HCI domain, second, we provide similar overview 

in sports domain, third, we analyze IR models and their applicability for HCI domain, 

and finally, we provide a comparative analysis of fatigue in sports and in HCI domain, 

since it is a major factor in performance modeling based on IR. 
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2.3.1 Monitoring of performance in sports 

Monitoring of the extent of fatigue is a question of importance to coaches, 

trainers, or sports scientists who aim at optimization of an athlete’s performance as 

training when a high level of fatigue can lead to no training adaptation. Hence, 

tracking the athlete’s freshness will provide the coach with knowledge on athlete’s 

sensitivity to adaptation and/or his/her performance ability. To say it in other words, 

the significance and advantage of implementing a fatigue monitoring system is having 

an ability to identify the athlete’s response to training. It becomes critical if it is aimed 

at maximizing or maintaining performance of an athlete. Knowledge of both when an 

athlete is responding well to training and when not is crucial from the perspective of 

a training prescription. Such kind of knowledge enables the coach to adjust an 

athlete’s training programme to prevent overtraining and maximize performance.  

For both objective and subjective elements are included in the fatigue structure, 

it is important to have monitoring protocols that consider both aspects. There are 

several methods for the collection of data to verify fatigue:  

1. Subjective tests 

a. Wellness Questionnaires: these are simple questionnaires to be filled 

by athletes to assess their feeling. They often include questions about 

how athletes slept, pain or tiredness they feel, current stress level. The 

questions are usually determined by the coach since it is he, who feels 

what is of the ultimate significance to the athletes, e.g. if the athlete 

is studying at a university, the question about their school workload 

is included. Despite there is a variety of wellness questionnaires, 

there is lack of those scientifically examined and found to be proper 

to have changes in weekly training regimens [Gastin et al., 2013]. 

Despite being cheap and able to provide immediate feedback, these 

questionnaires are used as a fatigue monitoring tool when large 

groups of responders are examined.  

b. Rating of Fatigue Scale – this type relates to most recent methods of 

fatigue monitoring and is best described by good face validity and 

highly important convergent validity [Micklewright et al., 2017]. The 

scale is referred to as a holistic measure to determine how fatigued a 

person feels – this is conducted via an 11-point Likert scale with 

diagrammatic selections. For this two-part system participants find 

the rating easier and a more accurate way of determining perceived 

fatigue levels is provided. Rating of the fatigue scale highly correlates 

with physiological markers and is also capable to make a distinction 

between perceived activity during recovery and exercise 

[Micklewright et al., 2017]. 

2. Objective tests 

a. Countermovement Jump (CMJ) – simplicity and little time needed to 

measure makes this type of testing a popular approach for fatigue 

monitoring. These tests are primarily used to measure an athlete’s 

explosive lower-body power [Markovic et al., 2004] and are 
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conducted either with or without the arm-swing which has proved to 

increase performance by 10 per cent or more [Cheng et al., 2008]. A 

current issue with measuring the CMJ is the cost and impracticality 

of some of the equipment used for the test, though it is reported that 

the average CMJ height is more sensitive to neuromuscular fatigue 

than the highest CMJ height [Claudino et al., 2016].  

b. Heart Rate Variability (HRV) – the method has been of growing 

interest and is perceived as a means of measuring body’s reaction to 

training and its related levels of fatigue. HRV demonstrates the 

variation in time between each heartbeat and is affected by mental 

and chemical as well as physical stress. it is argued to meticulously 

reflect recovery status, anticipate when performance of an athlete is 

better or worse, help to determine if an athlete has been overtraining 

[Flatt, 2016], predict athlete’s greater susceptibility to illness or 

injury [Gisselman et al., 2016]. However, it is time-consuming and 

requires an athlete to be at complete rest and relaxed to have the test 

result as exact as possible. Since many variables should be involved 

in the measurement, it is required that HRV should not be the only 

test for fatigue and readiness measurement.  

c. Video gesture analysis – method, which allows to estimate 

biomechanical features of athletes in a quantitative manner. 

However, this method also can be defined as a mixed method, which 

includes both quantitative and qualitative analysis. Preliminary 

qualitative analysis is usually required to determine bio-mechanical 

features, which then can be estimated in a quantitative manner 

[Wilson, 2008]. 

d. Saliva, blood and urinary measures – testing hormone levels in 

saliva, blood or urine has been found a trustworthy means for fatigue 

and performance measurement. It has demonstrated that the levels of 

hormones as cortisol and testosterone taken from saliva sample 

change during and after physical activity and these changes decide 

one’s biochemical response. Changes in the ration of testosterone and 

cortisol decide on how an athlete is coping with stress and recovering 

from it. This type of testing is argued to be very accurate, though 

requiring expensive equipment and resources.  

To sum up, solid baseline measures should be opted regardless of the type of 

testing. The application of the research-grounded methods contribute to consistent and 

accurate results.  

2.3.2 Monitoring of performance in HCI 

In general, the approaches of performance evaluation and fatigue detection can 

by divided into following groups [Ji and Looney, 2006]: 

1. Readiness-to-perform and fitness-for-duty technologies: it relates to the 

alertness capacity of an operator before the task is carried out. This 
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technology aims at provisioning the operator to fit for the duration of the task 

period, or at the beginning of an extra period needed for duty execution.  

2. Mathematical models of alertness dynamics combined with ambulatory 

technologies: this type refers to the appliance of mathematical models to 

predict operator alertness or performance at different periods of time since 

interactions of sleep, circadian, and related temporal antecedents of fatigue. 

Their significance lies in predictive validity.  

3. Performance analysis technologies: These technologies are aimed at 

measuring the behavior of the user by monitoring hardware and software 

systems under control of the user. Vehicle speed variability, steering wheel 

position, acceleration [Solovey et al., 2014] and lane deviation [Ji and 

Looney, 2006] are used to evaluate driver fatigue. Time per selection, bit rate, 

information input speed are suitable metrics to evaluate BCI and NCI 

performance [Thompson et al., 2014, Damaševičius et al., 2015]. All these 

metrics and combination of them show that when the user feels fatigued, his 

behavior or system behavior strays from his nominal behaviors.  

4. On-line, user status-monitoring technologies: this group of technologies 

includes records of bio-behavioral dimension(s) of a user, e.g. parameters 

defining eye movements [Schleicher et al., 2008], head movements [Ji et al., 

2004], facial expressions [Gu and Ji, 2004], heart activity [Patel et al., 2011], 

brain electrical activity [Huang et al., 2016, Zhang et al., 2015], GSR 

[Dawson et al., 2014], reaction time [Schleicher et al., 2008] on-line (e.g. 

repeatedly, when driving). These apply EEG to monitor brain activity, also 

ocular measures to outline eyelid movement (e.g. PERCLOS) and 

characterize pupil movement (such as saccade movement v.s. fixation time). 

Parameters which describe facial muscles, body postures and head nodding 

are also important. GSR level is directly proportional to fatigue, but is also 

related with other influencing factors (e.g. sweat, stress). Thus, GSR 

suitability for detecting work-related fatigue is questionable [Dawson et al., 

2014]. In addition, false estimation can also be caused by variability of user’s 

behaviors, e.g. driver sleeping with open eyes [Zhang et al., 2017]. 

Regarding application most of the researches are conducted in the field of driver 

fatigue detection. However, there is a variety of fatigue detection and performance 

evaluation technologies which are mainly organized under the nature of the 

measurement device. These technologies are to be overviewed in the following 

paragraphs. 

Fitness-for-duty tests: these tests are used to determine an employee’s level 

of alertness to see if it is enough to perform neuro-behavioral tasks, especially 

executive functions as vigilance or hand-eye coordination. However, there is 

no evidence if these tests can predict the level of fatigue during task 

performance. Hence, to check whether the level of fatigue is increased the 

tests should be re-taken which becomes problematic if, for instance, the 

companies use non-portable devices and drivers are not near the check-in 

depots serving as accommodation [Dawson et al., 2014]. Thus, study is 
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needed to see how far ‘fail’ scores can anticipate the probability of fatigue-

related accidents.  

• For neuro-behavioural performance the psychomotor vigilance test is a 

means to evaluate sustained attention and it is considered as a recognized 

exemplar for fatigue detection. For the test individual’s button-press response 

to visual stimuli on a computer screen over a period of 5-10 minutes and 

consequently reaction time and ‘lapses’ (these are when response time is 

equal to or higher than 500 ms) are measured. The PVT demonstrates that 

performance decreases due to sleep restrictions, extended vigilance, time-of-

day effects, etc. and this counts in numerous applications in industries as rail, 

aviation, mining or defense. For prominent individual differences in driving 

performance the PVT may be of greater importance to anticipate fatigue-

related driving incidents.  

• Pupilometry is defined as a technology to assess pupils’ uncontrolled 

response to highly intense bright light and is an expressed biomarker of 

fatigue. Longer and slower constriction abeyance is an articulated sign of 

individual’s fatigue. The parameters are assessed by binocular-type 

instruments when an individual must watch an eyepiece for a minute or two. 

Quick administration and alerting time, non-required training and no learning 

effects are the greatest advantages of the devices. Furtheron, as pupillary 

responses are uncontrolled, the test cannot be manipulated. Pupillometry is 

not appropriate to people having head or eye-related problems and to those 

who are above 50 years old. There are several devices referring to 

pupillometric technology. 

• EyeCheck is a hand-hold device which measures pupil diameter and 

constriction latency. It has been extensively used by the US police for 

detection of the illegal drug use and fatigue in motorists. However, the 

effectiveness of the method is doubtful for neither fatigue nor sleeping hours 

correlate with the EyeCheck scores.  

• Fitness impairment tester (FIT) measures eye tracking (with the stress on 

saccadic velocity) as well as pupillometry (pupil diameter, constriction 

amplitude and latency) and total FIT scores are received from the calculations 

of these parameters. The results are relative since compared to one’s personal 

performance. Total FIT scores demonstrate growth in response to 

sleeplessness and subjective sleepiness of healthy volunteers. Long work 

hours also complement to increasing FIT scores. Fatigue is not clearly 

expressed via the parameters of pupil diameter and constriction amplitude 

because of their sensitivity to ambient light and time of day effects. 

Furthermore, FIT cannot be applied to people who have excessive blinking or 

wear thick corrective lenses.  

• Oculomotor measurement encloses devices to measure the frequency, 

duration and/or rate of eye closure. Some devices measure ‘PERCLOS’ (the 

percentage of time when driver’s eyes are 80-100 % shut). PERCLOS scores 

are better than EEG and head nodding or eye-blinking technologies, though 
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it alone cannot single out a full set of fatigue subjects. Oculometric devices 

are non-invasive and appropriate in static environments – these two are 

considered the greatest advantages. Optalert also falls under the category as 

a means for detecting blink frequency, velocity and duration, though it is not 

suitable for people with visual or sleep disorders. CoPilot is another means 

for tracing fatigue, but visual and audial warnings are generated only when a 

threshold of fatigue is reached. The device, however, has a very high false 

alarm rate when subjects are motionless, which proves it is highly sensitive 

to movement. Seeing machines driver state sensor (DSS) is argued to ignore 

head movements or partial face occlusion. Its scores rely on facial tracking 

and absolute eyelid position, but the results become doubtful due to extended 

wakefulness and subjective sleepiness.  

• Electroencephalography (EEG) is a noninvasive method for monitoring 

electrical activity of the brain. There are several technology-based devices 

that fall under the group. In Smart Cap EEG sensors are fixed on either a head 

band or baseball-like cap. This technology is yet commercially unavailable. 

B-Alert is a device where EEG sensors are embedded in a headband-like 

device. Alertness levels between healthy subjects and those who suffer from 

sleep apnea are easy to single out. Posture/head nodding devices, usually 

worn behind the ear, catch posture changes that mark fatigue. A sensor fixes 

a shift when the head nods forward to a preset angle (usually about 15 

degrees) and the alarm starts sounding. However, warning comes rather late, 

almost at the point of falling asleep. Galvanic skin resistance (GSR) also 

referred to as Electrodermal Activity (EDA) or Skin Conductance (SC) is one 

of the most sensitive measures for emotional arousal. There are risks for the 

method, however. External factors as temperature or humidity affect GSR and 

hence the results might become inconsistent the same as measurements of 

different locations might result in different conclusions [Picard et al., 2016]. 

Engine driver vigilance telematic control system (EDVTCS) is either a finger- 

or wrist-worn device with an integrated sensor measuring GSR. It has been 

found out that GSR levels do not change greatly across 28 hours of continuous 

wakefulness regardless of changes in subjective sleepiness, driving simulator 

performance and PVT performance.  

• Performance-based monitoring singles out indicators that refer to fatigue-

related driving incidents. Embedded performance measures inspect task 

performance and establish performance breakage depending on operator’s 

fatigue. These measures are non-intrusive and embedded into the real task. 

Their face validity is high due to direct measurement of the behavior 

important to task performance and job safety. Despite being appropriate and 

well-operating with reference to different road and weather conditions, they 

find it problematic to deal with driving at night in the rain since the road 

reflectance increases or there are non-blacktop surfaces in rural settings.  



46 

 

2.3.2.1 Metrics of eye performance 

Originally, overview of eye fatigue metrics was presented in [Vasiljevas et al., 

2016]. 

Eye movement refers to the voluntary or involuntary movement of the eyes, 

helping in acquiring, fixating and tracking visual stimuli. Humans use three types of 

voluntary eye movement to track objects of interest: smooth pursuit, vergence 

movements and saccades. McConkie [McConkie et al., 1988] has demonstrated that 

the distributions of initial saccade landing sites are Gaussian in shape and that the 

center of these distributions and their standard deviations are determined primarily by 

oculomotor factors. Variability in human saccades is caused by a combination of 

uncertainty in target localization and noise in movement planning and execution [Van 

Beers, 2007]. As mental as well as physical factors affect both target localization and 

movement execution, the onset of fatigue should lead to higher variability in saccadic 

movements and target fixation positions. 

The evaluation of eye fatigue is usually performed using subjective evaluation 

questionnaires, e.g., Majaranta et al. [Majaranta et al., 2009] asked the participants 

how tired their eyes were before each test, and again after the test, on a scale of 1 to 

7. The fatigue level was calculated by subtracting the first value from the last value. 

However, the authors did not manage to obtain any relationship of the level of fatigue 

vs. time or speed of work. It points to the unreliability of the method of evaluation 

used. 

• Dwell time is the duration a gaze fixation rests on a certain object. Dwell time 

helps to differentiate between accidental gazes, gazes during visual search 

and, e.g., intentional gazes during execution of tasks. The duration of a 

fixation correlates with the processing that is going on in the brain. It is 

expected that dwell time should increase due to fatigue. 

• Point of gaze (POG) accuracy. Given the target, we can compute the distance 

from the center of the target during each fixation when the eyes are aligned 

with our target of visual attention. The fixated area is called the point of gaze. 

Due to fatigue, the POG accuracy should decrease. 

• Fatigue Threshold (TF) [Lohr et al., 2016] is calculated using an empirical 

formula that depends on the average spatial accuracy in degrees, 𝜃𝑎𝑣𝑔, of the 

eye tracker so that the threshold can scale with noisier signals, 𝐴, difference 

in FQlS between the first fatigued group of data and the initial FQlS, and 𝜇, 

the mean spatial accuracy of the data:  

avgTF A  =         (2.5) 

Average spatial accuracy [Lohr et al., 2016] is calculated during calibration by 

finding the mean gaze point, 𝐺𝑖, for each calibration point, 𝑃𝑖, and then calculating 

the average distance in degrees, 𝜃𝑖, between each calibration point and gaze point: 

1

1 n
iacc i iP G

n
 == −      (2.6) 
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Fixation Qualitative Score (FQlS) is a metric that represents the distance 

between the fixation components of the eye movement signal and the stimulus 

[Komogortsev et al., 2010].  

1
i iFQlS p g

n
= −       (2.7) 

here ip
 are stimuli points and ig

 are the gaze points. FQlS should increase 

when a user becomes fatigued. 

