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1.  INTRODUCTION
1
 

Brain-computer interface (BCI) systems try to narrow the gap between human 

and computer interaction. The direct control of computer applications by using only 

human mind and mental abilities can help to solve many rehabilitation, multimedia 

and gaming challenges. One of the key parts of a BCI system is accurate and fast 

algorithms that are capable of analysing electroencephalogram (EEG) signal 

potentials that are recorded along the human scalp. Such signals contain noise and 

other unwanted artifacts, which prevent from correctly determining-classifying 

imagined motoric actions (imagery). Though many algorithms were developed to 

overcome such issues, the problem still requires extensive work.  

The motor imagery classification is one of many widespread machine-learning 

problems of BCI systems. With the need for human mind controlled applications, 

the recording of EEG has emerged as an optimal solution for non-interventional 

brain activity analysis. The ability to understand this brain induced electrical signal 

fully would greatly simplify the life of people with disabilities or break the barrier of 

natural interaction in the entertainment industry. 

This work focuses on four-class motor imagery problem where the recorded 

EEG signal is classified into four different classes that correspond to four different 

human subject imagined motoric actions (left hand, right hand, feet and tongue 

movement). Even if a simpler two-class (binary) problem achieves good 

classification performance, the four-class still struggles to reach the same results and 

requires more scientific investigation. 

1.1. Aim of the research 

The aim of this dissertation is to create a method for solving four-class motor 

imagery (MI) classification problem. 

Objectives of the work are the following: 

1. Perform review and analysis of existing MI classification techniques and 

EEG recording systems in literature, 

2. Evaluate common classification algorithms by using MI EEG signal 

database, 

3. Develop an effective method for solving MI classification task, 

4. Design the EEG system capable of recording MI signals, 

5. Manufacture and validate correctness of the EEG recording system. 

                                                 
1 This chapter uses parts of the article [1] UKTVERIS, T., and V. JUSAS. Application of 

Convolutional Neural Networks to Four-Class Motor Imagery Classification Problem. Information 

Technology And Control, vol. 46 (2), 2017, 260–273 and article [61] UKTVERIS, T., V. JUSAS. 

Comparison of Feature Extraction Methods for EEG BCI Classification, Information and Software 

Technologies: 21st International Conference, 2015, 81–92. 
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1.2. Object of the research 

Deep learning Convolutional Neural Networks (CNN) have not been widely 

analysed and used for motor-imagery (MI) task. The main interest is feature 

extraction and Convolutional Neural Networks (CNN) classification methods for the 

motor imagery problem. The development of the design of compact EEG acquisition 

system for MI task. 

1.3. Scientific novelty 

A new feature extraction channel difference method has been proposed for the 

EEG data processing based on Bandpower and Laplace filtering approaches. The 

proposed algorithm gives a similar filtering performance to a well-known CSP 

(common spatial patterns) algorithm. A new method for a single dimension (1D) 

feature vector adaptation to two-dimensional (2D) feature maps has been proposed. 

The algorithm has been successfully validated during the experiments. The CNN 

based classification method has been adapted to solve four-class MI problem, and 

the experimentally acquired results were close to the other state-of-the-art methods. 

Moreover, a stackable and modular EEG acquisition system for MI has been 

developed to help record second four-class validation EEG dataset and spread BCI 

among the wider audience. 

1.4. Practical applications 

The classification, proposed feature extraction and feature adaptation methods 

have been validated on publicly available real EEG signal database that was 

gathered from healthy subjects. The created EEG acquisition system has been 

constructed and validated in real-life usage scenarios of healthy subjects. 

1.5. Approbation of results 

Five articles on the topic of the dissertation have been published. Two of the 

papers were printed in journals indexed in Web of Science. The experimental results 

of the dissertation have been published in three scientific conferences in Lithuania 

and abroad. 

1.6. Structure of the dissertation  

This dissertation is divided into five main chapters. The first chapter 

introduces reader with the main topic of brain-computer interfaces.  

The second chapter analyses existing literature and tackles the problem of 

motor imagery (MI) task classification by using traditional machine learning 

approaches.  

The third chapter introduces deep learning methods for the same EEG data 

classification task. A methodology is given to successfully apply Convolutional 

Neural Networks (CNN) to the four-class MI problem. 
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The fourth chapter introduces a practical approach of designing an EEG signal 

acquisition system for MI. A developed printed circuit board (PCB) design is 

presented and detailed along with the effective system validation techniques. 

The last section summarizes the whole work and gives the main conclusions of 

this dissertation and recommendations for further research.  
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2.  BRAIN COMPUTER INTERFACE 

This dissertation chapter is an introduction to the scientific field of brain-

computer interfaces (BCI). The basic functioning mechanisms of the human brain 

are discussed, and multiple BCI systems are presented along with the actual real-

world usage scenarios. The basic information is provided for the reader to 

understand further chapters of this work better. 

2.1. Introduction 

Brain as an organ of the human body has a unique ability to self-adapt, create 

new neural bonds while processing and learning new information. Brain is never the 

same. It progresses and evolves over the lifetime of a human being. Even now, while 

reading this paragraph, new information is being processed at tremendous speed, and 

some of it is stored in short or long-term memory. The large memory capacity of the 

brain serves as an experience and information storage. The environment sensing, 

body motoric actions are as well the responsibility and coordination of different 

brain regions. Each of the regions is responsible for the specific body part control, 

sensing or mental function. Unfortunately, the precise working mechanism of the 

brain is still unknown. More advanced mental functions such as the birth of an idea 

is a complete mystery. Without knowing the inner working, it is difficult to map or 

create a model of the brain. This very complex organ has been analysed by various 

neuroscientists and neurophysiologists who conduct experiments in order to find out 

the principal blocks and scientific theories behind the structure and behaviour of the 

brain. By checking and proving (or disproving) one hypothesis at a time, the whole 

puzzle is starting to be clearer. There are many problems that prevent deep brain 

analysis. Much of the problems lie in the variability of the brain. Even though every 

person has such a mental organ, it is still uniquely evolved in many functional and 

structural aspects. However, the emerging problems and difficulties do not prevent 

interest in brain function analysis. Many science fiction films give a huge spark to 

scientists to bring fiction to the real life. Only by developing and using new created 

methods to analyse brain structure and behaviour, it will be possible to find out the 

secrets that lie within the brain. 

