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1. INTRODUCTION

Optimization methods and algorithms is a relevant area of computer
science. A significant group of these methods consists of modern heuristic
algorithms, including hybrid genetic algorithms.

Modern heuristic algorithms have been successfully developed to solve
complex theoretical-mathematical and practical tasks. An example of such a task
is the quadratic assignment problem and its particular case — the grey pattern
problem (GPP).

The focus is on the application of heuristic algorithms in the creation of the
superior-quality colour patterns (digital colour halftone textures). The creation of
the digital colour halftones is based on the grey pattern problem, where the goal is
to obtain the finest (optimal) grey pattern of a pre-defined density. The aims of the
dissertation are theoretical—to make theoretical prototypes of effective heuristic
algorithms designed for the class of complex theoretical combinatorial
optimization tasks, —as well as practical—to adapt prototypes for a specific
practical-technical task.

Various types of heuristic algorithms can be applied to the given task
(GPP), starting with the local search algorithms and ending with the biological
process-inspired simulation algorithms. An important aspect is related to
hybridization, which means that the goal is to achieve beneficial synergy of
combining different algorithms. A good example of this is a combination of fast
single-solution based heuristics (on the one side) and population-based
(evolutionary) algorithms (on the other side). In addition to combining multiple
heuristics, another effective strategy is using a set of various search algorithms.

The Object of the Research. The object of the research is the hybrid
genetic algorithms for the grey pattern problem.

The Aim of the Research. The aim of the research is to investigate the
effectiveness of hybrid genetic algorithm modifications for the grey pattern
problem and to determine the most effective algorithm variants.

The Tasks of the Research. To achieve the aim, the following tasks were
outlined:

1. Exploratory study of existing algorithmic solutions for the grey pattern

problem.

2. Proposal and implementation of a new hybrid genetic algorithm for the

grey pattern problem.

3. Experimental investigation of algorithm efficiency and analysis of the

obtained results.

The Methods of the Research. The research methodology is based on the
use of heuristic and metaheuristic combinatorial optimization algorithms and the
analysis of their efficiency.



Scientific Novelty and Practical Relevance. Scientific novelty is
characterized by two aspects.

1. A hybrid genetic algorithm of an improved structure (architecture)
was proposed for the grey pattern problem.

2. The hybrid genetic algorithm was implemented with a new type
of integrated iterative tabu search procedure combined with the
efficient adaptive perturbation of solutions.

Hybrid genetic algorithm (HGA) was successfully applied to the grey
pattern quadratic assignment problem, which is utilized as a formal model for
construction of the digital halftones.

Approbation of the Research Results. The main results of the dissertation
were published in 6 scientific publications: 2 in the journals included in the list of
scientific international databases (Indexed in the Web of Science with Impact
Factor). The results were also presented at 3 international conferences.

The structure and Volume of the Dissertation. The dissertation consists
of an introduction, 3 main chapters, conclusions, a list of references, a list of the
author’s publications and 2 appendices. The total volume of the dissertation is
88 pages, including 38 figures, 30 tables and 93 references.

2. HYBRID GENETIC ALGORITHM AND ITS DIFFERENT
MODIFICATIONS

2.1  Grey pattern quadratic assignment problem

The grey pattern quadratic assignment problem is a special case of a well-
known combinatorial optimization problem, the quadratic assignment problem
(QAP) [1]. GPP can be formulated as follows: given two matrices A = (@;j)nxn
and B = (by;)nxn and the set I1,, of permutations of the integers from 1 to n, find
a permutation p € II,, that minimizes:

z(p) = X1 2;1 by ()

where q;; = 1fori,j =1,..,m (1 <m <n)and q;; = 0 otherwise. In this way,
the objective is changed to finding the permutation elements p(l),..., p(m) (
1< p(i) £n,i=1,..., m) such that the simplified function z(p) is minimized:

2(p) =24 X by pijy - 2)

In the context of the GPP, the values by; are defined according to the
following rule (see also [2]):

by, = b(r—l)nz“f (u-Dny+v = Dreuv > )

“

. 1
min s
Wi wz€{(—1,0,1} (r—u+wyng)2+(t—v+wynz)? ’

Wytypy =



wherer,t =1,..,n,5,u=1,..,n,,n; Xn, =n.

We have a grid of dimensions #; xn,. More precisely, we have n=mn, xn,
squares (points) in the grid: there are m black squares and n—m white squares.
(Other colours may be considered instead of black and white.) This forms a grey
(or colour) pattern of density 72/n. The aim is to have a grey (colour) pattern where
the black points (colour points) are distributed in the most uniform possible way.

The elements of the solution found determine the locations in the grid,
where the black squares have to be placed. The coordinates » and ¢ of the black
squares are obtained according to these formulas:

r =@ -1 /n,] +1, ©)
t= ((p(i) — 1)mod nz) +1; (6)

where i < m.
For example, we have permutation p = (2,6,7,1,5,3,4,9,8), n;, =3,
n, = 3,n =9, m = 3, then, the following grey pattern is obtained (see Fig. 1).

[2]s [7[2]5][3]+]o]3]

Figure 1. A graphical illustration of correspondence of the analytical solution to
the graphical image

2.2 Basic definitions

Definition 1. A neighbourhood function @: I1,, —» 2™ assigns for eachp €
I, a set O(p) €11, — the set of neighbouring solutions of p. With the
permutation-based problems, a common practice is to use the 2-exchange
neighbourhood function @, which is defined in the following way: 0,(p) =
{p':p' €N, 64(p,p") =2}, where 6,(p,p") is the Hamming distance between
the permutations p and p'. (The Hamming distance between two permutations p,
and p, can be declared as 6, (p,, p;) = [{i: p. (D) # p,(D)}].)

Definition 2. The 1-interchange neighbourhood function @; is defined in
such a way that every neighbouring solution p’ € @;(p) is obtained from the
current solution p by simply interchanging one element of {p(i):i = 1,...,m}
with another element of {p(j):j = m + 1, ...,n}. This neighbourhood function
maintains solution feasibility:

0,(p) ={p":p €N, 6(p,p") =1}; (7)

where 6 denotes the distance between solutions.