2.3.3 Analysis of impulse-response models for estimation of performance 

Originally, the overview of the impulse-response models also known as fitness-

fatigue models was presented in [Vasiljevas et al., 2016]. In this analysis terms 

impulse-response models and fitness-fatigue models are used interchangeably.  

Mathematical and analytical models provide a method for describing and predicting 

the effect of mental and muscular load on the performance characteristics of a human 

[Taha and Thomas, 2003]. It is also known as impulse-response models, since they 

define the performance as the sum of fitness and fatigue factors. Analysing physical 

performance data one can identify and quantify different effects of loads such as 

increased performance (fitness or learning) and decreased performance (fatigue). 

Such models have been extensively studied in sports medicine [Banister et al., 1975, 

Calvert et al., 1976] as well as in applied physiology [Morton et al., 1990, Busso et 

al., 2002]. Consequently, there are two research directions: one is for analyzing fitness 

and fatigue models affecting sport performance of athletes, while another one aims to 

model muscular response to stress. 

One of the most popular fitness and fatigue models was proposed by Banister et al. 

[Banister et al., 1975]. From the time it was first presented till nowadays this model 

has had various elaborations [Calvert et al., 1976, Morton et al., 1990, Busso et al., 

2002].  

2.3.3.1 Original Impulse-Response model 

According to this model, any training session will have both fitness-building 

effect and a fatigue-inducing effect. The total performance is defined as the sum of 

fitness and fatigue. In this model fitness has a positive impact to performance, while 

fatigue has a negative impact. This statement is defined in simple mathematical 

expression as follows: 

𝑃 = 𝐹𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 + 𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒     (2.8) 

Where P is performance, 𝐹𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 – fitness and 𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒 – fatigue. 

This model is based on empirical observation that at the start of the training 

fatigue has high amplitude, which decreases fast. At same, fitness has lower 

amplitude, which decays slower then fatigue. The performance peak at the point where 

difference of fitness and fatigue is the smallest (see Fig. 2.7).  
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Figure 2.7. Impulse-response model (source: https://www.giovannibaldi.com/dual-

factor-theory/)  

The impulse-response model describes the dynamics by which an individual’s 

performance capacity changes over time as a function of training and elegantly 

abstracts the underlying physiology by accurately fitting performance data [Clarke 

and Skiba, 2013]. The other impulse-response models, presented in the forthcoming 

sections, are based on this general model, but provide a more sophisticated 

mathematical expression. 

2.3.3.2 Classical Banister model 

The term “Classical Banister model” is not common. Here it is used to 

distinguish the original Banister model from its elaborations. The Banister model is 

aimed to relate training loads to performance considering the dynamic and temporal 

characteristics of load sequences over time. These effects can be described by two 

transfer functions: 1) positive influence (i.e., muscular learning or fitness) that sums 

up all positive effects leading to an increase in performance, and 2) a negative function 

that summarizes effects leading to fatigue and having a negative impact on 

performance. The transfer function is as follows: 
1 1
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0 0
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− −

− −− −

= =

= + −      (2.9) 

where tp  is the modelled performance at time t ; 0p  is the initial performance level; 

ak  and fk  are the fitness and fatigue magnitude factor, respectively; a  and f  are 

the fitness and fatigue decay time constant, respectively; and sw is the known training 

load per week (or day) from the first week of training to the week (or day) preceding 

the performance.  
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2.3.3.3 Calvert model 

Calvert et al. [Calvert et al., 1976] proposed a model to quantify the training and 

performance relationship of a swimmer. The model was derived by fitting a 

mathematical equation and examining its parameters. A single training impulse 

elicited two fitness responses that increase performance, and a fatigue response that 

decreases performance. The final form of the Calvert’s model is presented as follows: 

( ) ( )31 2

tt t

p t e e Ke w t
 

−− − 
= − − 
  

     (2.10) 

where ( )w t is the training impulse, ( )p t  is performance, 1  and 2  are the time 

constants associated with the two fitness functions and 3  is the time constant 

associated with fatigue, and K is the fatigue coefficient specific to the individual, and 

t  is the day of the training impulse. 

2.3.3.4 Morton model 

Morton et al. [Morton et al., 1990] simplified the Calvert’s model (Eq. 2.10) to two 

components (one for fitness and one for fatigue) because the second fitness component 

was not statistically supported. The Morton’s model is as follows: 

( ) ( )31

tt

p t e Ke w t


−− 
= − 
  

     (2.11) 

2.3.3.5 Busso model 

Busso et al. [Busso et al., 2002] defined how fitness and fatigue are affected by a 

training input as follows: 

     ( ) ( ) ( )1

1

1g t g t e w t


−

= − +  

( ) ( ) ( )2

1

1h t h t e w t


−

= − +      (2.12) 

where ( )g t  and ( )h t  are arbitrary fitness and fatigue response levels at the end 

of day t , and 1  and 2  are decay constants of each input.  

Eq. (2.12) has been then combined to form a simple linear difference equation  

( ) ( ) ( )1 2p t k g t k h t= −        (2.13) 

where 1k  and 2k  are weighting factors for fitness and fatigue, respectively. 

2.3.3.6 DHO model 

Damped Harmonic Oscillation (DHO) model is used to describe daily physical 

performance capacity in team sports [Morin et al., 2016]. The rationale for using this 
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model is based on chronobiology research, in which cosinor-based rythmometry is a 

common approach [Cornelissen, 2014, Nelson, 1979]. The aim of this model is to 

represent long-term day-to-day variation in physical performance capacity. 

The model is represented as a product of a damped simple sine wave and an 

exponential resistance component.  

𝑆𝑖𝑛𝑔𝑙𝑒 𝐷𝑃𝐶𝑛 = −𝑇𝐿𝑛 𝑠𝑖𝑛(
2𝜋𝑡

𝑇
+ 𝜋)𝑒

−𝑡

𝜃     (2.14) 

Where DPC – performance capacity on day n, TLn – the sum of all training loads 

of the day, t – elapsed time (in days) since the training day, θ – damping parameter in 

arbitrary units, T – time period of one oscillation (in days). 

Since the professional sports training is a long-term matter, it is expedient to 

evaluate cumulative DPC, which is the sum of single DPCs till day n. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑃𝐶𝑛 = ∑ 𝐷𝑃𝐶(𝑛−𝑖)𝑖

𝑛
𝑖=1     (2.15) 

where n is the number of training days. 

2.3.3.7 Linear fitness and fatigue model based on Kalman filtering 

Kolossa et al. proposed linear fitness and fatigue model with Kalman filtering, 

which allows to improve prediction by combining last model state and additional 

indirect measurements [Kolossa et al., 2017]. The proposed model is a transformation 

of the well-known 3-time-constant fitness-fatigue [Busso et al., 2002] model to linear, 

time-variant state-space model. 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑣𝑘     (2.16) 

The notation of eq. (2.16) components is as follows: 

𝑥 is a state vector: 

𝑥 = (
𝑥1

𝑥2
)        (2.17)  

where x1 – fitness and x2 – fatigue; 

𝐴𝑘 is the system matrix with exponential decay rates in the diagonal, the decay 

rates are taken from fitness and fatigue model proposed by Busso et al. [Busso et al., 

2002]: 

𝐴𝑘 = (𝑒
−1

𝜏1 0

0 𝑒
−1

𝜏2

)       (2.18) 

𝐵𝑘 is time varying input matrix: 

𝐵𝑘 = (
𝑒

−1

𝜏1

𝑐2(𝑘) ∙ 𝑒
−1

𝜏2

)       (2.19) 

In addition to two exponential decay rates, it contains c2(k) – training influence 

factor on the fatigue component. It is defined as follows: 

𝑐2(𝑘) = 𝑐3 ∑ 𝑢(𝑗)𝑒
−(𝑘−𝑗)

𝜏3𝑘
𝑗=1      (2.20) 

Under this model, the states of the system cannot be accessed directly. It can 

only be determined by indirect measurements of yk 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑛𝑘     (2.21) 
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where nk refers to observation noise (usually gaussian distributed), Ck is the 

quantity of each state component on the measurement. Ck is defined as follows: 

𝐶𝑘 = (𝑐1 − 1)      (2.22) 

In this definition c1 – c3 are the weighting factors and τ1 – τ3 are time constants. 

The main advantage of a linear, time-variant state-space model with Kalman 

filtering is the ability to correct the estimated model state online. Thus, the tolerance 

for measurement errors is much higher compared to traditional fitness – fatigue 

models. 

2.3.3.8 Summary of the analytical model overview 

There are a few types of training and fatigue models. Banister and its 

elaborations models are based on the exponential decay function that is widely used 

to describe natural phenomena such as heat transfer between the object and its 

medium, rate of enzyme-catalysed chemical reactions, fluid dynamics, metabolization 

of drugs in patients. These examples provide a logical foundation for application of 

an exponential decay function for fatigue modelling. Other training and fatigue 

models are based on DHO [Morin et al., 2016]. These models describe long-term 

changes in the performance capacity in the context of nonlinear and nonmonotonic 

processes. However, the fatigue models have been criticized for imprecision and low 

accuracy due to variability of their parameters [Hellard et al., 2006]. Furthermore, the 

models also need verification in the context of physiological computing, where signals 

of a human body are usually registered under normal conditionals rather than 

considerable strain. Also, the problem of mental fatigue is usually ignored, though 

over time it leads to decrease of performance in PCS.   

2.3.4 Fatigue in sport vs fatigue in HCI 

Fatigue as the result of professional sport activities and fatigue resulting from 

the application of HCI based on physiological signals are similar in their nature. In 

both fields mental and physical fatigue are operating. From the perspective of time, 

under time training – fatigue models applied in sports the effects of fatigue come out 

in the temporal space of months, weeks and days. Meanwhile, a decrease in fatigue-

induced performance of HCI based on physiological signals can be expected in hours 

or even minutes. It should be emphasized that in sports, fatigue can also occur in a 

relatively short period of time (for example, in sports as sprint, which requires a lot of 

explosive power), but in this analysis the time scale is determined based on the 

practice of existing training - fatigue models. The environmental conditions affecting 

athletes and HCI based on physiological signals are significantly different. 

Professional athletes train methodically, consistently for a long time. During exercise, 

physical activeness is very high. This training can eventually lead to mental fatigue. 

Meanwhile, users of HCI based on physiological signals operate under relatively low 

physical activity conditions, though control of certain systems using physiological 

signals has its own specifics. Here, the type and strength of fatigue greatly depends 

on a specific input signal. Using EMG-based HCI involves muscle tiredness that is of 

the same nature as during exercise training, but this fatigue is localized in the body 
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where the EMG signal is generated. BCI systems cause mental fatigue, because this 

type of interface does not involve any physical activity. The use of gaze tracking 

interface results in visual fatigue, which occurs due to muscular fatigue around the 

eye and a slight flicker, thus, a distinct form of muscle fatigue. In addition, mental 

fatigue occurs in both the use of EMG-based HCI and the gaze tracking interface in 

the long run.  

Table 2.2 Comparison of fatigue in sports and HCI 

 Fatigue in sports Fatigue in HCI 

Origins of fatigue Mental/Physical Mental/Physical 

Temporal scale Months/week/days Hours/minutes 

Detection methods Physiological signals/ Subjective 

tests/ Objective tests 

(performance)/Analytical training 

– fatigue models 

Physiological 

signals/Subjective tests/ 

Performance-based 

approaches 

Environmental conditions High physical activity and 

considerable strain 

Low physical activity and low 

or medium strain 

 

In terms of fatigue detection methods both domains share similar approaches. 

Fatigue detection using physiological signals, subjective tests and objective tests by 

their nature are similar in sports and HCI, but in terms of implementation they can 

differ from each other. However, analytical training – fatigue models are typical only 

in a professional sports domain. 

 
 

Figure 2.8. Physiological measurements used in sports and HCI for fatigue detection 

Most of physiological measurements used for fatigue detection in sports have 

an equivalent in HCI (see Fig. 2.8). The HRV measurements are used in both a broad 

and very similar context in both areas [Flatt, 2016, Gisselman et al., 2016, Vicente et 

al., 2016].  

The application of the EMG signal for the detection of local muscle fatigue has 

long been known in sports workouts (as in rehabilitation and ergonomics). Hence, 

various devices for monitoring muscle fatigue have been developed using power 

spectrum shift [Cifrek et al., 2009]. This equipment operates precisely when muscle 

tiredness is determined by isometric muscle contractions, but while dynamic 

contractions, measurement accuracy is questionable due to the movement of the 

electrode. EMG-based HCI control is dominated by dynamic contractions, which 

cause muscle tiredness to occur relatively quickly. As a result, other methods of the 

EMG signal analysis are used to detect muscle fatigue in the HCI field. Upper-limb 
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power-assist exoskeletons are constantly exposed to muscle fatigue caused by 

dynamic muscle contractions. To solve this problem, complex methods are used to 

measure and analyze several EMG features (e.g., root mean square, mean power 

frequency and spectral features) at the same time [Lalitharatne et al., 2012]. 

EDA, EEG and EOG signals are mainly used for detection of mental fatigue. In 

the HCI field these signals are most commonly used to detect driver fatigue [Craye et 

al., 2016, Sommer and Golz, 2010]. For studies on athlete fatigue and performance 

these signals are also applied to: EEG alpha frequency band measurements are applied 

to estimate audio-visual relaxation and its impact on athletes’ performance [Mikicin 

and Kowalczyk, 2015], EDA and EOG signals are used to measure athletes’ sleep 

quality, as well as for the research on fatigue caused by sleep deprivation [Estivill-

Domènech et al., 2018, Düking et al., 2016].  

Subjective tests, also refered as as qualitative measures, used in sport trainings 

enclose various questionnaires, that are criticized for lack of scientific evidence and 

rating of the fatigue scale, such as the 11-point Likert scale, which are more 

formalized. In the HCI field, subjective tests are also applied, though they are of rating 

of scale-type methods, the most popular of which are: Subjective Workload 

Assessment Technique (SWAT) [Reid and Nygren, 1988], NASA-TLX [Hart and 

Staveland, 1988], Workload Profile (WP) [Tsang and Velazquez, 1996]. 

Performance-based approaches are also applied to both HCI and sport. In sport 

trainings a variety of sports-specific metrics and a universal CMJ metric are applied. 

In the HCI area performance metrics depend heavily on a particular system (e.g., 

vehicle speed variability, steering wheel position, acceleration metrics can be used for 

assessing driver fatigue, while for NCI-based speller metrics of time per selection, bit 

rate, information input speed, etc. are applied).  

Video gesture recognition was long-known in the HCI domain. Video gesture 

recognition could be classified into 3 major categories: (I) human action and activity 

recognition [Chaquet et al., 2013], (II) face and head gesture recognition [Mitra and 

Acharya, 2007] and (III) hand gesture recognition [Rautaray and Agrawal, 2015]. [Xie 

et al., 2012] applied head gesture recognition to assess driver fatigue. [Li et al., 2014] 

extended fatigue detection approach by combining head gesture and EEG data. Hand 

gestures are also used for fatigue studies, e.g. [Ruiz and Vogel, 2015] studied the 

performance of body and arm gestures and found that soft wrist weight constraints 

reduced arm fatigue by generating more diverse, non-legacy gestures using different 

body parts and more subtle movements. Fatigue detection based on human activity 

recognition mostly uses body sensor networks [Ma et al., 2014, Gordienko et al., 

2017]. 

Video gesture recognition is also applied in sports training and coaching. For 

decades, coaches have been using video records to analyze performance of athletes. It 

was a means of qualitative analysis. Recently, a more sophisticated form of analysis, 

also known as a quantitative video analysis, has been often applied to analyze the 

performance of athletes. Quantitative video analysis is based on gesture recognition 

and aims to capture biomechanics of sportsmen movements. It is used in various type 

of sports (swimming, athletics, different team sports etc.) [Wilson, 2008].  
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Quantitative video analysis has proven its significance in high performance sports like 

Taekwondo [de Souza Vicente et al., 2016]. Human body gesture recognition can be 

used for physical rehabilitation. [Da Gama et al., 2016] presented a clinically-related 

gesture recognition interactive tool, which improved user engagement and exercise 

performance outcomes.  