2.2. Structure of the brain 

The anatomical structure of the brain helps to understand the processes 

happening inside. The structure needs to be reviewed in order to analyse brain 

functions that relate to motoric actions. This mental organ mainly consists of many 

connected and electrically active cells called neurons (about 100 billion) and glial 

cells that are nerve cells, which do not carry any nerve impulses. The neurons only 

make up 10% of the cells of the brain, while the larger part is glial cells. Unlike most 

other cells, neurons cannot regrow after damage. The glial cells provide physical, 

nutritional and digestive support for neurons while at the same time manufacturing 

myelin. The neurons carry electrical impulses and are connected in groups or 
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batches that fire electrical signals at the same time. Such coordinated burst of 

electrical impulses creates the electrical activity of the brain that can be measured by 

using scientific devices. Brain consists of three main parts: the cerebrum, 

cerebellum, and brain stem. The cerebellum is responsible for balance, posture and 

cardiac functions. The brain stem creates motoric and sensory pathway to the whole 

body. The largest part is the cerebrum consisting of white and grey matter tissue. 

The outer layer of the cerebrum, or where is folded the grey matter tissue, is called 

the cortex. The cortex is divided into frontal, parietal, temporal and occipital lobes 

(Figure 1). Usually, each of these lobes has different functions. The frontal lobe is 

known to be responsible for behaviour, intellect, smell, attention, motoric actions, 

etc. Occipital lobe processes vision and is involved in reading process. The primary 

motor cortex is in the top part of the brain, in the frontal lobe. This part is most 

active when motoric actions are done or when movement is just imagined. 

 
Figure 1. Brain cortex structure

2
 

 

This work is based on the mentioned motoric imagination effect. In the further 

chapters, the scientific algorithms will be proposed and analysed that will help to 

discern what kind of motoric actions were imagined based on the effects and state of 

the brain motoric regions during that time. In order to be able to know the state of 

the brain, first, some measuring techniques need to be reviewed and selected. This is 

done in the next section. 

2.3. Measuring activity 

In order to understand and analyse how the brain works, the brain state data 

extraction methods are required. One of the methods used for brain scanning is 

Magnetic Resonance Imaging (fMRI). This method detects blood flow changes in 

active brain regions. It is known that blood flow increases in regions that are more 

                                                 
2
 

https://www.researchgate.net/publication/281198195_Motor_impairments_following_stroke 
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active. Since fMRI machines became available in the early 90s, this brain mapping 

method became the most used one. It as well reached its popularity because it does 

not require any other medical intervention (e.g., surgery or ingesting radioactive 

substances). Long duration of the scans and non-realtime performance are the main 

drawbacks of this method. However, newer methods that improve spatial and 

temporal resolution are researched as well. Another approach for measuring brain 

activity is electroencephalography (EEG). EEG allows to measure electrical activity 

of the brain by using metal electrodes that are connected to specialized EEG signal 

recording hardware. Two EEG types are the most common, i.e., invasive and non-

invasive. The invasive type requires surgery and embedding an electrode deep inside 

the brain tissue. The non-invasive type places metal electrodes along the head scalp. 

Even though the invasive method provides a less noisy and more accurate signal, the 

non-invasive approach is the most preferred one due to the less dangerous 

experimental conditions and possible negative consequences. EEG allows to capture 

and monitor spontaneous brain electrical activity so it could be used for real-time 

applications as compared to the much slower fMRI method. The electrical signal on 

the scalp surface is much weaker than recorded directly from the surface of the brain 

cortex. Since the skull and scalp skin suppresses the electrical signal, a more 

sensitive recording hardware is required. Compared to fMRI, EEG approach has a 

high temporal resolution, but a much lower spatial resolution. The nature of low 

spatial resolution is the fact that the electrical activity on the surface of the scalp is a 

combination of activities from multiple groups of neurons, just like a "chorus echo" 

of the neuron electrical signal. Since the EEG hardware is usually much cheaper 

than fMRI, it is as well a more preferred solution for real-time applications and 

tasks. 

Due to the high availability and simplicity of the usage of EEG, the further 

sections and chapters of this work will analyse the EEG approach for brain 

data/signal acquisition. After the data is recorded by using specialized hardware, 

some digital signal processing needs to be done to filter and extract the state 

information for further analysis. This preprocessing step will be further discussed in 

the next section of this work. 
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2.4. Signal processing 

Signal analysis and filtering methods are used to process EEG data. EEG is 

recorded via multiple electrical leads on the scalp; thus, the resulting recording is a 

multi-channel time series data. An example of such EEG is given in Figure 2. 

 

Figure 2. Normal EEG (left) and EEG during a seizure (right)
3
 

The electrical leads can be placed anywhere on the skin surface. However, the 

standard placement positions are defined by the international 10–20 System of 

Electrode placement. This system maps the locations (Figure 3) of an electrode and 

the underlying area of the cortex. Each placement position [2] has a letter (to 

identify the lobe) and a number or another letter to identify the hemisphere location. 

The letters denote cortex regions: (F)rontal, (T)emporal, (C)entral, (P)arietal and 

(O)ccipital. Even numbers refer to the right hemisphere, and odd numbers refer to 

the left hemisphere. The "z" denotes the midline. 

Depending on the hardware supported sampling frequency/resolution (in 

hertz), a different temporal resolution signal is obtained. The recorded EEG signal is 

very weak (typically tens of micro-volts) and susceptible to noise; thus, the 

amplification and good filtering is required. Usually, the recording hardware 

samples the analog signal N times faster than the sampling speed and averages the 

results to cancel out the noise effectively. In order to eliminate the common mode 

noise coming from the wall 50/60 Hz power line, a dedicated notch filter is used. 

The brain waves (or EEG signal) oscillate in the range of 0–40 Hz; thus, a 

bandpass filter is commonly used to remove higher frequency noise above 40 Hz. 

The frequency domain of EEG is very important (Figure 4). Five types of EEG 

frequencies can be distinguished: delta (1–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), 

beta (12–25 Hz) and gamma (30–100 Hz). Delta waves are noticeable in deep sleep 

or dreamless state. Theta waves usually appear in light sleep or REM (rapid eye 

movement) dream state, alpha waves appear in deep relaxation with eyes closed, 

beta waves in conscious concentrated, focused state. Gamma waves are associated 

                                                 
3
 https://www.health.harvard.edu/mind-and-mood/electroencephalogram-eeg 
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with bursts of insight or sudden insight and usually are ignored when analysing 

EEG. The brain wave ranges do not strictly reside in the mentioned regions and are 

subject to variations and overlaps. 