Definition 3. The distance between two GPP solutions p; and p, can be
defined in the following way:

§(p1,p2) =m—[{p1(D:i =1,..,m}n{p,(D):i = 1,...,m}[; ®)

where 0 <8 <m, §(p,p) =0, 6(p1,p2) = (P2, p1)- Let p(v) (v =1,..,m)
and p(w) (W =m+ 1, ...,n) be two items to be swapped. Then, a short notation

p@, i#v,w
of the form p”" can be used in such a way that p”" (i) = <p(v), i =w . This
pw), i=v

means that p”" is obtained from p by interchanging the items p(v) and p(w) (p
is said to move to p”"). Then, §(p,p”") =1, p*’ =p, P"")*Y =p.

Definition 4. The difference of the objective function is calculated
according to this formula:

A@™,p) = 2(p"™) = 2(p) = 2 (c(pW)) — c(p@)) = B(p ), pW)) ); )

where c(x) is a contribution (a sum of related distances) of the element x.
Definition 5. The sum of related distances is calculated according to the
following formula:

c(x) = Z;nzl bxp(y); (10)

where x = 1, ...,n.
Definition 6. After the exchange, the contributions are updated according
to the expression:

c(x) + B(x,p(v)), x =p(w)
c(x) = {c(x) = B(x,p(w)), x=p®) ;31D
c(x) + B(x,p(v)) - B(x,p(w)), x#=pW),x #pw)
where x = 1, ..., n.

The neighbourhood @ is defined according to the following formula (see
also [3]):

W=pirt pWel,i=1,.,mj=m+1,..,n,
0:(p) = {pvv|r =p(i mogulo nzl)) + 1,t = max((j mojdulo n)+1,m+ 1)}; (12)
p(k), k #1i,j,rt
) p(),k =
where p™t (k) = p(), k =i k=1, ..., n.
p(r) k=t
pt),k=r

04is defined as follows:



r = (i modulo m) + 1,t = max((j modulo n) + 1,m + 1),
u = (r modulo m) + 1,v = max((t modulon) + 1,m + 1)

05(p) = {PWV

p"W o= plttw pVW eI i=1,..,mj=m+1,..,n,
; (13)

p(k)lk * i;j:r, t,u,v

p@), k=]
3 p() k=i
where p"t" (k) =<{p(r), k=t Jk=1,..., n.
p(t),k=r
pw,k=v
p(w),k=u
When using the neighbourhood @,, the difference Az(p, p7") is equal to:
Az(p,pU™t) =
2 <Cp(j) = Sy F Cpty — Cpr) F Ppypey) T Po(pce) _) (14)
bp(i)p(j) - bp(i)p(t) - bp(r)p(j) - bp(r)p(t)
Using the neighbourhood @5, the difference Az(p, p?™") is equal to:
AZ(p, pijrtuV) —
Cp() ~ Cp T Cp) ~ Cp) F Cpw) T Cpw) T
bpiypa) t Poypw + bparypaw + bpjpe) T Po(ype) + s

bpwyp@w) = by — ) = bppw) = bpepy = |
bprypt) = bparp@w) = Ppap() — Prap® — Ppape)

Definition 7. The GPP solution p € II,, is an opposition-based solution
with respect to the solution p if §(p, p) = m.

Definition 8. The GP solution pX € II,, is a backbone solution (with
respect to two underlying solutions p,, p,) if simultaneously &§ (px, pl) < [m/2]
and 5(p%,p2) < [m/2] (see also [4]).

2.3 Description of the hybrid genetic algorithm for the grey pattern
problem

The new algorithm (HGA) (see also [5]) is based on the hybrid genetic
algorithm framework, where the population-based evolutionary search is
combined with the local improvement of the produced offspring.

The algorithm starts with the generation of the initial population (of fixed size
PS). All the population members undergo local improvement (optimization). The
genetic algorithm then performs generations until the pre-defined number of
generations, Ng.,, is completed. At each generation, the standard genetic

9



operations—selection, crossover, population replacement—take place (without
the direct involvement of mutation). Every new solution (offspring) produced by
the crossover operator is subject to local improvement. To preserve the diversity
of the population members, an enhanced population replacement strategy is
adopted. Then, a population restart process is incorporated to renew the population
if the genetic variability is lost and/or a number of idle generations exceed the
predefined limit.

The high-level description of the hybrid genetic algorithm is presented in
Figure 2.
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procedure Hybrid_Genetic_Agorithm;

//input: n, m, B

//output: p* — the best solution found

//parameters: PS — population size, N, — number of generations,

// Nogspr — number of offspring per generation, DT — distance threshold, Lige gen — idle generations limit,
// control parameters for local optimizer (hierarchical iterated tabu search algorithm) (see Table 1)

begin
get data, parameters;
initialize algorithm variables;
generate sorted INITIAL POPULATION P of size PS;

p*:=argmin{z(p)}; //memorize the best solution of the initial population
peP

gen_index :=1;
while gen_index <= Ny, do begin
for i:=1 to NUMBER OF OFFSPRING PER GENERATION do begin
perform SELECTION procedure to choose the parents p,p" eP;
produce offspring by applying CROSSOVER procedure to p,p";
apply LOCAL IMPROVEMENT to the produced offspring p°,
get an (improved) solution p“\*’ (and p*“\*’);
if Z(p™) <z(p*) (or Zp*™) <:z(p*)) then p* :=p* (or p* :=p*N);
//memorize the best found solution
add p* to a pool of offspring
endfor;
if number of idle generations exceeds the predefined limit
Lige gon then begin
POPULATION RESTART; //perform population restart procedure

if min{z(p)} < z(p*) then p*:= argmin{z(p)}
pPEP peP

end //ofif
else perform POPULATION REPLACEMENT; //update and sortthe current population
gen_index := gen_index +1 //go to the next generation
endwhile
end.

Note. There also are several control parameters for the local optimizer (the hierarchical iterated tabu search
algorithm) (for more details, see Section 2.4 and Table 1).