There are physiological measurements of fatigue that are specific only for sports 

domain. Most often they are biomedical markers found in blood, salvia and urine. The 

known blood-borne markers of fatigue are: Creatine Kinase, Urea, free-testosterone, 

cortisol [Julian et al., 2017] or blood lactate level [Hoff et al., 2016]. Changes in 

cortisol and testosterone taken from saliva directly correlate with fatigue, therefore, 

those hormones are also considered as fatigue markers [Cormack et al., 2008]. Amino 

acids like taurine, carnosine and others serve as urinal markers of fatigue [Corsetti et 

al., 2016].  

2.4 Combination of biocybernetic loop and performance models 

Biocybernetic loop describes how psychophysiological data from the user is 

captured, analyzed and converted to a computer control in real-life [Serbedzija and 

Fairclough, 2009]. It helps to achieve the adaptive communication between a user and 

a system. However, the user in this context is described as not stable system member, 

since it is affected by many internal and external factors [Serbedzija and Fairclough, 

2009]. The wide variety of these factors results in the description of adaptive 

communication only on a very high level of abstraction.  

Although the biocybernetic loop provides some abstract description of the 

adaptive interaction between a user and a system, it still faces limitation in some 

domains regarding the integration of physiological sensors, the processing of signals, 

and the communication between physiological systems and applications [Muñoz et 

al., 2017]. Moreover, the biocybernetic loop lacks practical system development 

frameworks, which would facilitate the integration of the biofeedback loop to a 

specific application. The specific realization of the biofeedback loop highly depends 

on a user and an application. The application may define the level of instability of the 

user, since user state measurement depends on the specific system design.  

The analysis of performance models based on impulse and response revealed 

that human performance can be defined by fitness and fatigue factors. A combination 

of impulse and response models with the biocybernetic loop may result in 

approximation of user states, since user performance would be defined only by two 

factors (training and fatigue). Therefore, this extension of the biocybernetic loop could 

lead to a more detail description of the adaptive system and its interaction with the 

user. However, impulse and response models lack validation in HCI domain, 

therefore, it is of high interest to test those models in HCI domain and possibly extend 

the concept of the biocybernetic loop by including the performance models. The 

inclusion of performance models to the biocybernetic loop is even more reasonable 

considering the fact that fatigue factor, which is the key factor in human performance 

modelling, is of the same origin despite the domain it occurs (see section 2.3.4).  
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2.5 Conclusions of the Chapter 

PCS plays an important role in HCI domain. In PCS actively and passively 

generated physiological signals (e.g. EEG, EOG, EMG, EDA, etc.) are applied as an 

interface control method. This way of interface control allows disabled people to 

communicate with others, control their digital devices and their environment. PCS is 

also widely used in areas where human hands are occupied but additional control is 

required (e.g. car drivers, plane pilots, etc.), also other domains like marketing 

research and advertisement testing, adaptive computer games, prosthetics, 

rehabilitation, psychology, etc. 

However, the conscious use of PCS is hindered by many factors such as 

availability of low-cost high-quality sensors and the need to develop more effective 

physiological signal processing and user-state detection algorithms as well as steep 

learning curve for using PCS. One of the factors, often neglected, is fatigue (both 

mental and physical one) which reduces accuracy and information transfer rate of the 

PCS communication channel and leads to input errors. 

Fatigue in the field of sport training and physiology is widespread for 

researchers. Both subjective and objective research methods are applied, also 

monitoring of human physiological signals is often used to detect fatigue. 

Furthermore, impulse-response models of physiology domain elegantly includes 

fatigue factor in mathematical performance models. Although a mathematical 

impulse-response model abstracts the human performance to two factors (fitness and 

fatigue), it has still been validated in many studies regarding the performance 

estimation of athletes. Fitness and fatigue factors are also met in HCI domain, 

especially in PCS sub-domain. The generation of physiological signals for system 

control sometimes involves the same muscles (e.g. in EMG-based interfaces) as in an 

intensive physical activity (e.g. athlete training). This implies that fatigue is of the 

same nature in both domains. In fact, the analysis carried out in section 2.3.4 shows 

that fatigue is estimated using similar methods both sports and HCI. Fitness factor is 

also relevant not only to human physiology. A more general term for fitness is 

training. The importance of training can be seen in many fields where permanent 

exercise is required, one of which is the use of certain software. The aforementioned 

assumptions suggest that impulse-response models are worth to be tested in PCS. 

The aim of integration of impulse and response models to PCS interface design 

is to ensure the adaptiveness of the interface. The common approach of the adaptivity 

in PCS is the biocybernetic loop. Therefore, the obvious way to introduce the training-

fatigue models in PCS is by including these models into the bio-cybernetic loop. This 

extension of the biocybernetic loop could lead to a more detailed description of the 

adaptive system and its interaction with the user. Theoretical issues of the integration 

of performance models are addressed in chapter 3, while in chapter 4 the experiments 

of application in PCS of training-fatigue models are presented.  
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3 HUMAN-ASSISTIVE HCI MODEL 

In this chapter human-assistive HCI model is presented. It is based on the 

combination of the bio-cybernetic loop and performance models, which have been 

analyzed in chapter 2. Two variants of human-assistive HCI model have been 

proposed: (1) human-assistive single channel HCI model and (2) human-assistive 

multimodal HCI model.  

This chapter is organized as follows: section 3.1 describes the motivation for the 

development of human-assistive models, section 3.2 provides in-depth description of 

human-assistive single channel HCI model, section 3.3 provides in-depth description 

of human-assistive multimodal HCI model, section 3.4 describes the limitation of the 

proposed models, finally, section 3.5 provides conclusions of chapter 3. 

3.1 Motivation 

There are various PCS-based communication and control systems. The primary 

purpose of such systems is to enable alternative or enhance a way to control user 

interfaces. Physiological computing systems are suitable for work and home activities. 

These can sustain work productivity and entertain. For disabled people, who do not 

move hands and (or) legs, it can improve the quality of life. Systems that solve this 

problem are called assistive systems. Different types of these systems, such as BCI, 

NCI, gaze tracking systems have been discussed in previous chapters. As discussed in 

the analysis section, one of the major usability problems of these systems is the 

decrease in performance due to mental and physical fatigue. 

When using assistive interfaces based on PCS systems, performance can 

decrease radically. A lot of factors have impact on the decrease, but the most important 

is fatigue. In solving the problem, fatigue is simply bypassed developing a 

sophisticated user interface and multimodal solutions (e.g. hybrid BCI). However, it 

must be acknowledged that fatigue effects in similar systems are unavoidable. Often 

users can control only one input modality, therefore, after fatigue appears and 

accuracy of the system control decreases, user’s motivation decreases as well. Other 

major factor of the interface control performance is training. Training factor has a 

positive impact on interface control performance. The training aspect increases, while 

user constantly uses the interface. Evaluation and prediction of the system control 

performance in real time would be a natural way to solve motivation problem. 

Athlete performance models described earlier in the thesis, used in sport 

trainings, could be applied to predict fatigue and training effects in PCS-based 

interfaces. Further in this chapter Human– assistive HCI models, aimed to design 

assistive interfaces based on PCS, are described. These models rely on a biocybernetic 

loop and HI principles, though their novelty lies in the performance assessment and 

prediction element included in the system design. Hence, it is a priori accepted that 

fatigue and training effects will occur using assistive interfaces-based on PCS. 

Though the proposed models originate from the concept of a biocybernetic loop, the 

representation of the aforementioned models focuses on practical aspects of the 

development of PCS-based user interfaces.  In general, Human–assistive HCI models 

provide a design framework for the PCS-based user interfaces. The distinction 
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between the concept of a biocybernetic loop and human-assistive HCI models also 

lies in the performance measurement methods. Performance or user states in a 

biocybernetic loop are measured based on bio-physiological characteristics of the 

user. In human-assistive HCI model performance can be measured directly from bio-

physiological signals, generated by the user, or indirect measures, related with specific 

application, can be applied (e.g. accuracy, error rate, information transfer rate etc.). 

Thus, the proposed models are suitable, but not limited to, the development of the 

PCS-based user interfaces. 

There are two types of Human-assistive HCI models: (i) Human-assistive single 

channel HCI model is aimed at users who can control only one input modality, (ii) 

Human-assistive multimodal HCI model is for users that can control more than one 

input modality. Both these types are similar, the only difference between them is the 

interaction between the user and the system that they describe. 

3.2 Human-assistive single channel HCI model 

3.2.1 Model description  

Human-assistive single channel HCI model (HASCM) is applied for users, who 

can control only one modality of input (e.g. in BCI input modality is brain wave signal, 

in some cases it is the only input channel). The input channel is monitored by an 

intelligent layer of the system. Feedback to the user is provided regarding physical 

and (or) mental load, which is measured during performance evaluation procedure. 

Feedback to the user is provided as recover activity, which helps the user to regain 

lost performance. After this procedure further control of the system can be carried out. 

The structure of HASCM is as follows (see Fig. 3.1): 

1. Interaction layer: it establishes communication between the user and the system. 

The inner structure of an interaction layer consists of two components: input 

channel and feedback activity. 

1.1. Input channel represents input modality, which is used for control of the 

system. 

1.2. Feedback activity – represents response of the system, when fatigue effects 

appear. 

2. Intelligent layer is a central component of the model responsible for coordination 

of other components and decision-making process. 

3. Performance evaluation procedure – responsible for performance evaluation of 

the user using the system. 

4. Control layer – represents application-specific actions to control the system. 
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Figure 3.1 Human-assistive single channel HCI model 

Human-assistive single channel HCI model consists of several layers: 

• Interaction layer. This layer provides tools of communication and control of 

the system. It is divided into two blocks: control channel and feedback 

activity. Control channel is responsible for capturing an input modality which 

is presented in the model as a control channel. Feedback activity is a specific 

response of the system, when intelligent layer triggers a decreased level of 

performance. The purpose of this activity is to help user to relax and recover 

from mental and (or) physical fatigue. The type of feedback can be visual, 

auditory, tactile, somatosensory.  

• Intelligent layer. This layer is responsible for decision-making process. Each 

time user sends an input signal to the system the decision must be made 

whether the signal should be converted to control command or recover 

activity should be provided to the user. The features of the signal, which 

represents fatigue, depends on the type of input modality. The extraction of 

these features is made in an intelligent layer. Afterwards the extracted features 

are sent to performance evaluation procedure, which returns feedback as an 

estimate of current performance level. The features of performance also can 

be received from control layer, as specific metrics of application (e.g. 

accuracy of user control, input speed, information transfer rate etc.). Then the 

decision is made whether user should keep controlling the system or the 

fatigue is too high, and the recover activity should be activated. Furthermore, 

the classification of a signal to determine the specific control command of 

application is also made in intelligent layer. 

• Performance evaluation procedure. It serves as a tool for quantitative 

assessment of user performance. The performance itself may depend on 

fatigue and training aspects of specific user. The aforementioned procedure is 

application-specific and may vary from sophisticated fatigue feature 

extraction and classification techniques to threshold function, which takes as 
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an argument certain performance parameters. The output of this procedure is 

an estimate of performance level. Initial performance model can be pre-

defined and if necessary modified online. 

• Control layer. Control layer determines specific actions which are used to 

control the application. Application area is wide, technically it encompasses 

almost any digital device the can receive at least one input modality of any 

human suitable form and can provide at least one output modality of any 

human suitable form. 

The typical architecture of system adapting MASCM is presented in Fig 3.2. 

Packages here represent logically related elements. Performance evaluator package 

corresponds to the performance evaluation procedure presented in Fig. 3.1. The rest 

of the packages are identical with corresponding elements in Fig. 3.1. 

 

Figure 3.2 Typical HASCM architecture in UML notation 

3.2.2 Interaction of model components 

From HASCM point of view, a user is also a part of the system. The user can 

send input commands and get feedback from the system (see. Fig. 3.3). System control 

tasks can be executed using input modalities, which are determined by the system 

design. No distinction is made between traditional input modalities (e.g. mouse, 

keyboard, joystick, etc.) and alternative ones like physiological computing-based (e.g. 

EEG, EMG, EOG, gaze tracking, etc.) or NUI-based (e.g. human gestures). The user 

provides input to the system, which later is pre-processed in the Input channel.  

The concept “single channel” in HASCM model does not necessarily mean that 

the user is able to control the system via one input mode. Input channel can receive 

one unified set of input modalities. A unified set means that input modalities are 

undetachable from each other in terms of control. For example, a mouse and a 

keyboard are undetachable from each other in many cases, because one set of control 

commands are covered by the mouse, and another set by the keyboard. If one input 
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mode cannot cover all control commands, one cannot consider it as an independent 

input mode (a model which deals with independent input modalities is called 

HAMM).  

Input channel is responsible for pre-processing a task. Not all input types may 

need pre-processing (e.g. a mouse and a keyboard), in such cases this task is simply 

skipped. The most pre-processing is needed when system input is based on a 

physiological signal; then signal sampling and filtering are usually applied. Further 

analysis of the pre-processed input data is then made in the Intelligent layer.  

User

1. Interaction layer

1.1 Input channel

1.2 Feedback activity
Intelligent layer

User input 

Activity, which helps 
user to recover 

performing ability

Pre-processed 
input data

Trigger of 
feedback activity

 

Figure 3.3 Communication between user and the Interaction layer of HASCM 

 

Intelligent layer triggers Feedback activity when the performance of system 

control decreases. In general, Feedback activity is every activity which helps a user to 

recover performing abilities. In terms of sensing ability Feedback activity can be 

classified into (i) sensory feedback activity and (ii) hidden feedback activity:  

• Sensory feedback activity can be sensed by the user. The feedback type can 

be visual, auditory, tactile, or somatosensory. The main purpose of any type 

of sensory feedback activity is to help a user regain performing abilities. 

Typical examples of such feedback are GUI change due increased level of 

fatigue or inserts of relaxing music during control process. 

• Hidden feedback activity cannot be directly sensed by the user. In this case, 

the user can feel improvement of the interface performance or other metrics 

but cannot sense it. A typical example is adjustment of control parameters 

(e.g. dwell time adjustments in gaze tracking interfaces). 

In terms of how feedback activity is included into a control – feedback loop, it 

falls into (i) interruptible and (ii) uninterruptible feedback activity: 

• Interruptible feedback activity interrupts control process of the system. In this 

case, control of the system is disabled, instead a user is stimulated by a 

relaxing activity. 

• Uninterruptible feedback activity does not disable the control process. It is 

carried out simultaneously. Adjustment of control parameters is also a proper 

example to demonstrate this kind of feedback. 
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Figure 3.4. Communication between the Intelligent layer and other components of 

HASCM 

The Intelligent layer is the most complex component of HASCM (see Fig.3.4). 

It is responsible for (i) pre-processed data classification to the control commands, (ii) 

user performance feature extraction and (iii) decisions of when feedback activity 

should be triggered. 

• Pre-processed data classification to determine control commands. This 

procedure is common for PCS. The complexity of classification approach 

depends on application. Physiological signal classification may require 

sophisticated pattern recognition methods (e.g. artificial neural networks, 

SVM, etc.). In some cases, additional feature extraction must precede 

classification to reduce dimension of the data (e.g. PCA). In simple solutions 

input data can be transformed to control commands by applying threshold 

function. Some interface types do not require classification at all (e.g. gaze 

tracking interface provides point of gaze). Therefore, data classification is 

optional in this model.  

• User performance feature extraction is an important process in HASCM. The 

extracted performance features are used in performance evaluation procedure 

as input arguments. Therefore, Intelligent layer and Performance evaluation 

procedure are strongly related. Since performance is usually affected by user 

fatigue and training factors, the feature extraction tends to search for features 

in the input signal that are related with user fatigue. To extract features from 

input data one may need to link a physiological measure to a specific fatigue 

state. Karran calls this process inference [Karran, 2014]. Another way to 

estimate the performance features is to use pre-set application-specific 
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performance metrics of the Control layer.  Performance metrics like accuracy 

and input speed are common for many systems and those metrics is strongly 

related with fatigue, because those metrics decrease in the presence of fatigue. 

Combined approach, when extracting fatigue features form both input data 

and performance metrics, may increase accuracy, but it is a more complex 

approach. 