 Since signal analysis and preprocessing is only one of the key blocks to build a 

BCI system, the further discussion in the next section will be an introduction to the 

full BCI paradigm. 

 

 

Figure 3. Electrode placement positions based on the 10–20 system
4
 

 

Figure 4. EEG signal frequencies
5
 

                                                 
4
 https://en.wikipedia.org/wiki/10–20_system_(EEG) 

5
 https://rewiringtinnitus.com/science-brainwave-entrainment/ 
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2.5. Brain-computer interface 

A brain-computer interface (BCI) is a system that transforms signals 

originating from the human brain into commands that can control other devices. The 

main purpose of the BCI is to help ill or disabled people to communicate without the 

need of muscular movement. However, BCI has as well received a lot of interest 

from the entertainment sector due to the new human-computer interaction 

capabilities. In each BCI system, there is a method to convert brain signals into 

computer control commands. The method can use different hardware, i.e., fMRI, 

EEG or any other kind, and must be able to extract relevant control information from 

the recorded brain signals. This as well includes preprocessing, filtering, removing 

artifacts from signals that are recorded. The control algorithm must be able to adapt 

to each subject during the learning step, since each brain is unique. There must be 

some form of a task that the subject could complete to express his intention, and the 

system would interpret and execute. The feedback or notifications to the human 

subject should be presented on a computer screen or some other form (e.g., blinking 

a light). There are multiple functional BCI systems that already work by this 

principle. 

It is known that sensory stimulation creates an electrical response in the brain. 

Such response is called evoked potential (EP). Stimulation can be as simple as 

playing a fixed frequency sound tone to the subject. It is known that certain 

frequency visual stimulation (for a human visual system, it is 3.5–75 Hz) causes 

same frequency oscillations in the EEG signals. There are BCI systems that use such 

stimulation approach for their mental task, and such EP is called visually evoked 

potentials (VEP). BCI system can flash different computer screen regions or lights at 

different fixed rates. The subject wanting to select one of the two options would 

need to focus and concentrate on the one with blinking regions/lights. An increase in 

energy in the EEG signal at the frequency related to the focused blinking frequency 

would be noticeable. Such VEP of the visual system is called Steady-State Visual 

Evoked Potential (SSVEP).  

Another type of the BCI system is motor-imagery (MI), and this work is based 

on it. The next section of the dissertation is dedicated to give a brief overview of the 

MI concept and the use-case. More in-depth BCI structure, analysis and 

implementation are given in the next chapters of the work.  

2.6. Motor imagery BCI
6
 

Motor imagery (MI) is a type of BCI, where the human subject has to imagine 

a motoric action (e.g., wave right hand) without executing this movement physically 

(Figure 5). It has been shown that the imagination of a movement 

stimulates/activates the motoric cortex regions of the brain. Depending on the side of 

the moved limb, appropriate brain hemisphere is activated, and the opposite is 

                                                 
6
 This section uses parts of the article [60] UKTVERIS, T., V. JUSAS. Comparison of Feature 

Extraction Methods for EEG BCI Classification, Information and Software Technologies: 21st 

International Conference, 2015, 81–92. 
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deactivated. By imagining/selecting from a list of possible movements (left hand, 

right hand, etc.), it is possible to control devices or communicate. 

 

 

Figure 5. Motor imagery BCI workflow 

 

The classification of a motoric action is to determine the action that the subject 

was thinking about when the MI EEG signal was recorded, given the EEG signal 

itself. The classification methods vary; however, machine learning (ML) approaches 

are used mostly due to complex brain oscillation patterns. In order to be able to 

classify motoric actions with great accuracy, correct and significant features must be 

extracted from the EEG signal for classifier training. In the process of motor 

imagery, various regions of the brain are induced differently: signal energy 

decreases or increases based on the motoric actions that are imagined. The effect of 

energy decrease is called Event-Related Desynchronization (ERD), and the opposite 

effect is named as Event-Related Synchronization (ERS). Since ERD/ERS describes 

transient changes in the brain signal oscillatory activity, a correct pattern of such 

information allows the classification of motor imagery tasks. However, the pattern 

extraction is error-prone due to the nature and highly non-deterministic brain activity 

even for the same test subject. After the classifier is trained for a specific subject, its 

output can be used for other device control. 

2.7. Conclusions 

This introduction chapter presented the motor imagery BCIs. After the short 

review, such conclusions can be made: 

1. The BCI field creates new possibilities to human-computer interaction 

(HCI). 

2. Motor imagery is one of many use cases for making the HCI possible. 

However, it can only work if the correct methods are chosen to identify 

and interpret brain electrical signals. Since these signals contain a lot of 

complex brain oscillations, an automated pattern extraction approach is 

needed. 

3. New methods such as machine learning and deep learning have opened a 

new perspective frontier for complex pattern analysis, which is suitable for 
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brain signal analysis. By intelligently using these new tools more effective 

solutions can be implemented for the motor imagery BCI. 
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3.  FEATURE EXTRACTION AND CLASSIFICATION
7
 

This chapter discusses the use of various signal processing algorithms for the 

EEG feature extraction and classification. In the first section, a short literature 

review and feature extraction techniques for the EEG signal analysis are presented 

along with the new Channel difference feature extraction method. Further sections 

give an overview of the classification methods that are applied in practice along with 

more details about the experiment procedure and data that was selected to assess the 

algorithms. The results and findings, concluding remarks are given in the last 

section. 

3.1. Introduction 

Over the years, many multi-class BCI solutions were proposed that use 

different feature extraction methods. A feature extraction algorithm is one of the 

most critical parts of the EEG classification task or any BCI system processing 

pipeline. Since the BCI system accuracy directly depends on the quality of extracted 

feature vectors; thus, care must be taken to ensure quality. The pipeline can be 

viewed as an EEG signal processing filter chain as shown in Figure 6. 

 

 

Figure 6. EEG signal processing filter pipeline 

 
After the initial required signal preprocessing (that must be done for all signal 

channels), the feature extraction stage comes into view. For each extraction 

algorithm, such stage can be decomposed into three distinct processing blocks that 

influence the total performance of the algorithm: 

1. Preprocessing [optional] is additional signal filtering (e.g., into different 

frequency bands).  

2. Feature calculation process the EEG channel data (e.g., channel energy 

calculation). 

                                                 
7
 This chapter uses parts of the article [1] UKTVERIS, T., and V. JUSAS. Application of 

Convolutional Neural Networks to Four-Class Motor Imagery Classification Problem. Information 

Technology And Control, vol. 46 (2), 2017, 260–273 (Section 3.4) and article [60] UKTVERIS, T., V. 