Figure 2. Description of the hybrid genetic algorithm
2.3.1 Initial population construction

The initial population is generated as follows.

1. Let flag ="'OFF',P =@,k = 1,1 = 1. (L is the lexicographic index of the
generated solution.)

2.1If flag =’OFF then generate a random permutation (solution) p;
otherwise, generate an opposition-based random permutation p;. [ = [ + 1.

3. Apply the hierarchical iterated tabu search algorithm to the generated
solution and get the improved solution p;.

11



4.1f (flag = 'OFF’) and (k = 1) then: a) include the solution p; into the
population P; b) flag = 'ON’; c¢) go to step 2.

5.If (flag = 'ON’) and (k = 1) and (z(p;) < z(p): p € P) then: a) replace
the st member of the population by the solution p;" ; b) go to step 2.

6.If ((Z(pl*) # z(p):Vp € P) and (r;lép{S(pf,p)} > DT)) or (Z(pl*) <

mei}rjl{z(p)}), then include the solution p; into the population P. Otherwise,
P

include the random solution p; into the population P.
7.k =k+ 1. If k < PS then go to step 2; otherwise, the initial population
formation is finished.

2.3.2 Parent selection

At each generation, two solutions (permutations) p’ and p”’ are selected in the
population P to serve as parents for reproduction.

2.3.3  Crossover operator

The goal of the crossover operator is to produce an offspring from a pair of
parents. The principle of functioning of the used crossover is based on two
concepts: a backbone solution and an opposition-based solution (see also [4, 5]).

This allows both, to preserve the common elements (genes) in two selected
parents and to introduce completely new genes. The so-called greedy adaptive
procedure (GAP) is applied for this purpose. Thus, two offspring solutions are
generated: the optimized offspring solution and the opposite offspring solution.
Some specific details are as follows.

The values of the short-term array (gene frequencies) fo7 °°° are calculated by
this expression:

féross@) =i e p'tk):k=1,...mhi€{p"(k):k=1,..,m}}|, (16)

where i = 1,... n, p’, p’’ are the corresponding parental solutions. The m genes
with the highest frequency are chosen to form the backbone solution pX. After
this, the greedy adaptive procedure is applied, which respects only m/2 genes
with the largest frequency. So, the GAP receives a partial solution p*X (the
elements pX(1), ..., pX(m/2)) as an input. The GAP chooses the element, one
at a time, and adds it to the current partial solution. In particular, GAP adds, at
each iteration g (q = 1, ..., m/2), the element from the set of unselected elements
G:j=1,...nm3\{p@):i=1,..,m/2 + q — 1} with the minimum contribution
value (see formula (7)) across all the wunselected elements, i.e.

Jj = argmin {c(p())}. This continues until the solution is
jetij=1,.n\{p@):i=1,..m/2+q-1}
completed.

12



For the generation of the opposite (opposition-based) solution, a long-term

frequency array f,5°%° is used. The initialization of f;5°%° is done before running

the genetic algorithm. The values of f,5°% are updated each time the new
backbone solution is constructed, i.e. £;7°5(p°())) = fiF°% (p°(i)) + 1, where

p° is the backbone solution.
2.3.4  Hierarchical iterated tabu search algorithm

The hierarchical iterated tabu search algorithm proposed by me follows the
hierarchical iterated local search paradigm [6]. In the case of the tabu search (TS),
first the iterated tabu search—ITS—is obtained by combining the tabu search and
some perturbations. Further, the ITS algorithm itself is combined with another ITS
algorithm, which results in the “ITS-ITS” algorithm. Each copy contains three
main ingredients: 1) iterated tabu search procedure; 2) candidate acceptation;
3) perturbation procedure.

A. Tabu search.

The tabu search procedure plays an essential role in the hierarchical ITS
algorithm. In the simplest way, the TS procedure uses the 1-exchange
neighbourhood @,. TS starts with the current solution and iteratively swaps an
element of the set M = {p(i):i = 1,...,m} with an element of the set N =
{p@:i=m+1,..,n} in such a way that the objective function value is
minimized by taking into account the tabu condition and aspiration criterion.

To reduce the computational time, the modified neighbourhood @; is used
which is defined as follows (see also [7]):

01(p) ={p"p e {p@:i=1,.. m}\{pM}U{pW)}p) € M',p(w) € N'}.(17)
The sets M', N' are formed in the following way:

M = {p():c(p())) = threshold,, i =1,...,m}, (18)

N' = {p(i): c(p(i)) < threshold,, i=m+1, ...,n}; (19)

where ¢ is the contribution array, threshold; = max{c(p(i)):i =1,..,m} —
pBMax, threshold, = min{c(p(i)):i =m+1, ...,n} + pBMax, BMax =
max{by:k =1,..n,l =1,..n}, p (p > 0) is a parameter (a neighbourhood size
factor).

The tabu list Tabulist is organized as a matrix, where the tabu list entry
TabuList(p(v), p(w)) stores the current iteration number plus the tabu tenure 7,
i.e. the number of the iteration starting at which the corresponding elements
(p(v), p(w)) may again be interchanged. The interchange of elements p(v), p(w)
is not allowed if the value of TabulList(p(v), p(w)) is equal or greater than the
current iteration number. The tabu status is ignored if the aspiration criterion is

13



met, i.e. the interchange results in a solution that is better than the best solution so
far.

In addition to the tabu list, a long-term memory like mechanism to maintain an
archive of good solutions that were evaluated but not chosen [8] is also used. The goal
is to diversify the search process and explore more regions of the search space. To
implement this mechanism, an archive (Archive) is used, which is composed of the
so-called “second” solutions.