• Decisions of, when feedback activity should be triggered, depend on 

Performance evaluation procedure. Performance evaluation procedure returns 

the performance estimate to the Intelligent layer. The performance estimate 

can be numeric value or pre-defined user state. In order to activate the trigger, 

when performance estimate is numeric value, threshold or sigmoid function 

can be used. When a pre-defined user state is an indicator, the Intelligent layer 

should recognize this state and execute the necessary actions. 

Performance evaluation procedure defines means of performance measurement 

in the specific system. It can be a set of logic rules, mathematical equations or complex 

dynamic structures like Kalman filters and artificial neural networks (ANN). A 

performance model can be passive or adaptive. Passive performance model is a pre-

defined analytical model which does not change its behavior during control process. 

Adaptive performance model changes over time and can be optimized during control 

process (e.g. Kalman filter). 

Control layer represents the logic of application. It receives control commands 

from Intelligent layer. These control commands are used to control the main 

application. The Control layer also sends back the performance metrics, which can be 

used for performance evaluation.   

3.3 Human-assistive multimodal HCI model 

3.3.1 Model description 

Human-assistive multimodal HCI model (HAMM) represents the case when 

more than one input modality is used to control the application. It is more complex 

compared to HASCM, since an increased number of input modalities requires 

additional input channel selector component (see Fig. 3.5). Intelligent layer and 

performance evaluation process in this case are also more complex because different 

input modes may require different performance estimation techniques. Therefore, 

additional fatigue feature extraction techniques should be considered. Despite 

structural differences from HASCM this model also differs in terms of feedback type. 

Feedback in this case is a change of input channel or a group of input channels. When 

performance of the system decreases, the current input channel is switched to 

alternative input channel (or a group of input channels). 

The structure of HAMM is as follows (see Fig. 3.5): 

1. Multimodal interaction layer consists of a set of control channels and Input 

channel selector. Each control channel carries out specific pre-processing 

techniques. 

1.1. Input channel selector – works as a switch, which enables specific input 

modality to take part in control, and links it with specific control channel. 
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1.2. Control channel - represents the specific input modality, which is used for 

control of the system. 

2. Intelligent layer - is a central component of the model, which is responsible for 

coordination of other components and decision-making process. 

3. Performance evaluation procedure – responsible for performance evaluation of 

the user using the system. 

4. Control layer - represents application-specific actions to execute the system. 

User

1.2 Control channel 1

2. Intelligent 
layer

1. Multimodal Interaction layer

4. Control layerControl channel 2

Control channel N

1.1. Input 
channel 
selector

3. Performance 
evaluation 
procedure

 
 

Figure 3.5 Human-assistive multimodal HCI model (MAMM) 

HAMM consists of several layers, which is common for HASCM as well, 

however, the functionality of those layers to some extent is different from HASCM. 

The MAMM layers are listed below: 

• Multimodal Interaction layer. This layer is responsible for capturing an 

input signal of each modality. It consists of many Control channels. Each 

Control channel represents a specific input modality. The number of input 

modalities depends on the user. Some of the input modalities could be used 

to control simultaneously (but not all together), others as an alternative 

control channel. If needed, some low-level signal pre-processing actions are 

carried out in each Control channel. Input channel selector is one of 

constituent parts of the Multimodal interaction layer. It is responsible for 

switching a specific input channel or a group of channels regarding data 

received from the intelligent layer. Furtheron, it is responsible for feedback 

to the user. Input channel selector sends information about a channel, which 

is currently in control in any suitable form to the user. Input channel selector 

restricts to activate all control channels at once. At least one Control channel 

must remain in reserve. 

• Intelligent layer. Intelligent layer is responsible for decision making and 

signal classification to determine specific control command of application 
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layer. Since in this case there are more than one input modality, the system 

must decide which one or a group of input modalities should take control. 

Possible outcome of this decision is: (i) leaving the same input modality or a 

group of them in control or (ii) switching to other input modality or a group 

of them. This decision is made based on performance estimate of a current 

system state. Different input signals captured from a specific input modality 

may require different features for performance evaluation, therefore one may 

require additional methods of feature extraction. The extracted fatigue 

features are sent to performance evaluation procedure, which later returns the 

performance estimate. Finally, the intelligent layer must decide which input 

mode or group of modes will take control. This decision is sent to the input 

channel selector. Those actions are repeated each time user initiates control 

command. Same as in HASCM, the performance can be estimated based on 

performance parameters received from the Control layer. 

• Performance evaluation procedure. Performance evaluation procedure 

may contain one or more performance models. Separate performance models 

may be applied to a specific Control channel. It is possible to use only one 

performance model, when the model is based on the performance metrics of 

the Control layer. The output of this procedure is current performance 

estimate of the user. 

• Control layer. Control layer determines specific application which is 

controlled by the user. Application area encompasses almost any digital 

device that can receive two or more input modalities of any human suitable 

form and can provide at least one output modality of any human suitable form. 

The typical architecture of system adapting MAMM is presented in Fig 3.6. In 

this example 3 different control channel are utilized. Packages here represent logically 

related elements. Performance evaluator package corresponds to the performance 

evaluation procedure presented in Fig. 3.5. The rest of the packages are identical with 

corresponding elements in Fig 3.5. 

 

Figure 3.6 Typical architecture of HAMM with 3 control channels in UML notation 
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3.3.2 Interaction of model components 

A user in a human-assistive multimodal HCI model (HAMM) is considered as 

a separate component of the model. The user can generate multimodal input. The 

workflow of the system based on HAMM is as follows: 

1. A user generates multimodal input which is used for system control. 

2. The system detects when performance level decreases. 

3. Current input modality or a set of modalities are disabled. 

4. An alternative input modality or a set of modalities are activated. 

5. A user gets notification of the system decision on which input modality is 

now active. 

Input modalities are managed in the Multimodal interaction layer (see Fig. 3.7). 

The number of input modalities depends on user abilities and system design. Each 

input modality should be independent from each other. It means that every single input 

modality must cover all control commands of the system. The Input channel selector, 

which is one of the constituent parts of the Multimodal interaction layer, manages 

which input modality must take control over others. At the start of the control input 

channel selector sets default input modality in control. Later switching of input 

modalities is determined by Intelligent layer, which sends a control command that 

enables input modality. In general, Input channel selector works as a switch controlled 

by Intelligent layer. Besides switching functionality, input channel selector notifies 

the user which input modality is in control, so that user will always know which input 

modality should be used. Input channel selector can activate a set of input modalities 

in control, still one restriction remains – all exiting input modalities cannot be 

activated at once, at least one should remain in reserve. 

User

1.2 Control channel 1

1. Multimodal Interaction layer

Control channel 2

Control channel N

Multimmodal user 
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Figure 3.7 Communication between the user and Multimodal interaction layer of 

HAMM 

 

Multimodal interaction layer also consists of a set of Control channels. The exact 

number of Control channels depends on user ability to generate different input 

modalities. Same as in HASCM, Input channel in HAMM is responsible for pre-

processing. Not all input types may need pre-processing (e.g. a mouse and a 

keyboard), in such cases this task is simply skipped. The most pre-processing is 
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needed when system input is based on a physiological signal; then signal sampling 

and filtering are usually applied. Different types of input signals may require different 

pre-processing techniques; therefore, the number of Input channels coincide with the 

number of input modalities. The output of the Input channel is the pre-processed input 

data, which is further analyzed in the Intelligent layer. 
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Figure 3.8 Communication between the Intelligent layer and other components of 

HAMM 

 

The Intelligent layer of HAMM operates in the same way as in HASCM. It is 

responsible for (i) pre-processed data classification to the control commands, (ii) 

fatigue feature extraction and (iii) decisions when input modality needs to be 

switched. This functionality fits the one presented in Section 3.2.2. The only 

difference here lies in decision-making process. The intelligent layer of HAMM is 

responsible not only for activating the multimodal interaction layer when the 

increased level of fatigue is detected, but also must decide which input channel should 

be activated. 

Performance evaluation procedure in HAMM differs from the HASCM in the 

sense that it might contain a set of different performance procedures or models, since 

different input modalities are used. Performance or features received from the 

intelligent layer help to identify a suitable performance model. If performance or 

fatigue features cannot be distinguished from each other, additional identifiers may be 

required.  

Control layer is the same for both,  HASCM and HAMM. It is responsible for 

(1) controlling particular application based on the received control commands from 

intelligent layer and (2) sending back the performance metrics, which can be used for 

the evaluation of performance. 
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3.4 Model limitation 

The main drawback of the model lies in variability of performance estimation 

metrics. CMJ metric used in sport trainings is suitable to evaluate athletes’ 

performance or fatigue level in many sports [Markovic et al., 2004]. However, to 

objectively evaluate performance in the HCI domain, no similar metrics are 

distinguished. Performance assessment methods in the HCI and PCS areas are greatly 

dependent on the scope and the type of input modalities used for control. The 

arguments of mathematical performance functions based on training and fatigue will 

also vary from one system to another. Using the same system does not change the 

analytical model for different users, but the parameters of this model will be different 

for different users (this is demonstrated by studies presented in Chapter 4). Hence, 

every user must necessarily undergo trial testing before using a certain system to find 

the right model or, at least, suitable parameters. 

After using the system for a longer period, the user trains himself, thus, 

controlling the system becomes smoother. For the same reason performance 

evaluation procedure can also change. Then the need for re-optimization of the 

analytical model emerges. This problem might be solved by adjusting the model 

online as proposed in Kolossa et al. [Kolossa et al., 2017]. 

3.5 Conclusion of the chapter 

Human-assistive HCI model describes interaction between a human and a 

computer, including the evaluation of user performance. 2 variants of the model have 

been suggested: (i) Human-assistive single channel HCI model, (ii) Human-assistive 

multimodal HCI model. When the system is managed by only one channel, the system 

responds to decrease of the performance by offering the user an opportunity to relax 

or by facilitating the management process. In the case of multimode control, the 

system detects decrease of performance in one channel that can transfer control to an 

alternative control channel. 

The proposed models originate from the concept of a biocybernetic loop. They 

focus on practical aspects of the development of PCS-based user interfaces. In general, 

Human–assistive HCI models provide a design framework for the PCS-based user 

interfaces. The distinction between the concept of a biocybernetic loop and human-

assistive HCI models also lies in the performance measurement procedure, which was 

inspired by impulse-response models, initially used in human physiology domain, and 

renamed after training-fatigue models in this study. 

The main limitations of the proposed model are related to the performance 

evaluation procedure itself. Predicting performance or user fatigue can be a 

complicated process, as parameters of performance or user fatigue to different 

individuals can vary widely. It is, therefore, very difficult to apply the same model 

parameters to different individuals. 
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4 ANALYTICAL PERFORMANCE MODELS FOR HUMAN-ASSISTIVE 

HCI 

In this chapter all experiments and their results are described. The predominant 

focus of those experiments is (1) to investigate performance models and their 

applicability to PCS (Section 4.1 and Section 4.2) or (2) to apply a simple fatigue 

evaluation procedure and test the effect of its application to system performance 

(Section 4.3). All experiments have been carried out on a specially-developed 

application. Theoretical models described in Chapter 3 (HASCM and HAMM) have 

been applied for the development of these applications. The results presented in this 

chapter, have also been published in these papers [Vasiljevas et al., 2014a, Vasiljevas 

et al., 2014b, Vasiljevas et al., 2015, Vasiljevas et al., 2016, Damaševičius et al., 2015, 

Damasevicius et al., 2015]. 

This chapter is organized as follows: in Section 4.1 experiments on modelling 

user performance in gaze spelling task are provided, in Section 4.2 experiments on 

modelling user performance in PC game based on eye tracking are presented, in 

Section 4.3 EMG-based speller prototype is described and its performance 

experiments are provided, finally, in Section 4.4 conclusion of this chapter are 

presented. 

4.1 Modelling user performance in gaze spelling task 

Research in this section was originally presented in [Vasiljevas et al., 2016]. 

4.1.1 Methodology 

4.1.1.1 Proposed eye performance model 

Let X be a time series consisting of spatial gaze landing positions 

( )1 2, ,..., nX x x x=  measured at time ( )1 2t , t ,..., tnT = when performing the gaze fixation 

task. For simplicity, we consider only one dimensional (horizontal one), though the 

model can be applied to the vertical dimension as well. Given X and assuming normal 

distribution of the landing site position, we can construct the probability density 

function (PDF) of X as ( )pdf X .  

Let us perform the segmentation of time-series using the sliding window with 

the length of the local sliding window w and the step between adjacent sliding 

windows s. This transformation transforms X into a sequence of vectors 

     ( )1 1 1,..., , ,..., ,..., ,...,W S S W kS kS WX x x x x x x+ + + += , here ( ) /k n w s= −   . 

Let M be a time series constructed from the maximal values of ( )pdf X  meaning 

the largest probability value of landing. PDF is calculated for each member (aka 

vector) of sequence 𝑋̅. Finally, we result in a sequence  ( )1 2, ,..., kM m m m= , where 𝑚𝑖 

is the maximum PDF value of i-th 𝑋̅ member, 𝑖 = [1; 𝑘]. M value can be used to 

characterize the performance of a subject: the higher the value, the more accurate the 

subject is, the lower the value, the less accurate the subject is. 
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The probability distribution depends upon many different factors such as the 

skill of a subject in using the gaze-based interfaces as well as the complexity of the 

gaze tracking task. Therefore, we must normalize M to remove inter-subject and inter-

task variability as follows. Let S be a set of subjects 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑝}. Let SM be a 

matrix constructed of M for subjects S. The normalization procedure consists of diving 

each element of matrix SM by square root of a product of a mean value of each subject 

and the mean value of all subjects at each time step. The normalized matrix ,S tM  is 

defined as: 

( ) ( )
s,

,

, s,

  t
s t

s t t

M
M

E M E M 

=


     (4.1) 

here ( )E   is the mean (expectation) operator. 

Let the grand mean of ,S tM  be ( ),S tM E M= . Finally, we perform the fitting of 

M to a variant of Banister’s model: 
1 2/ /
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here P( )t  is performance, 1k  and 2k are learning and fatigue parameters, t  is 

time, 1 and 2 are decay parameters for learning and fatigue respectively. 

The Banister model assumes that, in response to a training impulse, performance 
first decreases and then returns to the initial level after a time tn and then peaks at a 
higher level after time tg [Fitz-Clarke et al., 1991]. Therefore, we calculate two 
additional tn and tg parameters to evaluate time needed for the subject to rest after the 
gaze tracking session as follows: 
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4.1.1.2 Gaze spelling system 

4.1.1.2.1 Architecture 

The architecture of the developed prototype gaze speller system is quite simple 

(see Fig. 4.5). It consists of the gaze tracking device (Eye Tribe), which is connected 

to a PC via USB 3.0 connection. On the PC, the core modules are responsible for 

calibration procedure and gaze feedback. A more detailed description of the 

architecture and implementation can be found in [Vasiljevas et al., 2015]. 
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Figure 4.1. Architecture of the gaze speller prototype system 

4.1.1.2.2 Application of HASCM to system design 

In the sense of HCI, gaze speller architecture is based on HASCM model (see 

Fig. 4.2), where eye movements are used as an input channel. An adaptive dwell time 

described in Section 4.1.1.2.5 serves as an initial recover activity. The dwell time is 

adapted in accordance with rate of typing errors detected by the intelligent layer of 

the system. In this study we also investigate a more complex training and fatigue 

model described in 4.1.1.1, input of which is based on accuracy of the sight landing 

position. The intelligent layer of this application is responsible for gaze mapping on a 

PC screen, detecting typing errors and initiating the feedback to the user. Error rate 

threshold function serves as the initial fatigue evaluation procedure. The threshold 

indicates how many errors can be made before initiating the recover activity. The 

specific threshold value is set by the user. In general, system control workflow is as 

follows: first, the user enters a text by his eye movements, second, the system monitors 

how many unwanted selections (errors) the user has made, after the error threshold is 

reached, dwell time adjustment is made (dwell time is increased at the specific value). 

The opposite adjustment (decrease of dwell time) is made, when the user reaches some 

defined number of the intentional selections.       