JUSAS. Comparison of Feature Extraction Methods for EEG BCI Classification, Information and 

Software Technologies: 21st International Conference, 2015, 81–92 (Section 3.1, 3.3–3.8). 
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3. Vector generation compute elements of the final vector (e.g., mean of 

channel energy). 

By controlling and changing the implementation in blocks, many algorithm 

variations can be acquired for the evaluation. This schema is handful in order to 

analyse subtle algorithm discrepancies as well. 

3.2. Literature review 

Various solutions to the motor-imagery classification problem have been 

proposed in literature. A brief review of each paper will be presented, while a 

summary is given in Table 1. 

W. Yi et al. in [3] investigated the patterns of simple limb and compound limb 

MI and their separability for the use in BCI. By using event-related spectral 

perturbation (ERSP) and power spectral entropy (PSE) methods to observe the 

spectral power changes in the EEG, the authors of the paper found differences 

between simple and compound limb motor-imagery. Moreover, the multi-class 

common spatial patterns (CSP) filter was used and compared to multi-class 

stationary Tikhonov regularized CSP (TRCSP) filter for the EEG signal feature 

extraction. It was found that TRCSP outperforms other CSP methods. Support 

vector machine (SVM) classifier was used to classify the extracted feature vectors in 

the mentioned work. Another approach involving ERSP, power spectral density 

(PSD) and phase locking value (PLV) for phase synchronization analysis was done 

again by W. Yi et al. in [4] in order to verify the feasibility of motor sequences 

involving multiple limb MI. The results confirmed that the PSD outperformed 

multiclass CSP and showed that the motor sequences of multiple limbs can be 

utilized to build a multimodal BCI system. Quite different technique by A. Úbeda et 

al. was implemented in [5] where the assessment of feasibility to decode (classify) 

upper limb kinematics from the EEG signals was done. A multidimensional linear 

regression was used for the EEG kinematics decoding. The final obtained results 

suggested that the decoding accuracy might not be high enough (above chance 

levels) to perform a real-time control, and more analysis is needed. An interesting 

experiment to stimulate the motor cortex for classification of MI was done by I. N. 

Angulo-Sherman et al. in [6]. The stimulation was executed by using transcranial 

direct current stimulation (tDCS) method. A bandpass filter and independent 

component analysis (ICA) with spectral power estimation was used for feature 

preprocessing and extraction. The proposed montage improved the classification by 

10%, while a high variable effect of stimulation was found in different motoric 

areas. The linear discriminant analysis (LDA) method was used for the classification 

of two motoric actions. The ability to discern self and third person MI analysis has 

been conducted by J. Andrade et al. in [7]. The time-frequency and source analysis 

(TFSA), including independent component analysis (ICA), CSP and principal 

component analysis (PCA), were the main methods used for the EEG signal 

processing. The classification has been implemented by using the SVM classifier. It 

was found that self and third person MI use distinct electrophysiological 

mechanisms that can be detectable at the scalp and thus used for MI BCI. K. Wang 
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et al. [8] proposed a MI-BCI paradigm in which commands are made by imagining 

clenching the right hand with different force loads. The work used three different 

loads for the right hand (light load, high load and relaxed), and the electromyogram 

(EMG) was used for the additional muscle artifact validation. The extracted features 

included time-frequency spectral power, ERSP, and they were classified by using 

SVM. It was showcased that multi-force load on the same limb can be used for the 

MI tasks successfully. A subject’s intention analysis and decoding from a streaming 

EEG data was done by K. Georgiadis et al. in [9]. Six healthy subjects and six 

subjects with neuromuscular disease (NMD) were drawn into the experiment. Three 

MI tasks: left hand clenching, right hand clenching and rest were used. Phase 

synchrony using PLV method was employed to describe the functional coupling 

between all the recordings along with the ICA for the feature preparation. The 

features were classified by using the SVM classifier. The results showed that the 

increased phase synchrony in NMD patients could turn to a valuable tool for the MI 

decoding. Healthy patients and patients with complete spinal cord injury for 3-class 

MI were analysed by G. Pfurtscheller et al. in [10]. The CSP was used to filter the 

EEG signal, and time-frequency energy maps were extracted as features for the 

classification with LDA classifier. It was found that MI patterns are not very 

pronounced for the injured patients; thus, the classification accuracy was rather low. 

However, the EEG patterns for healthy subjects were clearly discriminable. Given 

the provided evidence, it was clear that the extensive training sessions are necessary 

to achieve a good BCI performance at least in some subjects. The improvement 

based on the multiclass posterior probability for twin SVM classifier was proposed 

by Q. She et al. in [11] for classifying MI EEG. Two different datasets were used for 

the performance validation. CSP method was used to extract relevant features from 

the bandpass filtered EEG signal. A twin SVM (TSVM) was used for the 

classification. The experiment results demonstrated that the proposed method yields 

slightly higher averaged mean kappa value than TSVM; it can achieve 

comparatively close performance to the SVM competitors with lower time 

complexity on the used datasets. Mutual information feature selection (MIFS) 

method and max-relevance min-redundancy (mRMR) criterion have been used by B. 

Xu et al. in [12] to select the most relevant features from the MI EEG signal of a 3-

task right hand clench speed problem. Additional methods as Hilbert transform for 

phase extraction and CSP for feature filtering have been applied. The obtained 

feature vectors were classified by using SVM and extreme learning machine (ELM) 

classifiers. No significant difference in the classification rate between SVMs and 

ELM was found. However, it was found that time-frequency-phase feature can 

improve the classification rate by about 20% more than the time-frequency feature 

alone. A vast number of methods for feature extraction were used by H. Higashi et 

al. in [13] to solve a spatial weight determination problem for MI. The authors of the 

paper developed a data-driven criterion method (an extension to CSP) named 

common spatio-time-frequency patterns (CSTFP). The enhanced CSP feature 

extraction method was compared against filter-bank CSP (FBCSP), common sparse 

spectral spatial patterns (CSSSP) and discriminative FBCSP (DFBCSP). A linear 

LDA classifier was used for the classification. The proposed CSTFP method 
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achieved high classification accuracy and showed that it can effectively extract 

discriminative features for motor imagery. A new noise sensitivity reduction 

mechanism for CSP was proposed by R. Zhang et al. in [14] with an introduction of 

local temporal correlation CSP (LTCCSP). The new feature extraction method was 

compared to the local temporal CSP (LTCSP) and CSP. The data were classified by 

using the SVM classifier. LTCCSP achieved the highest average classification 

accuracies and showed that it can be a promising method for practical motor 

imagery BCI applications. A. Astigarraga et al. [15] analysed the way to select only 

relevant EEG channels for the EEG BCIs. A novel two-step method was introduced, 

in which, firstly, a computationally inexpensive greedy algorithm finds an adequate 

search range, and, then, the Estimation of Distribution Algorithm (EDA) is applied 

in the reduced range to obtain the optimal channel subset. Feature extraction and 

filtering was done with the CSP. SVM classifier was used as a fitness function for 

channel selection. It was found that the number of channels could be reduced 

drastically without losing accuracy. Thus, the making of specific selection of 

channels for each subject is necessary. The first attempt to control virtual and real 

robot by using four-class motor-imagery via optical BCI was implemented by A. M. 