B. Iterated tabu search.

The TS procedure transforms the current solution into the optimized solution.
Perturbation is applied to a chosen optimized candidate solution that is selected by
a defined candidate acceptation rule. Candidate acceptation can be implemented
in many ways. The so-called “where-you-are” rule is used, which means that the
last found improved solution is always chosen. The perturbed solution serves as
an input for the TS procedure, which starts immediately after the perturbation
procedure is executed. The perturbation procedure is very simple in its structure
and it consists of two parts: a) random mutation and b) re-construction of the
mutated solution by a fast greedy adaptive procedure. First, the accepted candidate
solution undergoes a random mutation process; in particular, the solution is
“disintegrated” by disregarding (removing) u elements from the current solution
(u is a parameter called the mutation rate). The u elements are chosen in a random
way. The value of y is relatively small in our algorithm (u = |0.15m]), so only a
minor fraction of elements is involved in the mutation procedure. Second, the
mutated partial solution is subject to re-construction by the fast-greedy adaptive
procedure (FGAP), which is identical to that used in the crossover operator, except
that a more effective calculation of the contributions is applied.

TS again returns an improved solution. This solution (or possibly some other
previously optimized solution), in turn, is perturbed, and so on. The best-found
solution is regarded as the resulting solution of ITS. The overall process continues
until a pre-defined number of iterations is performed.

C. Hierarchical iterated tabu search.

The 1-level hierarchical iterated tabu search (1-HITS) algorithm can be
obtained from the ITS algorithm. The structure of the algorithm remains
practically unchanged, except that the ITS algorithm (instead of the TS algorithm)
is used for the solution improvement.

It is possible to further extend the 1-HITS algorithm in a very gentle way.
New extension is entitled as 2-HITS. The pseudo-code of 2-HITS is almost
identical to the one of 1-HITS, except that the invocation of the ITS procedure is
substituted by the invocation of the 1-HITS procedure.

2.3.5 Population management

After the offspring is improved by HITS, the new solution (p¥) is tested if it
differs from other solutions in a population. If it is the case, the new solution is

14



checked to determine if it is better than the best population solution, or if the
distance between the new solution and the population (§ (p*, P) = mei}}{(ﬁ (%D
P

is greater than or equal to the distance threshold DT. If this is true, then the new

solution replaces the worst solution in the current population (P = P U {p*} \

{Pworst}, where pyorse = argmin{z(p)}). Otherwise, the population remains
DPEP

unaltered and the algorithm continues with the next generation. This rule is created
to maintain both the high-quality and sufficient diversity of the members of
population.

2.3.6 Restart

The restart of the genetic algorithm takes place if the solutions of the
population are not improved for Ligie gen generations (Ligie gen is an idle
generations limit, which is set to lO.lSNgenJ, Nyey, is the number of generations).

The restart is performed by simply constructing a new population (see
Section 2.3.1).
2.4  Components of the hybrid genetic algorithm

The following components (features) of the hybrid genetic algorithm were
investigated (see also [9]).
The used values of the control parameters of HGA are presented in Table 1.
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Table 1. Default values of the control parameters of the hybrid genetic algorithm

Parameter Value Remarks

Population size, PS 20

Number of generations, Nyep, 100

Idle generations limit, Ligie_gen [0.03N93nJ 0 < Ligie_gen < Ngen
Distance threshold, DT |0.15m| 0<DT<m

Number of hierarchical iterated 256 Quigr =

tabu search iterations, Qpgr QxQ1xQ2xQ3xQxQsxQex Q7"
Number of initial hierarchical 0 _

iterated tabu search iterations, 4096 [HIER ~*

Qinier 0xQ1xQ2xQ3xQgxQexQ10% Q11T
Number of restart hierarchical 0

iterated tabu search iterations ¥, RHIER

QruiER = @xQ1xQ2%xQ3xQ12%Q13%Q14% 015
Number of tabu search 50

iterations, T

Tabu tenure, h 10.3m| h>0

Idle iterations limit, Lidle_ite‘r |_02TJ 0< Lidle_ite‘r <7
Neighbourhood size factor for 0.4 0>0

tabu search, p

Randomization coefficient for 0.02 D<a<i

tabu search, «

Mutation rate for hierarchical 10.15m] O<u<m

iterated tabu search, p

j-Q:Q1:Qz:Q3:QtleszQe.:Q7:2;
il Qs = Qo = Q10 = Q11 = 4 (Quuier = 16Quzr);
Q12 = Q13 = Q14 = Q15 =3.

24.1 Component “INITIAL POPULATION”

The initial population component is the component that determines the way
in which the initial (starting) population of solutions (individuals) is constructed.
For the particular variants of components, short notations like IP-1, etc. will be
used. For example, notation IP-1 will denote the first modification of component

“INITIAL POPULATION”.

A. Randomly generated population (IP-1)

In the simplest way, the genetic algorithm starts from a pure random
population. No additional actions (i.e. improvement of the members of an initial

population) are involved.
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B. Increased and improved initial population (IP-2)

HGA starts with the increased population of the size INIT PS=2PS, where
PS — the population size. Only PS best members are left. All the members of the
initial population are improved by the local improvement procedure.
C. Improved initial population (IP-3)

HGA starts with the randomly generated population of the size PS. All the
generated individuals are improved.

24.2 Component “LOCAL IMPROVEMENT”

A. Quick tabu search (LI-1)

The decreased number of TS iterations T = 25 and the increased number
of generations N, = 200 are used. Other parameter values remain the same (as
presented in Table 1).

B. Prolonged tabu search (LI-2)

The increased number of TS iterations T = 100 and the decreased number
generations Ny, = 50 are used. Other parameter values remain unchanged.
C. Quick hierarchical iterated tabu search (LI-3)

The decreased number of iterations of the hierarchical iterated tabu search
Quipr = 1x2x2x2x2x2x2x2 = 128 and the increased number of generations
Ngen = 200 are used. Other parameter values remain unchanged.

D. Prolonged hierarchical iterated tabu search (LI-4)

The increased number of iterations of the hierarchical iterated tabu search
Quigr = 1x2x2x2x2x2x2x4 = 512 and the decreased number of generations
Ngen = 50 are used. Other parameter values remain the same.