 

User

Intelligent layer

Interaction layer

Eye movements

Recover activity

Speller

Performance 
evaluation 
procedure

 

Figure 4.2. The HASCM model for gaze speller 
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4.1.1.2.3 Interface 

The primary motive for designing a user interface for a gaze speller is usability 

as good user experience would also enhance user acceptance of the system. Our 

developed interface was inspired by Špakov et al. [Špakov and Majaranta, 2009] and 

is based on the concept of a “scrollable keyboard” (see Fig. 4.3).  

 

Figure 4.3. Interface of the gaze speller 

Current implementation uses two scrollable keyboard layouts: 1) a standard 

QWERTY layout mapped to a single scrollable line of letters, 2) and a letter bigram 

optimized layout described in Subsection 4.1.1.2.4. Feedback is ensured by the black 

line which always stays at the center of the screen while the one-line keyboard moves 

underneath it, depending on the horizontal position of the gaze. Letter selection for 

input is provided by eye dwelling. Additional menu buttons are for calibration, 

connection to the gaze tracking device, loading of the alternative keyboard layouts, 

and setting program options. Layout editor has been implemented for the design of 

other keyboard layouts.  

4.1.1.2.4 Letter bigram optimized layout 

We have developed an alternative layout for the letter scrollbar based on the 

frequency of bigrams in the language under consideration. First, we have computed 

the number of occurrences of each bigram in text corpora (we used “Alice in 

Wonderland” from Project Gutenberg) as follows.  

Let is  and js  be a sequence of two symbols or bigram in alphabet L. Let the 

frequency of a bigram be ( ),i jf s s . The sum of all possible bigram frequencies in 

alphabet is equal to 100%. We compute the distance from is  to js , as inverse of 

frequency: 

( ) ( )( )  , 1/ 1 ,i j i jD s s f s s= +      (4.5) 

To make the matrix D  a true distance matrix, the elements at the main diagonal 

of the matrix are assigned a zero, i.e. ( ), 0i jD s s =  , for all i j=  . 
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Next, we consider the problem of optimally placing the letters on the 1D 

scrolling band as a separate case of the Travelling Salesman Problem (TSP). We can 

describe the letters as nodes of a graph, and the pairwise distance between nodes is 

inversely proportional to the frequency of occurrence of bigrams composed from the 

corresponding letters. The result of a solution to the TSP problem is the shortest path 

connecting all letters in alphabet. In our case it would be the optimal placement of the 

letters on the 1D scrolling band. This type of letter placement requires minimum 

demand of horizontal scrolling. The problem is computationally difficult and can be 

solved exactly using brute force search or dynamic programming methods for a small 

number of nodes (usually <15). As we have 26 letters in English alphabet as well as 

several other symbols (delimiters, numbers, etc.), the brute force search approach is 

not feasible. We used a simple implementation of Ant Colony Optimization (ACO) to 

find a near optimal solution to this problem. ACO is a probabilistic technique to solve 

computational problems which can be reduced to finding good paths through graphs. 

As the ACO algorithm is probabilistic, each time a different solution is provided. We 

have repeated the algorithm 100 times and selected the solution with the shortest 

length of path. Finally, we shifted the solution so that the symbol with the largest 

frequency is placed in the middle of the scrolling bar. The solution for scrolling bar 

used in this paper is: 

YWVXQZGKJBURE STHANDICOFMPL 

4.1.1.2.5 Adaptive dwell time and word autosuggestion feature 

Using gaze as the input method can be problematic, since the same modality is 

used for both perception and control. The system needs to be able to distinguish casual 

viewing of an object from intentional control. Eye movements are also largely 

unconscious and automatic. Gaze can be easily distracted by movement in the 

peripheral vision, resulting in unwanted glances away from the object of interest. 

When necessary, humans can control gaze at will, which makes voluntary eye control 

possible. For systems based solely on gaze-control, the most common method for 

preventing erroneous activations is to introduce a brief delay, a so-called ‘‘dwell 

time’’, to differentiate viewing and gaze-control. The duration should match the 

specific requirements of the task and the user. Expert eye typists require only a very 

short dwell time (e.g. 300 ms) while novices may prefer longer dwell time periods 

(e.g. 1000 ms) that give them more time to think, react and cancel the action. A long 

continuous dwelling (fixation) can be uncomfortable and tiring to the eyes. On the 

other hand, the possibility to adjust dwell time supports efficient learning of the gaze-

controlled interface and increases user satisfaction [Majaranta et al., 2009]. 

When using dwell time, the user only initiates the action; the system executes it 

after a predefined interval. Appropriate feedback plays the essential role in gaze-based 

interfaces; the user must be given clear indication of the status of the system: if the 

user is entering text by gaze, he or she cannot see the text appear in the text input field 

while simultaneously selecting a letter on an on-screen keyboard. Proper feedback can 

significantly reduce errors and increase interaction speed.  
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The implemented gaze speller also has the adaptive dwell time and word 

autosuggestion feature implemented similarly to the ones implemented in the EMG 

speller [Vasiljevas et al., 2014a, Damaševičius et al., 2015]. The developed speller 

application is adaptive (input speed can be adapted dynamically in response to the 

user’s state) and intelligent (uses word complete and word frequency features). A 

common way to implement word prediction is to present a list of predicted words for 

the user. The words are based on the letters the user has written so far and is sorted 

based on the frequency of words in the text corpora of the language. The list is 

dynamically adjusted as more letters are written and the number of possible 

continuations of the word decreases. 

4.1.1.2.6 Limitations 

The application of the developed gaze speller for disabled or impaired people 

may be limited. Some medical conditions cause involuntary head movements or eye 

tremor, preventing good calibration or may even restrict eye movements to one 

direction (vertical) only. Our implementation uses a horizontal scrolling bar layout 

only. QWERTY and bigram frequency-based layout may not be the best choice for 

the disabled who have no previous experience with the QWERTY layout and might, 

thus, find another kind of the layout (for example, an alphabetically ordered layout) 

more familiar. The dwell time sets a limit to the maximum typing speed because the 

user must wait for the dwell time to elapse before each selection. A long dwell time 

is good for preventing false selections, but a long fixation on the same target can be 

tiring to eyes. 

4.1.2 Experiments and results 

4.1.2.1 Apparatus 

The EyeTribe eye tracker (tracking range 45cm – 75cm, tracking area 40cm x 

30cm at 65cm distance) was connected to a HP Ultrabook notebook running Microsoft 

8 OS 64-bit with an Intel Core i5-4202Y 1.60 GHz CPU and 4 GB RAM. The 

application was displayed on a 14” flat LCD display with LED backlight and screen 

resolution of 1920x1080 pixels. The eyeTribe eye tracker communicates with 

notebook via USB 3.0 interface. 

4.1.2.2 Subjects 

For the experiment, 8 volunteers (aged 25-32 years, 7 male and 1 female) took 

part in the test. They were students or staff at Kaunas University of Technology. All 

were fluent in English and had no known vision problems. All subjects provided a 

written consent prior to the experiment. After the experiment was performed, the 

initial screening of data showed that the data for one subject were not recorded due to 

a software glitch. Therefore, only data from 7 subjects were used for further analysis. 

4.1.2.3 Datasets 

For the experiment, an easy-to-memorize phrase was chosen from a set of 500 

phrases proposed in [MacKenzie and Soukoreff, 2003]. This phrase set is considered 
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the de facto standard for text entry evaluations. Punctuation was removed, and the 

phrases were made case-insensitive.  

4.1.2.4 Procedure 

Prior to collecting data, the experimenter explained the task and demonstrated 

the software. The experiment was carried out with one disabled person, who could not 

control his legs and his hand movements were limited. The subject was instructed on 

the method of text entry, early word selection, error correction, and the audio 

feedback. He was instructed to enter the given phrases as quickly and accurately as 

possible and make corrections only if an error was detected in the current or previous 

word. The subject could enter a few trial phrases to become familiar with the gaze-

controlled selection and correction methods. Then the subjects were instructed to eye 

type the phrases as rapidly and accurately as possible.  

4.1.2.5 Usage scenario 

Usually gaze-tracking interfaces are designed to imitate operation of a standard 

pointing device such as a mouse. The gaze tracker either head mounted or attached in 

front of the user then tracks the user’s gaze and transforms it to the screen coordinates. 

During eye typing, the user first locates the letter on a virtual keyboard by moving 

his/her gaze to it. The gaze tracking device follows the user’s point of gaze while 

software records and analyses the gaze behavior. For input, the user must fix his/her 

gaze at the letter for a pre-defined time interval (dwell time). When the dwell time 

passed, the letter was selected by the system and users could move on to gaze to the 

next letter. Feedback was shown both on focus and on selection. 

4.1.2.6 Data analysis 
The experimental data collected (spatial positions of the gaze landing sites at the 

central letter of the gaze speller interface) are presented graphically in Fig. 4.4  

 

Figure 4.4. Gaze landing site positions (all subjects) 

 To illustrate the effect of fatigue, we constructed PDFs of the first 100 gaze 

landing sites (horizontal position only) and PDFs of the last 100 gaze landing sites. 

Only horizontal position was considered since the scrollable keyboard of the gaze 
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speller we used in our experiments required the subjects to use horizontal movements 

of gaze. The results are presented in Fig. 4.5 and Fig. 4.6, respectively.  

 

Figure 4.5. Probability density functions of all subjects for horizontal gaze landing 

sites (first 100 sites) 

Note that the shape of PDFs has changed: for most subjects the PDF has flattened, 

i.e., the spread of values has increased as is visible from the ‘thicker’ tails of the 

distributions. From the shape of PDFs we also can see the bimodality of distribution 

for 3 of 7 subjects indicating that two factors may be in effect. 

 

Figure 4.6. Probability density functions of all subjects for horizontal gaze landing 

sites (last 100 sites) 

To model user fatigue during the experiment, we assume that subject accuracy to 

land their gaze follows the classical exponential decay model with two components: 

the positive one is corresponding to learning (training), and the negative one is 

corresponding to user fatigue (as defined in [Banister et al., 1975] model).  
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4.1.2.7 Model fitting 

The model proposed in Section 4.1.1.1 was used. The model parameters were 

estimated for each subject using the non-linear least squares iterative method, by 

minimizing the residual sum of quadratic differences between the real and the 

modelled performances (RSS) with a Trust-Region-Reflective Least Squares 

Algorithm. Computations were performed using Matlab 2013a (version 8.1, 

Mathworks). 95% confidence bounds were calculated for the estimated parameters. 

The model fitting results are presented in Fig. 4.7.  

 

Figure 4.7. Model fitting 

The parameters of the best fitted model (w = 62, s = 26) are presented in Table. 

4.1-2. 

Table 4.1. Model parameters (mean and confidence bounds) 

Parameter Mean 95% confidence bounds 

k1 1.051 1.021 1.081 

t1 1471 -265 2677 

k2 -0.0013 -0.012 0.015 

t2 55.8 -15.8 127 

 

To evaluate fitness of the model, the determination coefficient was calculated as: 

R2 = 1 − (RSS / TSS), where TSS is the total sum of squares, as well as the degree-of-

freedom adjusted coefficient of determination. The sums of squares due to error (SSE) 

and root mean square error (RMSE) values were computed to evaluate difference 

between the modelled and real data values (see Table. 4.2). 

Table 4.2. Model fitness characteristics 

Characteristic Value 

SSE 0.0005 

Degrees of freedom 5 

R-square 0.9027 
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Adjusted R-square 0.8442 

RMSE 0.0098 

4.1.2.8 PCA analysis 

For data analysis, Principal Component Analysis (PCA) was performed on the 

covariation matrix of the horizontal gaze landing position matrix. Factor 1 accounted 

for 73% of the total variance. This factor was highly negatively related to the 

performance and can be attributed to fatigue. Factor 2 accounted for 17% of the total 

variance. This factor was positively related to performance and could be attributed to 

learning (training). 

4.1.2.9 Statistical validation 

An important question is how many data points are needed per parameter to enable 

statistical analysis. For multiple linear regression, 15 observations per parameter is 

recommended. Since the Banister model is a non-linear one, more data points per 

parameter may be required. In our experiment we used 338 observations per 4 

parameters, which should be enough for a non-linear model. 

To analyse stability of this model, iterative computation was performed with the 

same data but minus one subject, chosen randomly following the methodology 

described by Hellard et al. [Hellard et al., 2006]. A method is considered unstable if 

small perturbations in the data can cause significant changes in the estimations. One 

hold-out 7-fold cross validation was done to evaluate the stability of results. In each 

fold, the data of one subject was removed, and the computation of the model repeated. 

Different models obtained during the cross-validation procedure are presented in Fig. 

4.8. The models differ from each other due to individual factors of each subject. 

Moreover, the sample of 7 subjects is not enough to generalize the model. However, 

the shapes of the curves are similar, which shows that the Banister model is suitable 

to describe user fatigue effects of eye-controlled interface.  

 

Figure 4.8. Models obtained using one hold out cross-validation 
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The model parameter results are summarized in Table 4.3. 

Table 4.3. Results of cross-validation using one hold-out 

Model parameter Mean value SD of value 

k1 0.974 0.136 

k2 -0.085 0.135 

t1 1131 654 

t2 -149 147 

tn 308 244 

tg 177 31 

 

Finally, the PDFs of the decay parameters of fatigue and learning obtained during 

the cross-validation procedure are given in Fig. 4.9. We can see that the effect of 

fatigue is developed earlier and is stronger than the effect of learning. 

 

Figure 4.9. Probability density of model’s decay parameter values 

4.1.3 Conclusion of the section 

Our initial experiments with evaluating user fatigue when a subject is working 

with the gaze spelling system suggest that the classical model of Banister et al. 

proposed to evaluate performance of sports athletes, is applicable to the domain of 

physiological computing as well. We have analysed the accuracy of gaze landing in 

performing text entry task. Experimental data were fitted to the proposed fatigue 

model adapted from Banister et al. The proposed model has been validated using the 

one hold out cross-validation procedure.  

The variability between user performance is significant and is larger than intra-

user variability due to learning and fatigue effects. PCA analysis shows that intra-user 

variability can be explained by two factors: fatigue (73% of variance) and learning 

(17% of variance). Both these factors explain 90% of intra-user variance. Since the 

learning acts slower than fatigue and has less effect on the results, time-to-peak value 



79 

 

is smaller than time-to-initial performance (which is contrary to sports athletes’ 

performance). Therefore, it is recommended to use the time-to-initial performance as 

an estimate of rest time. The model allows to calculate the time needed to rest after 

each session. The mean time to rest calculated from all user data is 308+-244 s (5+-4 

min). The large SD of the total estimate is due to large variability of user performance. 

In fact, the analysis of data shows that the length of the test session was too short for 

two users, which does not allow for the fatigue effects to show up. The rest time can 

be calculated for each user individually. The prevalence of fatigue effect over learning 

effect means that the usability of the gaze tracking-based interface is low due to 

negative reinforcement. Until the fatigue issue could be solved, the users are not likely 

to be using this kind of interfaces. 

The results of the study confirm that the stimulus induced fatigue on users’ eyes 

among the tasks conducted. The main findings of this study are that: 1) learning and 

fatigue effects are present in the gaze tracking data; 2) learning is slower process than 

fatigue; 3) the parameters of learning and fatigue can be evaluated using Banister 

model; 4) time required for eye rest break can be evaluated. 

Further research is needed to analyse long-term effects of eye fatigue, which 

were not covered by this experiment. A larger (in terms of the number of subjects) 

and longer study is needed to validate the values of the model parameters. 

4.2 Modeling user performance in PC game based on eye tracking 

4.2.1 Methodology 

4.2.1.1 The game 

Eye fatigue is a major negative factor of eye performance. Eye fatigue usually 

emerges after active pursuit eye movements, since the surrounding eye muscles are 

involved. Such movements can be carried out by supervision of an expert, which is a 

monotonic and frustrating activity. Other approach is to apply serious games solution 

[Wouters et al., 2013]. Serious games have been proposed as an attractive mean to 

engage people in performing useful activities such as learning [Danevičius et al., 

2018] through an accomplishment of certain in-game tasks.  Therefore, eye-controlled 

game was introduced. 