Batula et al. in [16]. The correlation-based signal improvement (CBSI), common 

average referencing (CAR) and task-related component analysis (TRCA) methods 

were used for feature extraction, while the classification was carried out by using 

LDA classifier after the feature reduction and normalization. The results showed that 

motor-imagery can be improved with feedback, and a four-class motor-imagery-

based fNIRS-BCI could be feasible with sufficient subject training. Separate Mu and 

Beta rhythm extraction and classification was proposed by Y. Kim et al. [17]. Using 

fully data-driven multivariate empirical mode decomposition (MEMD), the authors 

obtained mu and beta rhythms from the nonlinear EEG signals and filtered them via 

strong uncorrelating transform complex common spatial patterns (SUTCCSP) 

method. The extracted features were classified by using random forest (RF), logistic 

model tree (LMT), model tree (MT), k-nearest neighbours (kNN), logitboost (LB) 

classifiers. The proposed SUTCCSP outperformed both CSP and CCSP. MEMD 

proved to be a preferred preprocessing method for the nonlinear and nonstationary 

EEG. Rensong Liu et al. in [18] proposed regularized common spatial pattern (R-

CSP) algorithm for the EEG feature extraction by incorporating the principle of 

generic learning. A combined kNN-SVM classifier by using kNN and SVM 

approaches was used to classify four anisomerous states. Feature extraction has been 

done by using Wavelet canonical correlation analysis (wCCA) and wavelet 

threshold denoising (WTD). The results indicate that the KNN-SVM classifier is 

more suitable for the recognition of the four MI states than the five mainstream 

classifiers. The work in [19] by V. Mondini et al. described a cue-paced, EEG-based 

BCI system using motor-imagery that has flexible training sessions, unbalancing in 

the training conditions, adaptive thresholds when giving feedback. Two-class BCI 

tasks were classified by using SVM. The EEG signal was preprocessed by using 

bandpass and CSP filters, and the final feature vectors were made out of log-

transformed normalized variances of the time-series. The results showed that the 

participants should see only positive feedback (as negative induces EEG non-
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stationarities). S. Guan et al. in [20] propose a novel classification framework and a 

novel data reduction method based on the manifold of covariance matrices in a 

Riemannian perspective. The features were extracted via semi supervised joint 

mutual information (semi-JMI) general discriminate analysis (GDA) or SJGDA. A 

subject-specific decision tree (SSDT-KNN) was designed to identify/classify MI 

tasks. The results showed that the proposed method is effective for the MI tasks in a 

BCI system. An improved tensor (time, frequency, channel) time based analysis 

scheme for the hybrid BCIs was proposed by H. Ji et al. in [21]. A weighted fisher 

criterion was designed to select multimodal discriminative EEG patterns, and 

nonredundant rank-one tensor decomposition model was introduced to select only 

the most effective tensors. The projection coefficients of the selected rank-one 

tensors for each hybrid task were calculated and concatenated as the feature vectors. 

The classification was done by using the SVM classifier. It was found that the 

proposed scheme is efficient in extracting multimodal discriminative patterns; 

however, the tensor generation and decomposition is very time-consuming. A 

single-channel hybrid BCI system combining motor imagery (MI) and steady-state 

visually evoked potential (SSVEP) approaches were proposed by L. W. Ko et al. in 

[22]. Short time Fourier transform (STFT) and common frequency-patterns (CFP) 

were used for the feature extraction, and the classification was done with LDA. The 

proposed hybrid system demonstrates a comparable level of classification accuracy 

combining important advantages of utilizing just a single EEG channel and 

providing more freedom in the channel placement as compared with a single-mode 

SSVEP-based BCIs. A study by I. Martišius et al. [23] proposed to use wave atom 

transform (WAT), band-power (BP) and adaptive CSP (ACSP) for feature extraction 

for the SSVEP BCI gaming system. The typical architecture, paradigms, 

requirements, and limitations of electroencephalogram-based gaming systems were 

discussed in the work, and 3-class tasks classified by using LDA and SVM 

classifiers. The average accuracy of 80.5% using SVM was achieved. The study 

showed that BCI can be feasible even when using low-resolution low-cost customer-

grade EEG acquisition devices. Other multiclass BCI decoding algorithm was 

developed by I. Xygonakis et al. [24]. The features were extracted in the cortical 

source space from the selected Regions of Interest (ROIs). CSP filtering was used 

along with kNN, Naïve Bayes, Decision Tree and LDA classifiers. LDA had 

superior performance with the highest prediction accuracy among all the subjects; 

however, the developed algorithm did not reach accuracy levels of the state-of-the-

art methods. A novel approach to MI, which combines the discriminative power of 

extreme learning machine (ELM) with the reconstruction capability of sparse 

representation, was proposed by Q She et al. in [25]. The methodology was tested on 

2-class and 4-class problem datasets. The feature vectors were constructed via 

bandpass and CSP filtering the EEG signal and applying Fisher Discrimination 

Dictionary Learning (FDDL). The classification was done by using ELM. The 

method achieved superior performance results than the other existing algorithms, 

while comparable performance with other state-of-the-art methods for the UCI 

dataset was reached. M. Dai et al. [26] proposed a transfer kernel CSP (TKCSP) 

approach for the MI BCI feature extraction that learns a domain-invariant kernel 
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directly by matching distributions of source subjects and target subjects. The 

approach was a combination of Kernel CSP (KCSP) and Transfer kernel learning 

(TKL). The algorithm was compared to subject-to-subject transfer (SJ-to-SJ) CSP, 

regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP 

(mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The SVM 

classifier was used for the classification. An improved performance was achieved by 