E. Neutral variant (LI-5)
All parameter values remain unchanged.

2.4.3 Component “SELECTION”

A. Roulette wheel selection (S-1)

In the case of roulette wheel selection [10-12], the scaled fitness values are
utilized instead of the pure values of the objective function. The rule is based on
the roulette wheel criterion, which to chromosome i in the population of PS
chromosomes assigns a selection probability Pr; proportional to the fitness value
as in this equation:

Fi

Pr; = wpsi—; (20)

— ¢PS
X2, Fj

where F;, F; are scaled fitness values.
B. Rank-based selection (S-2)

Assume that all the members of the current population are sorted in the
ascending order of their fitness. According to the rank-based rule [13], the
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positions u of the parent within the sorted population P are determined according
to the formula: u = |v?|; where v is a uniform random number from the interval
[1, pst/ ”], where PS is the population size, and ¢ is a real number from the
interval [1,2]. We used o = 2.0. It is obvious that the better the individual, the
larger probability of it being selected for the crossover.
C. Random selection (S-3)

The parents’ chromosomes are chosen in a random way (the fitness of the
individuals is not considered).

244  Component “CROSSOVER”

A. Frequency (backbone)-based greedy crossover (C-1)

This crossover procedure is similar to that described in Section 2.3.3. The
difference is that instead of two offspring only one is generated (the generation of
the opposition-based offspring is not performed).

B. Greedy opposition-based crossover (C-2)

The greedy opposition-based crossover, which takes into account the value
of the objective function, is used. Two offspring p°, p” are generated.
C. Greedy crossover (C-3)

The greedy crossover is used and one offspring p’is generated.
D. Heuristic opposition-based crossover (C—-4).

The process of heuristic opposition-based crossover takes into account the
number of common parent genes. They are the basis for the formation of the
offspring. If there are many common genes, “foreign” genes from other
individuals are included. The heuristic crossover also performs partial
improvement of the offspring.

E. Heuristic crossover (C-5)

This crossover procedure is similar to C-4. Only one offspring is generated
instead of two.

F. Multi-parent frequency and opposition-based crossover (C-6)

Multi-parent frequency and opposition-based crossover uses all the
members of the current population to create two offspring [14].

G. Multi-parent frequency-based crossover (C-T)

This crossover procedure is similar to C-6. A single offspring is generated
instead of two.

H. Tailored (problem-specific) opposition-based crossover (C-8)

This crossover is based on calculating the average integer value between
the two corresponding values in the parental solutions. Two offspring p°, p”are
generated.

L. Tailored (problem-specific) crossover (C-9)

This crossover procedure is similar to C-8. Only one offspring is

generated.
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J. Frequency (backbone) and opposition-based crossover (C-10)
This crossover procedure is the same as described in Section 2.3.3.

24.5 Component “NUMBER OF CROSSOVERS PER GENERATION”

A. Increased number of crossovers (NOC-1)

In this case, the number of crossovers per generation is equal to 4 (1 = PS).
The newly produced offspring (juveniles) are added to a pool (temporary
population) consisting of A offspring. So, the extended population of PS + A
members is maintained. The members of this population are not altered during the
current generation. At the end of the generation, PS individuals are selected out of
PS + A individuals to form the new population for the next generation.
B. Single crossover (NOC-2)

One crossover was used per generation.

24.6 Component “POPULATION REPLACEMENT”

A. Worst individual replacement 1 (PR-1)

In this scheme, the produced offspring takes the place of the worst member
in the current population, but under the necessary condition that the newly
produced offspring solution is better than the worst individual.

B. Worst individual replacement 2 (PR-2)

In this case, the produced offspring replaces the worst individual of the
current population ignoring the fitness of this individual.
C. Worse parent replacement 1 (PR-3)

The current option is very similar to the option PR-1. The only difference is
that the offspring replaces its worse parent only when the offspring is better than
its related parent.

D. Worse parent replacement 2 (PR-4)

This option is very similar to the option PR-3, except that the offspring
replaces its worse parent disregarding the fitness.
E. Modified replacement (PR-5)

This is similar to the option PR-1. Additionally, it is tested if the offspring is
better than the best individual of the current population. If this is the case, then
specifically the best individual (instead of the worst individual) is replaced.

24.7 Component “POPULATION RESTART (RESET)”

A. No restarts (PRS-1)
In this case, no restarts are involved at all.
B. Multi-mutation (PRS-2)

The restart from an entirely new population may seem too aggressive. The
alternative option is multi-mutation, where the mutation procedure is applied to
all the members of the population. The advantage of multi-mutation is that the rate
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of mutation can be flexibly controlled by the user. In our implementation, the
mutation rate is equal to 0.1 X m.
C. Opposition-based reconstruction (PRS-3)

In this variant, the newly constructed solutions are opposition-based solutions
with respect to the existing solutions of the current population. The process of
generating the opposite solutions is analogous to that used in opposition-based
Crossover operators.

D. Gene translocation (PRS-4)

This process is similar to the multi-parent crossover procedure, except that

many children are produced instead of a single child.
E. Chaotic reconstruction (PRS-5)

The population is reconstructed by using the chaotic logistic mapping
function (logistic map) (see [15] for details):

Xj+1 =k X x]' X (1 - x]), (21)

where k = 4, x, is a real number from the interval [0,1],j = 0,1,2,...,n — 1.
F. Chaotic modified reconstruction (PRS-6)

This option is very similar to PRS-5, except that the generated chaotic real
numbers are “directly” associated with the integer values of solution elements.
G. Random reconstruction (PRS-7)

In this case, the generation of a purely random population is used.

The following collection (set) of options—IP-3, LI-5, S-3, C-10,
NOC-2, PR-5, PRS-7—as the “basic configuration” of our hybrid genetic
algorithm. The choice of these options is based on a preliminary experimentation
described in [5]. The basic configuration is shortly denoted by HGA-BV.

3. RESULTS OF COMPUTATIONAL EXPERIMENTS

The algorithm has been tested on the medium and large-scaled GPP instances
withn = 256 and n = 1024. The instances are generated according to the method
described in (1)'. The grids are of dimensions 16 X 16 (n; = n, = 16) and
32 X 32 (n; = n, = 32), respectively. The grey density parameter m varies from
2 to 128 and from 2 to 512.

The values of the control parameters of HGA used in the experiments are
shown in Table 2.