The idea of the game is based on a widely known Pac-Man game, which is a 

type of maze chase games. The player navigates Pac-Man through a maze containing 

resources (dots), and adversaries (ghosts). The aim of the game is to collect the dots 

while avoiding the ghosts. We have implemented a simpler version of the game, in 

which the player must move vertically or horizontally in the maze and collect pills. 

Note that while the aim of the game is to collect pills, the desired eye movement are 

made by navigating in the maze. The alternating vertical and horizontal movements 

of eye are the important part of visual therapy that has been demonstrated to improve 

eyesight [Brunyé et al., 2009], treat amblyopia [Fronius et al., 2006] and eye 

movement disorder. 

There are two modes of the game: simple mode and timed mode. While playing 

in simple mode, the player needs to collect all pills in the maze to win. In timed mode, 

the aim is to collect as many as possible pills in a specified period. When a specific 
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pill is taken, it will appear after some time in the same place. The game mechanics of 

each mode have been modelled using the Machinations diagrams [Dormans, 2011] 

presented in Fig. 4.10. Elements of machinations diagram are described in Table 4.4.  

The developed game is easy to play and implements the principles of the effective 

human-computer interaction outlined in [Shneiderman et al., 2016]: strive for 

consistency (a familiar graphics and game mechanics from well-known Pac-Man 

game is used), informative feedback (score is counted to reflect game actions), support 

internal locus of control (the player initiates the action). 

 

 

 

 

 

 

 

Figure 4.10. Game mechanics (in Machinations [Dormans, 2011]) of timer mode (left) 

and simple mode (right) 

Table 4.4. Explanation of Machinations elements used in the diagrams 

Name Shape Description 

Pool 

 

Pool is a node where resources are stored. The 

number in the middle of the circle represents 

the number of resources. In present game 

resources are considered as pills.  

Drain 

 

Drain is a node where resources are consumed. 

Converter 

 

Converter is a node, in which one resource is 

transmuted into another. 

Delay 

 

Delay is a node, where the flow of resources is 

delayed as they get distributed in the diagram. 

Gate (indication of 

player skills) 

 

Gate is a node, which immediately redistribute 

resources, once activated. Machination 

framework contains many different types of 
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gate nodes. In this case, the shape represents 

interactive player skills. 

Resource 

connection  
Resource connection determines how 

resources flow through a diagram. 

State connection 
 

State connection determines the modification 

of the current state of elements in a diagram. 

 

The main window of the game is presented in Fig. 4.11 (left). The movements 

of the main character are restricted by the walls of the game maze. The main character 

of the game (represented by blue point) is controlled by eye movements of the player. 

The control principles of the game are represented abstractly in Fig. 4.11 (right). The 

area around the main character is divided in four equal sectors. Each sector is defined 

by 90° angle areas from the starting point, which corresponds to the main character. 

Each of the four sectors represents one of the four directions of movement. When the 

gaze landing point of the player is captured at the specific sector, the main character 

moves at the direction specified by that sector. 

 

 

Figure 4.11. Screen of the game with the main character (blue) (left) and control of 

the main character (right). 

4.2.1.2 Application of HAMM 

The present version of the Pac-Man game also extends the original game by the 

means of control mode. Eye movement control mode is introduced. The user can 

control the game by either eye movements or a keyboard. Since the primary task of 

the system is to play the game via eye movements, the keyboard control is introduced 

only after certain fatigue indicators emerge.  

The HAMM framework for an eye-controlled game is presented in Fig. 4.12.  

This application of the HAMM consists of the components listed below: 

1. Multimodal interaction layer. It describes the means of communication and 

feedback. The user can use one of the following control channels: (1) eye 

movements and (2) keyboard control. The eye movement control is 

established via Tobii Eye Tracker 4C. Both control channels are switched 
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alternately based on the supervision of intelligent layer. The component of 

the input channel selector is responsible for switching the control channels 

and informing the user of which control channel is active at the moment.    

2. Intelligent layer. It is responsible for analysing the control channel 

parameters and making decision related with switching between control 

channels. The control using eye movements is a more demanding activity, 

which leads to fatigue more prominently. However, it is the primary control 

mode of the presented game, thus, the prolonged usage of it is of interest. The 

relation between the eye movement parameters and fatigue is not clear 

enough, therefore, it is the research task of this study. The keyboard control 

is enabled, when the eye movement parameters indicate fatigue. It is basically 

a layover of the eye movement. Keyboard control is terminated after a defined 

period.  

3. DHO-based performance model. This model is chosen, since it has 

demonstrated promising results in modelling training effects on physical 

performance capacity [Morin et al., 2016]. It is investigated further in the 

following sections. 

4. Eye-controlled game. A detailed description of the eye-controlled game is 

presented in Section 4.2.1.1. 

User

Eye movements

Intelligent layer

Multimodal Interaction layer

Keyboard control

Input 
channel 
selector

DHO-based 
performance 

model

Eye-controlled game

 

Figure 4.12. Application of HAMM framework for eye-controlled game 

4.2.1.3 Evaluation of eye performance 

During the game the following eye and game performance characteristics have 

been collected: 

─ Direction, amplitude and velocity of saccadic movements; 

─ Distribution of the number of turns while navigating in the maze. 

The saccadic characteristics are further analyzed using the statistical and linear 

regression methods. The game characteristics are analyzed by fitting the data to the 

proposed eye fatigue model. 
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4.2.1.4 Analysis of saccadic velocity and directional distribution 

We use circular statistics [Fisher, 1993] to analyze the distribution of saccade 

velocity and movement direction over time and direction. We analyze the data during 

the first half and second half of the game session. The results represented as Wind 

Rose plots are used for comparison to detect the effects of eye fatigue. We also use 

linear regression to validate the trends observed in the data. 

4.2.1.5 Eye training and fatigue model 

Two major factors influence the cognitive performance of the player during the 

game: learning, which represents the improvement of characteristics due to practice 

and mastery of control, and fatigue, which shows the decrease of abilities to perform 

game action due to eye muscular and mental fatigue. To evaluate the effects of fatigue 

and performance recovery on the capability to perform tasks by gaze, we have adopted 

a well-known model of damped oscillation. A damped oscillation wave is an 

exponentially decaying sinusoidal wave whose amplitude of oscillation diminishes 

over time. This model represents the effects of long-term fatigue interrupted by short-

time recovery of the performing abilities of biological structures such as eyeball 

controlling muscles. The DHO was successfully applied for modelling training effects 

on the physical performance capacity in team sport [Morin et al., 2016]. The model 

can be considered as generalization of the Fitness-Fatigue models such as the Banister 

model, which represented the muscular adaptation to physical training as a sum of two 

exponential functions representing a positive effect (fitness) and a negative effect 

(fatigue) on sports performance [Calvert et al., 1976].  

The adopted model of the change of game performance characteristic f  over 

time t is described as follows:  

( ) ( )cos −=  +tf t Ae wt     (4.6) 

here A is the initial amplitude, λ is the damping factor, ω is angular frequency, 

and Φ is the initial phase angle. Note that if the damping factor is positive, the 

performance decreases due to fatigue, whereas in case of negative damping the 

performance increases due to the learning effect. To represent the data graphically, 

we use the phase space plots [Damasevicius el al., 2014], which show the value of 

( )f t  vs. ( )1f t +  

4.2.1.6 Preprocessing of data fitting to the model 

To analyse the change of player performance during the game, the temporal 

distribution of the number of successful turns while travelling in a maze is considered. 

Each turn requires that a user performs a saccadic movement of an eye in the 

horizontal or vertical direction, which is the serious aim of the game. The game is 

started in the timed mode and the number of new turns is registered every 20s. As the 

resulting time series is very rugged and poorly handled by model-fitting algorithms, 

the smoothing of the time series is performed. Here the extended version of the 

Empirical Mode Decomposition (EMD) denoising method, also known as BoostEMD 
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[Damasevicius et al., 2015], was used. First, the time series is decomposed into 

independent components (modes) representing variability of the time series at 

different frequency scales. Then the first mode of the signal with the highest frequency 

of oscillation is considered as noise and is subtracted from the original time series. 

The resulting time series is used for fitting a model described by Eq. (4.6) and finding 

its coefficients using the Levenberg–Marquardt fitting algorithm. The reliability of 

fitting is evaluated using the odd-even reliability test by correlating scores on the odd-

numbered items with scores on the even-numbered items. 

4.2.1.7 BoostEMD: proposed extension of EMD method 

Originally, the description of BoostEMD method was presented in 

[Damasevicius et al., 2015]. 

EMD [Huang et al., 1999] is a signal processing method based on local 

characteristics of data in the time domain. The EMD method is based on the concept 

of instantaneous frequency defined as the derivative of the phase of an analytic signal 

[Cohen, 1989]. A mono-component signal will have positive and well-defined 

instantaneous frequency. A signal with multiple modes of oscillation (such as 

biophysical signals) must be decomposed into its constituent mono-component 

signals, called Intrinsic Mode Functions (IMFs). The IMF is an indivisible component 

of the signal. 

The idea behind the proposed BoostEMD method is to continue the analysis of 

the derived IMFs using the principles of the EMD method. However, we cannot 

submit the derived IMF to EMD as it is, as the result of the procedure would be the 

same IMF. Therefore, the IMFs must be transformed before processing further. A 

transformation must satisfy a set of principles as follows: 

1) It should not increase signal amplitude. 

2) It should be reversible, i.e. an inverse of the transformation should be 

unambiguously computable. 

3) It should have a different number of extrema than the original IMF. 

Here we propose to decompose each IMF into a pair of positive and negative 

semi-definite functions denoted as IMF+ and IMF- as follows: 
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 

= 


     (4.7) 

( ) ( )
( ) ( ) ( ) ( ), 0

0, 

k k
k IMF t IMF t

IMF t
otherwise

−
 

= 


     (4.8) 

It is obvious that each original IMF can be reconstructed from its decomposition 

unambiguously as follows: 
( ) ( ) ( ) ( ) ( ) ( )k k k

IMF t IMF t IMF t
+ −

= +      (4.9) 

Then, to enable extracting higher frequency components of a signal by EMD, 

each pair of functions IMF + and IMF − is up-sampled by a factor of 2 using a standard 

low-pass interpolation filter. 
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Next, the standard EMD procedure is applied and two sets of higher-order IMFs 

are obtained:  

 ( )( )( ) ( 1)  k kIMF EMD IMF+ + −        (4.10) 

 ( )( )( ) ( 1)  k kIMF EMD IMF− − −       (4.11) 

here ( ).  is the up-sampling operator, and ( ).EMD  is the EMD procedure. 

Such operation henceforth is called boosting, and the proposed extension of the 

EMD method is called BoostEMD. 

The original lower-order IMFs can be reconstructed from higher order IMFs 

easily using down-sampling by a factor of 2 as follows: 

( ) ( )1 1( ) k kk

i i

i i

IMF IMF IMF
+ ++ −   

= +    
   
      (4.12) 

here ( ).  is the down-sampling operator. 

4.2.1.8 Application of BoostEMD for denoising the signal 

Turns made by a player per time unit is considered as a temporal signal. It has 

been observed that this signal includes random spikes, which handicap the model 

fitting. The signal to be fitted to a training – fatigue model, at first must be pre-

processed by removing random spikes. To smooth the signal, BoostEMD method has 

been applied. 

First, the signal has been decomposed to several IMFs (see Fig. 4.13). Later, 

lower order IMFs have been discarded from the signal leaving just two higher order 

IMFs and the residue of the signal. 

Ŝ(𝑡) = 𝑅(𝑡) + 𝐼𝑀𝐹(𝑛) + 𝐼𝑀𝐹(𝑛−1)    (4.13) 

where Ŝ(𝑡) – smoothed signal, t – time, R(t) – the residue of decomposition, in 

this case it denotes the trend of the signal, n – number of decomposition components 

(IMFs), IMF(n) – n-th order IMF or the last IMF, IMF(n-1) – n-1 order IMF or 

penultimate IMF. 
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Figure 4.13 Example of signal decomposition to IMFs using BoostEMD 

The example of the signal smoothed by BoostEMD is provided in Fig 4.14. 

After the smoothing procedure signal contains fewer local extrema points (outliers), 

which is crucial for fitting the signal to DHO model using the Levenberg–Marquardt 

optimization algorithm. 

 

Figure 4.14 Example of the signal smoothing results using BoostEMD 

4.2.2 Experiments and Results 

4.2.2.1 Experimental setup 

12 healthy subjects (6 males and 6 females), aged 21 – 42, participated in the 

experiment. All subjects filled an informed consent form and the principles of the 

Helsinki declaration were adhered to. The subjects were asked to play the game in a 

timed mode for 15 min. To capture eye movements and control the main character of 

the game by the gaze of the player, Tobii Eye Tracker 4C device was used. See a 

photo of a subject playing the game in Fig. 4.15. 
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Eye tracker

 

Figure 4.15 Subject playing the game 

4.2.2.2 Comparison of the denoising methods 

Our method requires that the time series of the game performance measure, first, 

must be smoothed to allow successful model fitting. To validate the used EMD-based 

denoising method, we compared it with other popular smoothing methods (moving 

mean, Savitzky-Golay and median filters) using time series smoothness 

characteristics (standard deviation, standard deviation of derivative, standard 

deviation of the normalized derivative, number of sign changes, path length and 

cumulative jerk) [Hogan and Sternad, 2009].  

We used the smoothness results to rank the smoothing methods and performed 

the Nemenyi test to check if the differences between methods are statistically 

significant. The results of the Nemenyi test demonstrating the suitability of the EMD-

based smoothing method for preprocessing the game performance measure time series 

over other smoothing (filtering) methods are presented in Fig. 4.16-17. The results 

showing the superiority of the EMD-based smoothing for this particular kind of data 

over other smoothing methods (5 out of 6 tests ranked the EMD-based smoothing 

method as the best one). The numeric values of smoothness metrics are presented in 

Table 4.5. BoostEMD method demonstrates the best results in terms of standard 

deviation of a derivative, standard deviation of a normalized derivative, number of 

sign changes, path length and cumulative square jerk. In terms of standard deviation 

it is in the second place, after the moving mean filter.   
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Figure 4.16 Comparison of different smoothing methods in terms of standart 

deviation, standart deviation of a derivative, standart deviation of a normalized derivative, 

nuber of sign changes, path length and cumulative square jerk 

 

Figure 4.17 Results of Nemenyi test comparing EMD-based smoothing method with 

moving mean, Savitzky-Golay and median filters when preprocessing the game performance 

time series 
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Table 4.5. Comparison results of smoothing methods 

 Method 

BoostEMD Median Movmean Sgolay 

SD mean 3.97 4.37 3.89 4.11 

med. 3.96 3.93 3.75 3.76 

SDoD mean 0.76 1.71 1.3 1.56 

med. 0.85 1.71 1.25 1.6 

SDoND mean 0.04 0.07 0.05 0.06 

med. 0.04 0.06 0.04 0.06 

NoSC mean 0.07 0.13 0.11 0.13 

med. 0.08 0.12 0.1 0.11 

PL mean 34.44 147.75 94.41 118.57 

med. 33.76 132.25 70.35 116.5 

CSJ mean 34.44 147.75 94.41 118.57 

med. 33.76 132.25 70.35 116.5 

 

4.2.2.3 Results of model fitting 

The game performance data was fitted to damped oscillation wave model (Eq. 

4.6). The model parameters were estimated for each subject using Levenberg–

Marquardt algorithm (LMA). Computations were performed using Matlab 2013a 

(version 8.1, Mathworks).  The results of model fitting for all subjects are given in 

Table 1. The overall reliability of model fitting using the odd-even test was 0.82±0.08 

(mean ± std. dev.). Interestingly, we noted r = 0.82 correlation between amplitude and 

damping factor (Pearson correlation coefficient was calculated for certain model 

parameters presented in Table 4.6), which could be described as strong positive 

relation based on the guidelines for interpreting the Pearson correlation coefficient 

[Ratner, 2009]. That means that good starters usually have faster fatigue rates, 

whereas slow starters have less fatigue and even improve their game performance 

during playing. The model parameters can be used to categorize players according to 

their playing behavior into learners (with negative damping factor) and fatiguers (with 

positive damping factor). 