TKCSP. An attempt to use Power spectral density (PSD) was used by N. G. Ozmen 

et al. [27] for the feature extraction in the frequency domain by using frequency 

domain analysis. LDA and SVM classifiers were trained for classification. The 

results that were obtained were similar to the other state-of-the-art methods. M. Li et 

al. [28] presented a novel feature extraction method based on the Locally Linear 

Embedding (LLE) algorithm and discrete wavelet transform (DWT). Neural 

networks (NN) and genetic algorithm (GA) was used for the classification. The 

results confirmed that the proposed method outperforms the existing methods in 

classification accuracy with fewer feature dimensions. The nonlinear information 

that was contained in the MI-EEG signals can be represented by wavelet coefficients 

that depict the time-frequency energy distributions of the original signal. P. Batres-

Mendoza et al. [29] presented an improvement to the quaternion-based signal 

analysis (QSA) as iQSA (improved QSA). The improved method extracts features in 

a more efficient way by reducing the number of samples needed to classify the 

signal and improving the classification percentage. Boosting and decision trees (DT) 

were used for the classification. iQSA showed significant ~ 50% improvement 

compared to the original QSA. 

Table 1. Summary of the MI classification methods in literature 
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[3] 10 3, 

4 

ERSP, PSE, CSP, 

TRCSP 

64ch, 

Neuroscan 

SynAmps2, 

*Fs = 1 kHz 

SVM n/a 10-

fold 

Mean 

70% 

[4] 12 4 ERSP, 

PSD, PLV 

64ch, 

Neuroscan 

SynAmps2, 

Fs = 1 kHz 

SVM n/a 10-

fold 

Mean 

74.14% 

[5] 5 2, 

4, 

8 

Multidimensional 

linear regression 

16ch, 

gUSBamp,  

Fs = 1200 Hz 

Nearest 

neighbour 

n/a 10-

fold, 

5-

fold 

Slightly 

above 

chance 

levels 

[6] 5 2 tDCS 32ch, Enobio 

system, 

Neuroelectrics

, Fs = 500 Hz 

LDA n/a n/a Improve

ment by 

+10% 
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[7] 20 2 TFSA, ICA, CSP, 

PCA 

64ch, 

BrainVision 

acti-CHAMP, 

Fs = 1 kHz 

SVM n/a 5-

fold 

Mean 

67% 

[8] 11 2 ERSP, CSP 64ch, 

Neuroscan 

SynAmps2, 

Fs = 1 kHz 

SVM n/a n/a Mean 

70% 

[9] 12 2 PLV, ICA 63ch, Fs = 

256 Hz, 

BePlusLTM 

Bioelectric 

Signal 

Amplifier 

SVM n/a Cust

om 

(39/

40) 

Novel 

scheme 

[10] 15 3 Time-Frequency 

energy maps, CSP 

15ch, 

Easycap, 

g.Tec, Fs = 

256 Hz 

LDA n/a 10-

fold 

Mean 

67% 

[11] 9 4 CSP, posterior 

probability model, 

Platt’s estimating 

method 

22ch, Fs = 

250 Hz 

SVM BCI IV 

2a, 

UCI 

10-

fold 

Mean 

72% 

[12] 6 3 Hilbert transform, 

PCA, MIFS, 

mRMR, CSP 

21ch, 

Neuroscan 

synamps2, Fs 

= 1000 Hz 

SVM, 

extreme 

learning 

machine 

(ELM) 

n/a 5-

fold 

+20% for 

time-

freq-

phase vs 

time-freq 

[13] 4,

5 

2 CSP, FBCSP, 

CSSSP, DFBCSP 

BCI IV: 

118ch, Fs = 

1000 Hz, 

BCI III: 64ch, 

Fs = 1000 Hz 

LDA BCI III 

4a, BCI 

IV 1 

5-

fold 

92.5% 

for BCI 

III, 

92.2% 

for BCI 

IV 

[14] 5, 

9, 

13 

2 LTCCSP, LTCSP, 

CSP 

BCI III: 

118ch, Fs = 

1000 Hz, 

BCI IV: 22ch, 

Fs = 250 Hz, 

custom: 15ch, 

Fs = 1000 Hz 

SVM BCI III 

4a, BCI 

IV 2a, 

custom 

10-

fold 

LTCCSP 

77.6–

82.9% 

[15] 3 4 Greedy selection, 

EDA, CSP 

BCI III: 60ch, 

Fs = 250 Hz 

SVM BCI III 

dataset 

3a 

10-

fold 

Consisten

t 

[16] 13 4 CBSI, CAR, 

TRCA 

24 optodes, 

Hitachi ETG-

4000, Fs = 10  

LDA n/a n/a Mean 

27.12% 
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Hz 

[17] 10

5 

2 MEMD, 

SUTCCSP 

64ch, Fs = 

160 Hz 

RF, LMT, 

MT, kNN, 

LB 

Physiob

ank 

MMI 

5-

fold 

SUTCCS

P 

80.05% 

[18] 5 4 R-CSP, wCCA 14ch+2 *ref, 

Fs = 256 Hz, 

g.Tec device 

kNN-

SVM, 

LDA, RF, 

Naïve 

Bayes 

n/a Cust

om 

Mean 

87% 

[19] 10 2 CAR, CSP 11ch, 

Brainbox 

EEG-1166, Fs 

= 128 Hz 

SVM n/a n/a Performa

nce 

increase 

[20] 9, 

3, 

7 

2,

3  

Semi-JMI, GDA 

or SJGDA 

BCI IV: 22ch, 

Fs = 250 Hz, 

BCI III: 64ch, 

Fs = 250 Hz, 

custom: 14ch, 

Emotiv Epoc, 

Fs = 128 Hz 

SSDT-

KNN 

BCI IV 

2a, BCI 

III 3a, 

custom 

10-

fold 

 

 

Kappa 

+0.037 

[21] 9 2 Tensor 

multimodal 

analysis 

15ch, Fs = 

256 Hz 

 

SVM n/a  5-

fold 

Scheme 

is 

efficient 

[22] 17 2 STFT, CFP 32ch, 

Neuroscan, Fs 

= 500 Hz 

LDA n/a 5-

fold 

Mean 

85.6% 

[23] 2 3 WAT, BP, ACSP 14ch+2 ref, 

Emotiv 

EPOC, Fs = 

128 Hz 

 