First, we have experimented with the problems in size 256 and compared
our algorithm with the improved genetic-evolutionary algorithm (IGEA)
presented in [16]. To our knowledge, IGEA seems very likely to be the most
efficient (to date) heuristic algorithm for the problems of this size. As the

! These instances can also be found on the website: http:/www.personalas ktu.lt/~alfimise/.
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algorithms IGEA and HGA constantly find the best known (pseudo-optimal)
solutions (BKSs), the run time performance, rather than the quality of solutions is
compared.

The results demonstrate that HGA clearly dominates IGEA (see Table 3).
IGEA was able to slightly outperform HGA only in a very few cases (m =
26,101,102, 103). Figure 4 illustrates overall speed improvement of HGA (m's
varies from 30 to 100).

During an additional extensive, long-lasting experimentation, the algorithm
HGA on the large-sized problems (n = 1024), which are much more difficult and
time-consuming, has been examined. It should be pointed out that we have
succeeded in discovering new record-breaking solutions for more than 190 values
of m. The deviations of the new best known solutions found from the previous
best solutions are shown in Figure 3.

3.1  Results of comparison of algorithms

Table 2. Values of the control parameters of the hybrid genetic algorithm used in the
comparison

Parameter Value Remarks
Population size, PS 20
Number of generations, Ny, 40
Idle generations limit, Ligie_gen lO.lSNgenJ 0 < Ligie_gen < Ngen
Distance threshold, DT 10.25m] 0<DT<m
Number of hierarchical tabu search 384 Quier =
iterations, Qpgr QxQ1xQ2xQ5xQyxQ5xQexQ;"
Number of tabu search iterations, T 80
Tabu tenure, h 10.3m] h>0
Idle iterations limit, L;gje jrer 10.27] 0<Ligieiter =T
Neighbourhood size factor, p 0.4 p>0
Randomization coefficient, a 0.02 0<a<l1
Mutation rate, u 10.15m] O<u<m

TQ:Q1:Qz:Q3:Q‘;:Qs:Qa:ZaQ7:3-
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Table 3. Results of the experiments with the medium-sized GPP instances (n = 256)

Best .. CPU time (sec) Best .. CPU time (sec) Best ... CPU time (sec)
known - known - known -
m value from value from m value from

(BKY) BKV IGEA NHGA (BKV) BKV IGEA NHGA (BKV) BKV IGEA NHGA
2 1562 0 0.0 0.0045 8674910 0 150.0 591 87 39389054 O 25.0 0.19
3 7810 0 0.0 0.0046 9129192 0 64.0 11.38 88 40416536 0 23.0 0.15
4 15620 0 0.0 0.0047 9575736 0 3.1 0.29 89 41512742 0 183.0 6.98
5 38072 0 0.0 0.0048 10016256 0 2.0 0.16 90 42597626 O 165.0 4.76
6 63508 0 0.0 0.0049 10518838 0 34 0.56 91 43676474 0  224.0 17.64
7 97178 0 0.0  0.0050 11017342 0 2.8 0.56 92 44759294 0 157.0 7.94
8 131240 0 0.0 0.0051 11516840 0 7.5 0.83 93 45870244 0 214.0 19.18
9 183744 0 0.0 0.0052 12018388 0 6.3 0.39 94 46975856 0O 190.0  21.52
10 242266 0 0.0 0.0053 12558226 0O 4.6 0.54 95 48081112 0 169.0 2.14
11 304722 0 0.1  0.0054 13096646 0 4.0 0.03 96 49182368 0 216.0 6.58
12 368952 0 0.1  0.0055 13661614 0 10.1 0.12 97 50344050 O 213.0 23.88
13 457504 0 0.1  0.0056 14229492 0 2.8 0.15 98 51486642 0 188.0  63.40
14 547522 0 0.1  0.0057 14793682 0 2.2 0.37 99 52660116 O 201.0  50.53
15 644036 0 0.1  0.0058 15363628 0 2.3 0.09 100 53838088 0 117.0  48.18
16 742480 0 0.1  0.0059 15981086 0 35 0.71 101 55014262 0 84.0 156.00
17 878888 0 0.2 0.0060 16575644 0 2.4 0.95 102 56202826 O 40.0 115.00
18 1012990 0 0.1  0.0061 17194812 0 2.2 0.01 103 57417112 0 73.0  84.00
19 1157992 0 0.2 0.0062 17822806 0O 3.6 0.01 104 58625240 0 62.0 5114
20 1305744 0 0.3  0.0863 18435790 0 1.9 0.00 105 59854744 0 380 3241
21 1466210 0 0.5 0.0064 19050432 0 2.3 0.00 106 61084902 0 33.0 10.85
22 1637794 0 0.3 0.0065 19848790 0 3.1 0.00 107 62324634 0 21.0 0.73
23 1820052 0 0.2 0.0066 20648754 0 4.5 0.02 108 63582416 0 12.6 0.65
24 2010846 0 0.6  0.0267 21439396 0 9.7 0.08 109 64851966 0 11.1 1.02
25 2215714 0 3.2 03168 22234020 0 18.0 0.23 110 66120434 0 10.7 0.41
26 2426298 0 16.5 22.9869 23049732 0 27.0 0.64 111 67392724 0 8.2 0.46
27 2645436 0 1.1 0.0270 23852796 0 26.0 0.98 112 68666416 0 7.7 0.17
28 2871704 0 0.9 0.0371 24693608 0 78.0 0.43 113 69984758 0 10.2 0.13
29 3122510 0 0.7  0.0372 25522408 0 490.0  64.80 114 71304194 0 6.3 0.18
30 3373854 0 0.5 0.0073 26375828 0 298.0 5.81 115 72630764 O 5.1 0.37
31 3646344 0 0.6 0.0074 27235240 0 304.0 2.50 116 73962220 0 53 0.21
32 3899744 0 0.5 0.0275 28114952 0 41.0 0.85 117 75307424 0 4.0 0.03
33 4230950 0 0.7  0.0376 29000908 0 121.0 1.30 118 76657014 0 3.6 0.06
34 4560162 0 2.6 0.3677 29894452 0 145.0 4.81 119 78015914 0 2.3 0.03
35 4890132 0 32 04178 30797954 0 117.0 1.15 120 79375832 0 1.7 0.05
36 5222296 0 2.0 0.4479 31702182 0O 11.6 0.81 121 80756852 0O 1.6 0.07
37 5565236 0 1.8 0.3480 32593088 0 3.3 0.47 122 82138768 0 1.4 0.03
38 5909202 0 0.9 0.1481 33544628 0 3.9 0.26 123 83528554 0 1.0 0.04
39 6262248 0 1.1 0.0882 34492592 0 70.0 3.33 124 84920540 0 0.7 0.01
40 6613472 0 0.9 0.0283 35443938 0 57.0 1.41 125 86327812 O 0.4 0.00
41 7002794 0 0.6 0.1184 36395172 0 61.0 2.77 126 87736646 0 0.3 0.00
42 7390586 0 0.7  0.1685 37378800 0 151.0 1.20 127 89150166 0 0.2 0.00
43 7794422 0 3.2 0.2086 38376438 0 94.0 0.32 128 90565248 0 0.2 0.00
44 8217264 0 16.0  0.87
Note. The deviation from BKV (Dev. from BKV) is calculated as the ratio (Z* — BK V) /BKV,