Table 4.6. Model parameters of each subjects according to damped oscillation wave model 

Subject 

No. 

Coefficients of the model Odd-even 

reliability Amplitude Damping factor Angular 

frequency 

Phase 

1 7.6393 0.0317 -0.5407 -2.0307 0.8945 

2 4.7579 0.0348 0.2657 0.5575 0.8046 

3 15.1602 0.0667 0.3611 -2.9749 0.7480 

4 4.1099 0.0114 -0.7830 0.8002 0.9819 

5 1.5840 -0.0862 -0.2036 -1.1776 0.7852 

6 0.5918 -0.0933 -0.4659 1.7690 0.8982 

7 6.2494 -0.0060 0.5168 0.8993 0.7780 
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8 0.3761 -0.1147 0.3136 2.3527 0.7217 

9 7.1254 -0.0062 -0.1551 -2.8604 0.7979 

10 1.9880 -0.0483 -0.3842 -0.8683 0.8071 

11 8.4314 0.0404 0.8598 -1.1648 0.9275 

12 1.6275 -0.0571 0.2378 2.0307 0.8512 

 

Fig. 4.18 represents the changes in game performance using phase space plots. 

They show how the abilities to play are influenced by two processes: (1) learning, 

which improves abilities and is represented by outward spiral in the phase space plot, 

and (2) fatigue, which decreases abilities and is represented by inward spiral. The 

shape of the curve also indicates the stability or instability of user performance. The 

denser the curve is, the more stable user control is and vice versa. Each subject has 

his/her own characteristic abilities, which prevent from generalization of results. 

A trend of variation in performance can be determined by the direction of the 

spiral, therefore users can be classified into learners and fatiguers. If the phase 

diagram spirals inwards, it means that the performance variation tends to weaken, 

such users are considered as fatiguers. If the phase diagram spirals outwards, it 

indicates the upward trend of the performance variation, such users are learners. The 

example of those performances types is presented in Fig. 4.19 

 

Figure 4.18. Phase space plots game performance characteristic fitted to damped 

oscillation model ( - begin of game,  - end of game). 
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Figure 4.19. Different types of players in terms of performance: left – increased 

learning with negative damping factor (subject no.12), right – increased fatigue with positive 

damping factor (subject no. 1) 

4.2.2.4 Results of saccadic velocity and directional distribution 

The results of changes in saccade velocity and spatial distribution (see an 

example in Fig. 4.20) show that saccade velocity decreases in time while spatial 

distribution of gazes becomes blurred and less focused on the main control axes (i.e., 

horizontal, W-E, and vertical, N-S) of the game indicating both the loss of ability to 

follow the game and the loss of accuracy in control. 

 

Figure 4.20 Changes in saccade velocity and distribution during the game (Subject 5): 

first half (left) and second half (right) 

To validate the claim, we have calculated the comparison operator 

( ) ( ) ( ) ,
t

C t v t t v t


 = +          (4.14) 

here    is the Iverson bracket operator, v  is saccade velocity, t  is time 

difference. 
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Then we performed the linear regression of C  with respect to t  as 

0 1C b b t= +   for all subjects.  The negative trend (i.e., decrease of saccade velocity) 

was confirmed for all subjects with 1 0.53 0.09b = −   and mean linear regression model 

correlation of 0.98. The values of Pearson correlation for each subject are presented 

in Fig. 4.21. 

 

Figure 4.21 Pearson correlation values confirming negative trend in saccade velocity 

4.2.3 Conclusion of section 

A serious game controlled by gaze to support eye exercising was developed. 

The game logic requires the user to perform conscious and precise eye movements in 

the horizontal and vertical directions to achieve in-game aims while at the same time 

training the ocular muscles. Game sessions data was collected from subjects to 

analyze changes in temporal and spatial gaze characteristics and game performance.  

Our results show that the damped oscillation model can be used to analyze the 

interaction of learning and fatigue effects during the game. Individual characteristics 

of subjects established via the damped oscillation model could be used for 

categorization of players according to their playing skills and abilities as well as for 

implementing personalized eye exercising programmes, while switching the game 

control to keyboard when the onset of fatigue is detected to avoid further strain on 

eyes. The players can be categorized to learners and fatiguers based on damping 

factor. Learners tend to increase their performance abilities as the dumping factor of 

the model is negative. Fatiguers lose their performing abilities as the dumping factor 

of the model is positive. Moreover, a strong r = 0.82 positive correlation between 
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amplitude and damping factor is observed, which indicates, that good starters usually 

have faster fatigue rates, whereas slow starters have less fatigue and even improve 

their game performance during playing. However, the temporal and directional 

analysis of saccade velocity indicates, that in the long term saccade velocity and gaze 

movement accuracy tend to reduce during the game due to eye fatigue. The regression 

of comparison operator C, which describes the change in saccade velocity, indicated 

negative trend with mean linear regression model correlation of 0.98 for each test 

subject. 

4.3 Research of adaptive EMG-based speller 

Research described in this section was originally presented in [Damaševičius et 

al., 2015, Vasiljevas et al., 2014a, Vasiljevas et al., 2014b]. 

4.3.1 Methodology 

4.3.1.1 Adaptation of Human-assistive single channel model for EMG-based 

speller design 

EMG-based speller system design is based on proposed Human – assistive 

single channel model (HASCM) (see section 3.2). This model includes 4 main 

components: (i) Interaction layer, (ii) intelligent layer, (iii) fatigue evaluation 

procedure and (iv) control layer. Input channel and recover activity are distinguished 

in the interaction layer. Input channel determines the input modality used for system 

control. Recover activity represents the system reaction to fatigue state of the user. 

A more detailed human-assistive single channel model representing the concept 

of the EMG-based speller is shown in Fig 4.22. The components of this model in detail 

are as follows: 

1. Interaction layer. The interaction layer of the EMG-based speller describes 

input channel, which in this case, is established as EMG signal and recover activity, 

which in this context, affects the user by setting convenient dwell time of the speller. 

Some low-level pre-processing of the EMG signal is done in this layer as well (e.g. 

sampling of EMG signal to data stream). In general, interaction layer, establishes 

connection between the user and the system and provides feedback in the context of 

fatigue. 

2. Intelligent layer.  On this layer, data is aggregated and events corresponding 

to specific patterns of data are generated. This layer also serves as a mediator between 

all other layers. Intelligent layer is responsible for: (i) EMG signal transformation to 

control commands, (ii) transformation of EMG signal and speller performance metrics 

to a suitable form for fatigue evaluation procedure, (iii) adjustment of the system, so 

that user could control the system as long as posable without fatigue effect.  

4. Pre-set performance model. The pre-set fatigue model cannot be changed 

during system control tasks and is set before user starts using the system. The model 

itself, is based on threshold function (more information on this matter in the next 

section). 
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5. Speller. Speller represent the application of human-assistive single channel 

model. The detail description of EMG-based speller interface is provided in sections 

4.3.1.5 and 4.3.1.6.  

User

Intelligent layer

Interaction layer

EMG signal

Dwell time 
adjustment

Speller

Performance 
evaluation based 
on pre-set model

 

Figure 4.22. Framework of the system based on HASCM 

4.3.1.2 Pre-set performance model of EMG-based speller 

The pre-set fatigue model is based on dwell time adaptation. Dwell time is 

adjusted to each user regarding to typing errors and successful letter selections. The 

model is described as follows: 

𝑡𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 = {
𝑡0 + 𝑛𝑒𝑡𝑒 − 𝑛𝑠𝑡𝑠, 𝑡𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 > 0
                             0, 𝑡𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 ≤ 0

   (4.15) 

here tdvell time – current dwell time, t0 – initial dwell time, te – error dwell time or 

time value to be added, when error occurs, ts – selection dwell time, or the time to be 

subtracted, when successful letter selection occurs, ne – number of errors and ns – 

number of selections. The typing error is considered when a symbol or a word is 

deleted. The selection is event after the letter is typed. 

Error dwell time always has bigger value than selection dwell time, t𝑒 >  𝑡𝑠. It 

means that typing error has larger impact to current dwell time. This restriction helps 

to balance the dwell time dynamics and avoid the permanence of dwell time, which is 

undesirable in terms of training effects. 

4.3.1.3 Components and architecture of speller 

A NCI system generally comprises the following components: (i) a device that 

records the muscular activity signals; (ii) a signal preprocessor that reduces noise and 

artifacts; (iii) a decoder that classifies the de-noised signal into a control commands 

for (iv) an external device or application (e.g., a robotic actuator, a computer program 

etc.), which provides feedback to the user [Mora-Cortes et al., 2014].  

Our speller application has three layers as follows: 1) on the lowest layer, the 

physiological signal is sampled into a data stream of physiological data. 

Downsampling can be used to decrease amount of data and increase information 

processing speed at higher levels. 2) On the intermediate layer, data is aggregated and 

events corresponding to specific patterns of data are generated. Machine learning 

techniques such as artificial neural networks may be used to recognize such events 
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and generate decisions. 3) On the highest layer, decisions are processed and used to 

generate control commands for external applications (systems). 

ReaderAPI

NiaReader MainReader

ControllerAPI

MainController SpellingSquare

NCI

 

Figure 4.23. Architecture of developed speller application 

Architecture of the developed speller application is shown in Fig. 4.23. The 

speller consists of 6 main components:  

• MainReader – system module responsible for control of data reader which is 

selected to use.  

• ReaderAPI – public external interface module. All third-party modules must 

implement this component for full system integration.  

• MainController – system module responsible for the selected control module 

(executes commands).  

• NiaReader – third-party module implemented for the “OCZ NIA” data reader 

device.  

• SpellingSquare – third-party module implemented for text input in the symbol 

matrix using EMG-based commands. 

The dashed rectangle separates system components (inside the dashed rectangle) 

from external components, which are either the sensor controllers (EMG readers) or 

actuator controllers (software or hardware applications such as robots). The speller 

system is based on Java NetBeans framework. The speller was developed with 

considering its future extension and maintenance so that external components are easy 

to add or remove. 

4.3.1.4 Control 

There are two types of control commands of the speller: “Select” command – 

selects a column or types a symbol of that column. “Cancel” command – exits the 

selected column or deletes the selected symbol. Those control commands can be 

initiated by the movements of facial muscles. In practice, eye blinks are used to 

generate each control command (left eye blink for “select” and right eye blink for 

“cancel”). The user can see the EMG signal feedback in EMG signal view area (see 

Fig. 4.24). The particular control command is performed when the amplitude of the 
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EMG signal is higher than the specified threshold value. The thresholds are marked 

as yellow horizontal lines in the EMG signal view area. The upper threshold indicates 

the “select” command, and the lower threshold indicates the “cancel” command. 

Threshold values can be adjusted using threshold setting sliders. 

The signal view of EMG, while spelling the word “hello”, is presented in Figure 

4.24. In Figure 4.24 (top), the word “hello” is spelled without mistakes. In Figure 4.24 

(bottom), the spelling contains has a few mistakes. For correction of those mistakes 

cancellation commands must be performed. The spikes indicate the “select” 

command. One trial (selection of one character) contains two positive signal spikes, 

the first spike is for column selection, the second for letter selection in the 

corresponding column. 

Letter  H  
selection

Letter  E  
selection

Letter  L  
selection Dictionary 

selection

Wrong 
selection

Cancellation 

Letter  H  
selection

Letter  E  
selection

Letter  L  
selection

Cancellation 

Wrong 
selection

Dictionary 
selection

 

Figure 4.24. Signal view of spelling word “hello”. Top: no spelling mistakes were 

made and only three characters (“hel”) were selected from the symbol matrix. Bottom: two 

spelling mistakes were made, therefore after each wrong selection cancellation command 

was performed. In both cases, dictionary selection was made to complete the word. 
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4.3.1.5 Traditional speller interface 

The developed EMG speller has two different user interfaces. One is a 

traditional matrix-based speller interface presented in Fig. 4.25. Another one is a novel 

concept-based interface presented in Fig. 4.26. The most important part of the visual 

interface is a symbol matrix. The matrix is adaptable so that various symbols 

(including special or national) could be added into the matrix. The red-colored column 

indicates the current position of the speller cursor. The cursor moves coherently from 

column to column until the user activates the “select” command. Next, the cursor 

moves through each symbol in a particular column. After another “select” command, 

the particular symbol is selected. That symbol appears in the output area (see Fig. 

4.25). The speller cursor moves by the step which varies from 500 to 1500 

milliseconds. The step value depends on the number of mistakes the user is making. 

A smaller number of mistakes means the faster speed of cursor movement. The 

mistake is considered as the “cancel” command.  

The first row of the speller symbol matrix contains a dictionary selection. This 

selection allows to enter the dictionary. When a few symbols or a stem of the word is 

written, the dictionary gives an opportunity to complete the particular word faster. 

The system logs dictionary selections, therefore, common used words are on top of 

the dictionary, thus, the dictionary adapts to the user. 
 

 

Figure 4.25. Traditional interface of the developed EMG speller 

4.3.1.6 Visual concept-based speller interface 

We have also implemented a completely different interface of the EMG speller. 

Traditional spellers use common letters of an alphabet rearranged in different layouts. 

We have implemented a visual concept-based interface that is based on graphical 

symbols (graphemes). Graphical symbols enable an alternative form of 

communication that uses visual elements as opposed to a formal written (textual) 

language to convey meaning or an idea. Pictograms or ideograms are used to signify 

the concepts that are communicated. Pictograms are pictures that resemble what they 

signify, and represent a concept, object, activity, place or event by graphical 

illustration. An ideogram is a graphical symbol that represents an idea, rather than a 
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group of letters arranged according to the phonemes and grammar of a spoken 

language, as is done in textual languages. 

Visual symbols form a part of our daily lives through their use in medication, 

transport, computers, etc., because they indicate, in a concise and easily 

understandable form, places, directions, actions or constraints on actions in either the 

real world or virtual space. Thus, visual symbols can be used in a number of situations 

in which textual messages are not possible or adequate due to context or user-based 

constraints. 

While textual (letter-based) languages are good for expressing all kinds of 

human communication, they require many typing efforts for human-computer 

communication, which for specific groups of users such as users with impaired motor 

capabilities, may be a tiresome burden. A visual concept-based interface allows to 

express high-level concepts succinctly using a notation tailored to a set of specific 

user problems. Such interface could be tailored towards a specific domain and could 

be based only on the relevant concepts and features of that domain.  

A snapshot of the developed visual concept-based interface of the EMG speller 

is given in Fig. 4.26. The visual concept-based interface is organized using a 

hierarchical structure. It consists of symbol matrixes connected with each other by 

references. Each reference is represented as an icon of a particular domain. Currently, 

we have included visual symbols from 8 main concept domains: emotion domain, 

location domain, action domain, time domain, object domain, body part domain, 

person domain and special symbol domain.  

Most of the visual icons we use are adopted from The Noun Project 

(http://thenounproject.com/), while the remaining ones are custom-built. 

Each domain matrix as well as the root matrix can be extended easily by adding 

new icons (concepts) to the particular domain matrixes. Furthermore, each icon 

(concept) in particular domain could contain a reference to the specific subdomain 

matrix. The taxonomical tree of concept matrixes is summarized in Fig. 4.27. 

 

Concept matrix

Output area. Place where the 
selected concepts appear.

 

Figure 4.26. Visual concept-based interface of developed EMG speller 

http://thenounproject.com/
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Root matrix

Emotions Locations Actions Time Objects

Body parts

Persons

Special symbols

Interaction

Medical care  

Figure 4.27. The tree of concept matrixes 

The meaning of visual concepts is presented in Table 4.7. 

Table 4.7. Taxonomy and meaning of visual symbols in speller interface. 

 

 Return sign brings back cursor to the root matrix. 