LDA, 

SVM 

n/a 10-

fold 

Mean 

80.5% 

[24] 9 4 Ensemble 

classification 

model, Cortical 

ROIs, CSP 

BCI IV: 22ch, 

Fs = 250 

kNN, 

Naïve 

Bayes, 

DT, LDA 

BCI IV 

2a 

10-

fold 

Mean 

59.7% 

[25] 9, 

5, 

3 

4,

2 

CSP, FDDL BCI IV: 22ch, 

Fs = 250 Hz, 

BCI III: 

118ch and 

60ch, Fs = 

1000 Hz 

Non-

linear 

ELM 

BCI IV 

2a, BCI 

III 3a 

and 4a, 

UCI 

5-

fold 

Mean 

2a: 

64.46% 

3a: 

87.54% 

4a: 

80.68% 

[26] 5 2 TKCSP, KCSP, 

TKL 

BCI III: 

118ch, Fs = 

1000 Hz 

SVM BCI III 

4a 

n/a TKCSP 

81.4% 
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[27] 6 2, 

5 

PSD 64ch, Fs = 

512 Hz, 

Biosemi 

ActiveTwo 

LDA, 

SVM 

n/a n/a Mean 

91.85% 

[28] 3 2 LLE, time-

frequency 

features, DWT 

2ch bipolar, 

Fs = 125 Hz 

3-layer 

neural 

network 

(NN), 

genetic 

algorithm 

(GA) 

BCI III 

3b 

10-

fold 

Mean 

91.43% 

[29] 39

, 4 

2, 

3 

Quaternion-based 

signal analysis 

(QSA), improved 

QSA (iQSA) 

 

14ch+2 ref, 

Emotiv 

EPOC, Fs = 

128 Hz, 

BCI IV: 22ch, 

Fs = 250 Hz 

Decision 

trees (DT) 

using 

boosting 

BCI IV 

2a 

n/a BCI IV 

2a: mean 

82.30% 

*Fs = sampling frequency, ref = reference 

A short review of existing methods shows the popularity of machine learning 

(ML) approaches (LDA, SVM, kNN, neural networks, etc.) for the MI classification 

task. The classifier method summary is given in Table 2. 

Table 2. Summary of the classification methods 

ML branch Method 

examples 

Structure or 

behaviour 

Calculated 

metrics 

Accuracy Training 

speed 

Instance 

based 

kNN Lazy learning, 

non-parametric, 

data 

memorization 

Euclidean 

distance 

Lower Fast 

Bayesian Naïve Bayes Statistical Membership 

probability 

Lower Fast 

Linear/ 

Nonlinear 

LDA/QDA Linear functions Linear or 

quadratic 

parameters 

(weights) 

Lower Fast 

SVM Binary 

(non)linear 

Hyperplane 

parameters 

Higher Slow 

Neural 

networks 

Perceptron, 

ELM 

Multilayer 

neural 

architecture 

Weights Higher Slow 

Decision 

trees 

Decision tree Rule based Leafs/nodes Lower Fast 

Deep 

learning 

Convolutional 

Neural 

Networks 

Advanced neural 

architecture 

Filter weights Higher Slow 

Ensemble Random forest, 

Boosting 

Vote based Votes Higher Slow 
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The selection of feature extraction methods in literature is more varied; 

however, the EEG signal power and frequency domain analysis techniques show the 

largest interest because of its intuitive use and greater comprehension. The CSP 

method is the leader amongst feature filtering techniques. 

 

 

Figure 7. Dimensionality reduction techniques 

 

In general, the feature extraction and feature selection methods are 

dimensionality reduction techniques (Figure 7). They eliminate redundant data; thus, 

the classification can be more efficient [30].  

Feature selection tries to choose the most significant features from all the 

available input data. Feature selection methods can be organised into three 

categories: filters, wrappers and embedded/hybrid approaches. Filter methods tend 

to be fast, but not very reliable. They are good for large datasets. Wrappers use 

classification to optimize the feature selection for the specific problem, while 

introducing large computational cost and slowness. Hybrid methods use a mixture of 

two previous techniques. 

Feature extraction works by creating new features that summarize or describe 

the input data differently or more efficiently. Three types of feature extraction exist: 

transformation, feature creation and performance measurement. Transformation type 

extraction applies some form of a transformation (e.g., linear transformation, etc.) in 

order to shape the data differently. Feature creation produces new (not seen) smaller 

group of features from the existing feature information. The performance 

measurement evaluates the existing features (e.g., statistically) and produces new 

features that describe some input data characteristics. The next section of this work 

will concentrate on the feature extraction methods. Some of the approaches will be 

detailed and analysed further. 

3.3. Techniques for feature extraction 

Five common EEG signal feature extraction methods found in the literature 

were implemented and analysed in this work: Band Power features (BP), Time 

Domain Parameters (TDP), Teager-Kaiser Energy Operator (TKEO), Signal power 

Dimensionality 

reduction 

Feature extraction Feature selection 

Transformation Feature creation 
Performance 

measurement Filters 

Wrappers 
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and new Channel difference. The additional EEG preprocessing step was done by 

using Common Spatial Patterns (CSP) filtering. Each of the algorithms will be 

briefly detailed further. 

3.3.1.  Signal power features 

One of the simplest methods for signal energy calculation. The power of a 

signal is the sum of squares of its time-domain samples divided by the signal length 

(1). The power is computed for every EEG channel, and the result is used further as 

a feature vector. 

 

  
 

 
∑      

 

   

  (1) 

where x is the discrete EEG channel signal, N is the number of EEG signal 

samples taken, and k is the index of the EEG channel vector. 

3.3.2.  Band Power features 

The algorithm calculates multiple band power by band-pass filtering [31] the 

signal. In order to apply the algorithm, the signal frequency range must be divided 

into multiple regions. First, the initial EEG signal is filtered by using a band-pass 

filter designed for each frequency band, e.g., 4-th order Butterworth finite impulse 

response (FIR) filter. The resulting signal is squared to obtain its power. The 

resulting signal values pij of each i-th band and j-th EEG channel are then squared to 

obtain the power, and a w-size smoothing window operation is performed to filter 

the signal as shown in (2): 

 
 ̅        (

 

 
∑          
 

   

)       ̅̅ ̅̅   (2) 

where n is the vector element index. The computed result is used for the feature 

vector generation. Such method is already implemented in MATLAB signal 

processing library. 

Three different frequency bands were used in the work: 8–14 Hz, 19–24 Hz 

and 24–30 Hz, which correspond to Mu, Alfa and Beta brain waves. A similar 

approach was used in a closed loop system for navigating in a virtual environment 

via ERD-BCI [32]. The complex band power features were selected from three 

major frequency bands of cortical oscillations: μ (8–12 Hz), sensorimotor rhythm 

(12–15 Hz) and β (15–30 Hz). 