where z* denotes the algorithms’ best-found solution. The best known values of the objective
function corresponding to the best known solutions are from [16].
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Figure 3. The deviations of the new best known solutions found (n = 1024): a)

m's varies from 99 to 174; b) m's varies from 175 to 214; ¢c) m's varies from 215 to 278;

d) m's varies from 279 to 303; €) m's varies from 304 to 369; f) m's varies from 370 to
396; g) m's varies from 397 to 423; h) m's varies from 424 to 479.
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Figure 4. Illustration of the run time improvement

Figures 5 and 6 provide some graphical representations (grey frames)
corresponding to m = 401,402,403, 404, 405, 406,407,408.

gﬁ’ % 13. .#++1
]

y

gt

‘!

Figure 5. Examples of (pseudo-)optimal grey frames (32 X 32, n = 1024):
(@) m = 401, (b) m = 402, (c) m = 403, (d) m = 404, (e¢) m = 405, (f) m = 406, (g)
m = 407, (h)m = 408
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Figure 6. Examples of (pseudo-)optimal grey frames? (n = 1024):
(@) m = 401, (b) m = 402, (c) m = 403, (d) m = 404, (e¢) m = 405, (f) m = 406, (g)
m = 407, (h)m = 408

3.2 Results of the experiments with algorithm components

The algorithm has been tested in the medium and large-scaled GPP instances
with n =256 and n = 1024, respectively. The values of the grey density
parameter m vary from 95 to 104 for n = 256. For n = 1024, the values of m
are as follows: 50, 60, 70, 80, 90,100,110, 120, 130, 140.

As a performance criterion for our algorithm, the average relative percentage
deviation (@) of the yielded solutions from the best known solution (BKS) is used.
It is calculated according to the following formula:
6 = 100(z — BKV)/BKV [%], where Z is the average objective function value
over 10 runs of the algorithm, while BKV denotes the best known value of the
objective function that corresponds to BKS. At every run, the algorithm is applied
to the given values of n and m, each time starting from new random initial
populations. Note that the current run is interrupted if BKS is found, even without
reaching the maximum number of generations, Ngep,.

The average deviations of the examined components are presented in
Figures 7, 8.

2 In the graphical illustrations, each 1024-square-grid is replicated 8 times horizontally and
8 times vertically for a better visibility.
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Figure 7. The average deviations of the examined components (m = 95,96, ...,104,n =
254): a) “INITIAL POPULATION”; b) “LOCAL IMPROVMENT”; ¢) “SELECTION”,
d) “CROSSOVER?”; ¢) “NUMBER OF CROSSOVERS PER GENERATION”; f)
“POPULATION REPLACEMENT?”; g) “POPULATION RESTART (RESET)”
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Figure 8. The average deviations of the examined components (m = 50, 60, ...,140,n =
1024): a) “INITIAL POPULATION”; b) “LOCAL IMPROVMENT”; ¢) “SELECTION”,
d) “CROSSOVER?”; ¢) “NUMBER OF CROSSOVERS PER GENERATION”; f)
“POPULATION REPLACEMENT?”; g) “POPULATION RESTART (RESET)”

CONCLUSIONS

1.

A comprehensive theoretical review has shown that the use of hybrid
algorithms in solving difficult combinatorial tasks is an effective way to
find high quality (pseudo-optimal) solutions within an acceptable
execution time.

A new improved hybrid genetic algorithm for solving the grey pattern
quadratic assignment problem has been proposed. A compacted, reduced
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neighbourhood is used. This enables very fast execution of the

hierarchical ITS algorithm and the HGA. Moreover, a smart combination

of the iterated tabu search and the greedy adaptive perturbations is
applied. This allows for a beneficial balance between diversification and
intensification during the iterative search process.

The experimental evaluation of HGA efficiency suggests that HGA is

more efficient in terms of CPU time (when experiments are performed

with a medium-sized task, n = 256) and in terms of the quality of
solutions (when experiments are performed with a large-sized task, n =

1024).

The results of the computational experiments with different components

demonstrate:

- using increased, improved initial populations is indeed much more
advantageous than the use of random populations;

- better results are obtained by increasing the number of tabu search
iterations;

- the rank-based selection procedure is only slightly better than the
remaining procedures;

- Dbetter results are obtained by the frequency(backbone)-based greedy
crossover, the greedy crossover and the heuristic crossover.
Generation of opposition offspring has no significant effect on the
efficiency of the algorithm;

- it is more efficient when immediate population renewal is used (i.e.
one crossover per generation is applied);

- itis recommended to use the option, where the offspring replaces the
worse parent;

- multi-mutation based population restarts are an effective way to
avoid stagnation in the search process.
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REZIUME

Gana aktuali informatikos mokslo sritis yra optimizavimo metodai ir
algoritmai, jy sudarymas ir tyrimas. ReikSmingg Siy metody grupg sudaro
modernieji euristiniai algoritmai, tame tarpe ir hibridiniai genetiniai algoritmai.