 
Emotions/feelings: 

 
Happy 

 
Sad 

 
Amazed 

 
Pain 

 
Cold 

 
Hot/warm 

 
Location (current location): 

 
Hospital 

 
Home/house 

 
Actions: 

 
To read a book 

 
To ineract: 

 
To call 

 
To scratch 

 
To help 

 
Time: 

 
Past 

 
Today 

 
Future 
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Objects: 

 
Drink 

 
Meal 

 
TV 

 
Medical care: 

 
Ambulance 

 
Medicine 

 
Book 

 Body parts: 

 
 

Head 

 
Hand 

 
Heart 

 
Stomach 

 
Back 

 
Leg 

 
Person (Me): 

 
Medic/doctor 

 
Special simbols: 

 
Question sign 

 
Left pointer to object or subject 

 
Right pointer to object or subject 

 
“Not” sign 

4.3.2 Experiments and Results 

4.3.2.1 Experiment with text-based interface 

We performed the experiments with 5 subjects (3 males), aged 24–54 (mean = 

33) year. Subjects did not have any neurological abnormalities, reported normal or 

corrected to normal vision, and did not use medication. All subjects gave informed 

consent prior to the experiment. The EMG data was recorded using OCZ Neuro 

Impulse Actuator equipment. Visual stimuli were presented on a 13.3'' size TFT LCD 

screen with 1360 × 768 pixel resolution and a refresh rate of 60 Hz. Subjects were 

seated in front of a table. The screen was in the middle of the table at a distance of 

approximately 100 cm from the subject. The size of each character was 1.5 × 1.5 cm 

(0.86 × 0.86° visual angle) and the entire speller matrix was 9.5 × 13 cm (5.44 × 7.42° 

visual angle). Stimuli consisted of intensifications of the rows and columns in 

sequential order. Intensification was achieved by increasing the size of all characters 

in the row or column with a factor 500 for 1500 ms.  

A trial is defined here as spelling of one character. All trials started with the 

speller being displayed on the screen, together with an instruction indicating which 

letter to select. Each stimulation sequence was followed by feedback on the screen, 

showing which letter or group of letters had been selected.  
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Three text paragraphs were given to the experiment participants. Their task was 

to input the proposed text paragraphs using speller. All text paragraphs were presented 

in Lithuanian language. The first text paragraph contained 126 characters and its 

content covered a daily conversation. The second text paragraph contained 111 

characters and its content covered a scientific speech. The third text paragraph 

contained 120 characters and covered a scientific speech with mathematical equations. 

Each experiment participant repeated the experiment 4 times. The average accuracy, 

input speed and bit rate values were calculated.  

Quantitatively, the performance of speller application can be evaluated using 

accuracy, information transfer speed and input speed metrics. Accuracy is calculated 

as the percentage of correct decisions. Bit rate (or information transfer rate) indicates 

how much information can be communicated per time unit (calculated using 

Wolpaw’s formula [Wolpaw et al., 2000]). Finally, input speed is measured as the 

average time required to enter a set of benchmark texts. The experimental results are 

presented in Table 4.6 and Figures 4.28-30. 

Accuracy values of the BCI/NCI spellers achieved by other authors (Table 4.6) 

are within 80-95% range (82.77% using ECoG [Speier et al., 2013], 87.58% using 

SSVEP-based BCI [Furdea et al., 2009], 87.8% for EOG-based speller [Liu et al., 

2011], 91.80% [Acqualagna and Blankertz, 2013], 94.8% for RVSP based speller 

[Wolpaw et al., 2000]). Bit rate values achieved by other authors are within 19-41 

bits/min (19.18 bits/min [Acqualagna and Blankertz, 2013], 40.72 using SSVEP based 

BCI [Furdea et al., 2009], 41.02 using ECoG data [Speier et al., 2013]). Input speed 

values achieved by other authors are within 1-9 sym/min (1.38 sym/min for EOG-

based speller [Liu et al., 2011], 1.43 sym/min for RVSP-based speller [Wolpaw et al., 

2000], 4.33 sym/min [Acqualagna and Blankertz, 2013], 9.39 sym/min for SSVEP-

based BCI [Furdea et al., 2009]). 

The information transfer rate (aka bit rate) of the BCI/NCI-based speller 

applications achieved by other authors are within 7-41 bits/min (7.43 bits/min 

[Käthner et al., 2013], 17.13 bits/min [Shahriari and Erfanian, 2013], 19.18 bits/min 

[Pires et al., 2012], 11.58-37.57 bits/min [Vilic et al., 2013], 40.72 using SSVEP based 

BCI [Hwang et al., 2012], 41.02 using ECoG [Speier et al., 2013]). 

The symbol input speed of the BCI/NCI-based speller applications achieved by 

other authors are within 1-12 CPM (1.38 CPM for EOG-based speller [Liu et al., 

2010], 1.43 CPM for RSVP based speller [Acqualagna and Blankertz, 2013], 4.33 

CPM [Pires et al., 2012], 4.91 CPM [Vilic et al., 2013], 9.39 CPM using SSVEP based 

BCI [Hwang et al., 2012], 10.16 CPM [Cheng et al., 2013], 12.75 CPM [Wang et al., 

2012]). 

Table 4.8. Evaluation of speller application 

Quantitative metric Average 

Value 

Peak value 

BASIC SETTINGS 

Accuracy 96.29 98.25 

Information transfer rate 34.78 41.83 

Input speed 6.37 7.57 
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ADAPTABLE STIMULUS RATE 

Accuracy 88.61 93.64 

Information transfer rate 42.53 49.79 

Input speed 8.19 9.60 

WITH DICTIONARY 

Accuracy 92.65 96.06 

Information transfer rate 43.55 49.26 

Input speed 8.22 9.35 

WITH ADAPTABLE STIMULUS RATE AND DICTIONARY 

Accuracy 89.16 92.53 

Information transfer rate 58.69 65.53 

Input speed 11.35 12.42 

 

 

Figure 4.28. Accuracy of character input 

 

 

Figure 4.29. Information transfer rate 
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Figure 4.30. Input speed 

4.3.2.2 Experiment with the visual concept-based interface 

The experiment with the visual concept-based interface was performed under 

the same conditions as the experiment with text-based interface. The participants had 

to enter one paragraph of text (196 symbols) which represented daily conversation 

topics. This paragraph contained simple formulations of basic needs of a user (see an 

example of message in Figure 4.31). The experiment was performed with 2 subjects 

(both male, aged 24-28 years). The duration of experiment task was measured, and 

the input speed is presented in Figure 4.32. 

Figure 4.31. Example of a message entered using visual language 

 

Figure 4.32 Input speed of a concept-based speller 
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Two metrics of input speed are presented in Figure 4.29: concept input speed 

(number of valid concepts entered in a time unit) and input speed of letters in a textual 

language, which would be required to enter in a time unit in order to convey the same 

message. The results show that using the visual concept-based interface can increase 

input speed to 26.03 sym/min (equivalent to 4.31 concepts/min) as compared to 11.35 

sym/min (see Table 4.8) using the traditional text-based interface of the EMG speller.  

4.3.3 Conclusion of the section 

Development of the EMG-based speller application based on the HASCM was 

described. The pre-set training and fatigue model used in HASCM was based on dwell 

time adaptation. Adaptable stimulus time feature-based on this fatigue model was 

installed in the system. This system feature together with dictionary increased bit rate 

of the system from 34.78 to 58.69 bit/min. The input speed of the system increased 

from 6.37 to 11.35 sym/min. This system is controlled by voluntary muscular 

movements, particularly the orbicular ones (i.e., eye blinking), which are translated 

into text input commands.  

The developed speller application is adaptive (input speed can be adapted 

dynamically in response to the user’s state) and intelligent (by using word complete 

and word frequency features). The combination of speller settings of adaptable 

stimulus rate and dictionary showed the best results in terms of information transfer 

rate (mean value: 58.69 bit/min, peak value: 65.53 bit/min) and input speed (mean 

value: 11.35 CPM, peak value: 12.42 CPM). The same speller settings are related with 

decrease of accuracy, which indicate that adaptable stimulus rate and dictionary 

enable user to type faster and transfer more information, but also increase number of 

typing mistakes. Ability to control system faster, also helps user to correct his 

mistakes faster, so the overall input speed increases. 

Two types of interfaces: traditional letter matrix-based interface and visual 

concept-based interface have been developed and evaluated. The visual concept-based 

interface has been evaluated using concept input speed and compared with the 

equivalent text input speed. The results show improvement of input speed by a factor 

of 2.3 as compared to the best results achieved using a letter matrix-based interface 

with a dictionary and adaptable input speed, which could be explained by conciseness 

of the visual language (both in terms of the size of dictionary and the length of visual 

„words“) as well as by reduced user effort required to communicate a message. The 

main limitations of concept-based interface are the lack of expression scale and 

ambiguous expressions. 

4.4 Recommendations for user interface developers 

General recommendations for the HCI designers when developing human-

assistive interfaces are formulated as follows: 

1. Analyze requirements for user performance introduced by the specific domain 

of application and the developed system. 

2. Analyze the communication modalities used by the system and any user-

related effects on performance such as introduced by fatigue. 
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3. Adopt the Banister or DHO model presented in this dissertation for the 

developed HCI of the system. The choice of the analytical performance 

models is not limited to the models presented in this dissertation. 

4. Implement biocybernetic feedback loop to allow the adaptability of the HCI 

characteristics depending upon human performance when working with the 

system in real time. 

5. Evaluate usability of the developed interface and test with users in real-world 

application environment. 

 

4.5 Conclusion of chapter 

The chapter has examined if human-assistive HCI model might be applied in the 

PCS domain. 3 studies have been carried out on different systems: (i) spelling system 

based on gaze tracking, (ii) PC game based on gaze tracking, (iii) spelling system 

based on EMG. In the first and the third system a single channel variant of human-

assistive HCI model have been successfully applied. In the PC game based on gaze 

tracking a multimodal variant of human-assistive HCI model have been applied. 

Human-assistive HCI model revealed its ability to deal with different applications (PC 

game and spelling system) and different input modes (EMG and gaze tracking). 

However, the presented experiments cover only a small part of possible applications 

and input modes, therefore, there is a need to test the proposed model on a wider 

variety of applications and input modes. 

For modelling eye performance in the spelling system based on gaze tracking, 

Banister et al. model has been used. The accuracy metric based on a gaze landing 

position has been taken for fatigue evaluation. The gaze typing experiment has been 

carried out with 7 volunteers. The results of this experiment reveal that Banister et al. 

model fits to evaluate user performance in the gaze spelling task. PCA analysis of the 

data collected during experiment suggests that fatigue effects in this case appears 

faster than training effects and have major impact on performance. However, the 

experiment has been executed in a relatively short period of time, thus, one can assume 

that training effects could have higher impact in the long-term. 

The fatigue effects in the PC game based on eye tracking have been measured 

for a longer period compared to previous research. For this purpose, the DHO model 

of training and fatigue has been applied. The main reason for choosing this model is 

the wavy nature of data collected during the PC game experiment. DHO model is 

suitable for describing the data which reflect both long-term fatigue and training 

effects and short-term recovery of performance. DHO model validity is determined 

with  sufficient even-odd reliability (r=0.82). However, DHO model has shown high 

variability in terms of deferent user control. 

Banister et al. training – fatigue model fits well the empirical data gathered 

during gaze spelling task. However, it failed to fit the data obtained from PC game 

based on eye tracking. Therefore, in this application DHO model was employed, since 

it showed significantly batter result. The experiments with gaze spelling system and 

PC game based on gaze tracking differed in terms of duration. This implies that 
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Banister et al. model is possibly suitable for describing the performance in the short 

term, as the DHO model deals well the performance in the long term. Some research 

suggests that user begin to sense the fatigue after 13 minutes of using gaze tracking 

system [Suzuki et al., 2015]. However, to prove this assumption on aforementioned 

performance models additional experiments are required. 

We also noticed large variability of user-parameters suggesting the need for 

personalization in physiological computing-based HCI. Training and fatigue models 

like Banister or DHO cannot be generalized for all population. On the contrary, they 

can be applied for specification of individual users and even can serve as performance 

classification tool, as it is shown in section 4.2.2.3, where users are classified into 

learners and fatiguers.  
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5 GENERAL CONCLUSION 

1. Mental and physical fatigue is the major factor of performing abilities 

decrease in physiological computing systems (PCS). Despite the significance 

of the fatigue factor, previous research in PCS domain are conducted only in 

a fragmented manner and lack a complex approach to the fatigue problem. On 

the other hand, fatigue research in sports training domain is of high interest 

and far advanced. Since the nature of fatigue in both sports training and PCS 

is similar, the approaches of the fatigue estimation and prediction known in 

sports domain could be adopted in PCS.  

2. The proposed Human-assistive HCI model describes the interaction between 

a human and PCS from the user performance perspective. Two variants of the 

model are proposed: Human-assistive single-channel HCI model (HASCM) 

and Human-assistive multimodal HCI model (HAMM). The main novelty is 

the performance evaluation procedure, which interacts with the standard UI 

components of the PCS and describes how the system should react to loss of 

productivity (performance). The applicability of the Human-assistive HCI 

models has been demonstrated by the design of 3 different applications: (1) 

gaze spelling system (see section 4.1.1.2), (2) eye-controlled game (see 

section 4.2.1.2) and (3) EMG-based speller (see section 4.3.1.1).  

3. Analytical user performance model developed by Banister et al. is applicable 

for evaluation of training and fatigue effects in using the gaze tracking-based 

spelling system (see section 4.1). To validate the model, the accuracy of gaze 

landing in performing text entry task has been analyzed for 7 subjects. The 

analysis results have been fitted to Banister et al. model. The most accurate 

model reached good fitness results (R2=0.9027, RMSE = 0.0098, 

SSE=0.0005), however, the variability between user performance is 

significant and is larger than intra-user variability due to learning and fatigue 

effects. PCA analysis shows that intra-user variability can be explained by 

two factors: fatigue (73% of variance) and learning (17% of variance). Since 

the learning acts slower than fatigue and has less effect on the results, time-

to-peak value is smaller than time-to-initial performance. Therefore, it is 

advised to use time-to-initial performance as an estimate of rest time. 

4. An analytical user performance model based on damped harmonic oscillation 

(DHO) is suitable to describe variability in performance of a PC game based 

on gaze tracking (see section 4.2). The validity of the DHO model fitting has 

been tested using odd-even analysis, which has shown strong positive 

correlation (0.82±0.08). Individual characteristics of subjects established via 

the damped oscillation model could be used for categorization of players 

under their playing skills and abilities. As initial experiment results show 

players can be categorized as learners, whose damping factor is negative, and 

fatiguers, whose damping factor is positive. A strong r = 0.82 positive 

correlation between amplitude and damping factor is observed, which 

indicates that good starters usually have faster fatigue rates, whereas slow 

starters have less fatigue and even improve their game performance during 
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the play. A temporal and directional analysis of saccade velocity indicates 

that in the long-term saccade velocity and gaze movement accuracy tend to 

reduce during the game due to eye fatigue, since linear regression models 

demonstrate negative trends for each subject with mean correlation of 0.98.   

5. The extension of the EMD method called BoostEMD has been used to pre-

process data of the PC game based on gaze tracking (see section 4.2.2.2). 

BoostEMD method helps to smooth the signal and reduce the impact of 

outliers, which complicate model fitting procedure. This method has been 

compared with other popular smoothing methods (moving mean, median and 

Savitzky-Golay filters) using time series smoothness characteristics. 

Nemenyi test has been performed to rank the smoothing results. 5 out of 6 

tests rank BoostEMD as the best one. BoostEMD more than twice 

outperforms nearest competitors in terms of path length and cumulative 

square jerk (see Table 4.5), which are important smoothness indicators.   

6. The developed EMG-based speller adapts HASCM model (see section 4.3). 

The pre-set performance evaluation procedure based on dwell time adaptation 

together with a dictionary has been introduced. Those system features have 

increased bit rate (from 34.78 to 58.69 bit/min) and input speed (from 6.37 to 

11.35 CPM), at the same time dropping the accuracy (from 96.29 % to 89.16 

%). It indicates that dwell time adaptation and dictionary enable the user to 

enter the text faster, but also increase the number of mistakes. However, the 

ability to control the system faster also helps user to correct mistakes faster, 

since input speed is calculated only for correctly-entered symbols.  
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