Modernieji euristiniai algoritmai sékmingai iSvystyti, sprendZziant
sudétingus teorinius-matematinius ir taikomuosius-praktinius uzdavinius. Tokio
uzdavinio pavyzdys yra kvadratinio paskirstymo uzdavinys (angl. quadratic
assignment problem) ir jo atskiras atvejis — pilky Sablony formavimo uzdavinys
(angl. grey pattern problem).

Siame darbe koncentruojamasi batent j efektyviy euristiniy algoritmy
kiirimg ir taikyma pilky Sablony formavimo uzdaviniui spresti, kuomet siekiama
gauti kuo tikslesnj (optimaly) pilkajj, i§ anksto apibrézto intensyvumo, atspalvj.
Darbe siekta tiek teoriniy - i§ pradziy buvo sukurti efektyviy euristiniy algoritmy
prototipai, skirti sudétingai teoriniy kombinatoriniy optimizavimo uzdaviniy
klasei, tiek praktiniy tiksly — kuomet prototipai adaptuoti konkre¢iam praktiniam-
techniniam uzdaviniui.

Duotam uzdaviniui gali buti pritaikyti jvairiy tipy euristiniai algoritmai,
pradedant lokalios paieskos algoritmais, baigiant biologiniy procesy inspiruotais
kolektyvinio intelekto imitavimo algoritmais. Svarbus aspektas yra susijes su
hibridizavimu, kuomet bandoma pasiekti naudinga saveika kombinuojant
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(derinant) skirtingus komponentus (algoritmus). Geras pavyzdys galéty buti
greitos vieno sprendinio pagrindu paremtos euristikos ir populiacija paremto
(evoliucinio) algoritmo kombinavimas. Kitas svarbus aspektas yra prie§ tai
sukonstruoty efektyviy euristiniy algoritmy daugkartinis panaudojimas.

Tyrimo objektas. Tyrimo objektas yra hibridiniai genetiniai algoritmai,
skirti pilky Sablony formavimo uzdaviniui spresti.

Tyrimo tikslas. Tyrimo tikslas yra iStirti hibridinio genetinio algoritmo
modifikacijy pilky Sablony formavimo uzdaviniui veikimo efektyvuma ir nustatyti
efektyviausius algoritmo variantus.

Tyrimo uZdaviniai. Tikslui pasiekti buvo iskelti tokie darbo uzdaviniai:

1. Esamy algoritminiy sprendimo biidy pilky Sablony formavimo
uzdaviniui Zvalgomasis tyrimas.

2. Naujo hibridinio genetinio algoritmo pilky Sablony formavimo
uzdaviniui pasitilymas ir realizavimas.

3. Algoritmo efektyvumo eksperimentinis iStyrimas ir gauty rezultaty
analiz¢.

Tyrimo metodika. Tyrimy metodika remiasi euristiniy ir metaeuristiniy
kombinatorinio optimizavimo algoritmy panaudojimu, kompiuterine algoritmy
efektyvumo analize.

Darbo mokslinis naujumas ir praktiné verté. Mokslinj naujuma
charakterizuoja du aspektai.

1. Pasitlytas patobulintos struktiiros (architektiros) hibridinis genetinis
algoritmas pilky Sablony formavimo uzdaviniui spresti.

2. Realizuotas hibridinio genetinio algoritmo integravimas su naujo tipo
iteratyviosios tabu paieskos procediira, kombinuojama su efektyviu
adaptyviu sprendiniy pertvarkymu.

Praktiné verté yra ta, kad sudarytas algoritmas sékmingai iSbandytas,
sprendziant didelés apimties pilky Sablony formavimo uzdavinius. Tai jgalina
padidintos kokybés spalvy atspalviy, skaitmeniniy vaizdy sukiirimg. Visa tai yra
aktualu, pritaikant modernius euristinius algoritmus prapléstoje/virtualioje
realybéje.

ISVADOS

1. Atlikta iSsami literatliros apzvalga parodé, kad hibridiniy algoritmy
taikymas, sprendziant sunkius kombinatorinius uZzdavinius, yra
efektyvus biidas, siekiant surasti aukstos kokybés (galimai optimalius)
sprendinius, per priimting vykdymo laika.

2. Pasitilytas ir realizuotas inovatyvus hibridinis genetinis algoritmas
(HGA). Esminés HGA savybés: a) algoritme jkomponuota hierarchiné
iteratyvioji tabu paieSka; b) panaudojama labai aukStos kokybés
diversifikuoty sprendiniy populiacija; c) pritaikytas efektyvus tabu
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paieskos ir godziojo adaptyviojo sprendiniy pertvarkymo
kombinavimas.
Atliktas HGA efektyvumo eksperimentinis tyrimas leidzia daryti
iSvadg, kad HGA yra efektyvesnis laiko atzvilgiu (kuomet
palyginamieji eksperimentai atlikti su vidutinio dydzio uzdaviniu, n =
256) ir sprendiniy kokybés atzvilgiu (kuomet palyginamieji
eksperimentai atlikti su didelio dydzio uzdaviniu, n = 1024) uz iki Siol
zinomus algoritmus, skirtus spresti PSF uzdavinj.
Atlikti  eksperimentai su skirtingomis algoritmo komponenty
modifikacijomis jtakojo tinkamo komponenty rinkinio pasirinkima
iSpléstiniams  eksperimentams. HGA komponenty iStyrimas ir
eksperimentinis jvertinimas parodé, kad suderinus komponenty rinkinj
i§ komponenty modifikacijy galima gauti efektyvesnius rezultatus.
Nustatyta, jog efektyviausi yra Sie komponenty variantai:
- pagerinta pradiné populiacija;
- padidintas sprendiniy pagerinimo (t.y., tabu paieskos) iteracijy
skaicius;
- kryzminimo procediros, jvertinancios tikslo funkcijg ir
uzdavinio specifika;
- operatyvus populiacijos atnaujinimas, atsizvelgiant j atstumo
kriterijy;
- nedidelio lygio mutacijomis besiremian¢iy populiacijos
perkrovimy panaudojimas.
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