3.3.3.  Time Domain Parameters 

Similar to the BP algorithm, time domain parameters compute time-varying 

power of the first k derivatives of the signal. The obtained derivative values (3) are 
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smoothed by using the exponential moving average, and a logarithm is taken as 

given by (5). The resulting signal is used in the feature vector generation. 

 

  ( )  
    ( )

   
            (3) 

 
      (               )    (4) 

 
 ̅       (        (   )         )  (5) 

where xi is the initial i-th channel EEG signal at time t,   ( ) is the continuous signal 

derivative value at time t,       is the discrete signal derivative approximation (e.g., 

(4)) value at index n, u is the moving average parameter (       ), and  ̅     is 

the n-th component of smoothed signal derivative vector. 

3.3.4.  Teager-Kaiser Energy Operator (TKEO) 

A non-linear algorithm for a more accurate signal energy calculation was 

presented by Teager and further analysed by Kaiser [33]. The advantage of TKEO is 

the ability to discover high-frequency low-amplitude components and take into 

account the frequency component and signal amplitude of the signal [34]. The 

algorithm for a continuous signal at time t can be written as shown in the Equation 

(6), while an approximation (7) exists for the discrete signals. 

 

    ( )  (
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   ( )  
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                     (7) 

where xi is the i-th channel EEG signal vector,  [     ] are energy values computed 

for the discrete signal at EEG signal vector n-th index. The algorithm was applied 

for each of the EEG channels; then, the final feature vectors were generated. 

3.3.5.  Channel Difference method 

Since the feature extraction method is one of the critical parts of a BCI, a more 

effective solution to this step inevitably brings higher classification performance. 

Channel difference algorithm is a new method presented in this dissertation for 

extracting EEG signal features. The method is an extension to the Band power 

feature algorithm with an extra signal filtering step. The algorithm (Figure 8) works 

by computing filtered features only for those EEG channels that have at least four 

symmetrical neighbouring electrodes around them. The logic behind this approach is 

to let Laplace filter reduce the number of EEG input channels (and data redundancy) 

that are used for the feature extraction. Less noise helps the classifier to learn new 
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features more effectively. Moreover, in order to extract only the non-common 

(unique) signal part of the spatial EEG channel neighbourhood for classification, the 

neighbourhood channels, usually, oscillate similarly or have the same common 

signal basis (noise). This baseline noise signal is not desired and should be 

eliminated. It was already shown that Laplace signal filtering is effective at 

enhancing EEG spatial resolution [36] and discerning EEG signals from the 

background [37] noise. Thus, the Laplace approach (Figure 9) has been selected for 

the filtering step. 

For motor-imagery problems, the electrodes have to be chosen to be symmetric 

and cover both hemispheres in order to be able to capture all energy changes 

induced by the motor-imagery ERD/ERS processes of different sides of the body 

[35]. Thus, a good selection of electrodes having at least four neighbours (from 

international 10–20 system) could be: C3, C4, F3, F4, P3, P4, Cz, Pz, Fz, if they are 

available in the EEG system. 

The Band power method implies the decomposition of EEG signal into 

multiple frequency components. It is common to use the frequencies related to Mu, 

Alfa and Beta brain waves. The measurement of signal power for motor-imagery 

seems intuitive due to the ERD/ERS processes happening in the brain during the MI 

BCI experiment. The number of bands is a matter of choice and discussion, since the 

brain waves do not strictly fall into the frequency ranges, are subject specific and 

tend to overlap due to the brain dynamics/non-stationarity. 

Algorithm: Channel difference  

Input: E  matrix of the EEG signals of all electrodes (size: channels   samples) 

u  matrix of indices of n selected electrodes (having at least 4 symmetric 

neighbours around) and their neighbour electrodes (size: n   9) 

Output: v[1..m]  constructed feature vector (length: m = 3n) 

1. k = 1  

2. for i=1 to n do  

3.     Q = laplace(E, u[i]) 

 

/* Filter the electrode EEG signal by using 

Laplace filter.*/  

 

4.     Z = bandpower(Q) /* Apply Band Power method to filtered 

signal to get signals in Mu, Alfa and Beta 

frequencies/bands. */ 

5.     for j=1 to 3 do  

6. 

7. 

8. 

9. 

        v[k] = mean(Zj) 

        k = k+1 

    end for 

end for 

/* Compute the feature vector element (e.g., 

mean, variance, etc.) from a signal Z band 

*/ 

Figure 8. Channel difference pseudocode 
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Algorithm: Laplace filter  

Input: E  matrix of the EEG signals of all electrodes (channels   samples) 

u[1..9]  indices of group of electrodes (flattened 3x3 configuration) 

Output: e  filtered EEG signal samples (array of size: 1  samples) 

1. 

2. 

3. 

4. 

function laplace(E, u) 

    K = [-0.5, -1, -0.5; -1, 6, -1; -0.5, -1, -0.5] 

    e = {0} 

    k = 0 

    for i=1 to 3 do 

/* List of Laplace 

coefficients.*/ 

/* Array of zeroes */ 

5. 

6. 

7. 

        for j=1 to 3 do 

            e = e + K[i, j] * E[u[k]] 

            k = k + 1 

 

/* Convolution operation with 

coefficient matrix.*/  
8.          end for  

9. 

 

10. 

11. 

    end for 

 

    return e 

end 

 

Figure 9. Laplace algorithm pseudocode 

 
Figure 10. EEG channels from the 10–20 system used in the calculation 

In this work, four EEG channels that match the 1
st
 criteria of the method, i.e., 

electrodes C3, Cz, C4 and Pz (in international system 10–20), were selected as 

shown in Figure 10. Each of the selected channels has 4 or more neighbours and was 

filtered by using a Laplace filter (8) in a single channel radius neighbourhood with a 

standard 3x3 Laplace kernel as given in (9). 

 

  ∑∑       
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]  (9) 
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where Eij is the neighbouring EEG channel signal, Kij is the corresponding 

weight from the matrix at i-th row and j-th column. For example, by taking Cz as the 

selected channel, the K11 element would denote a weight of -0.5 for the 3
rd

 EEG 

channel, and K22 would denote weight 6 for the Cz channel etc. For non-existing 

channels, zero weight was used. Larger matrix sizes were not analysed as it would 

require more EEG channels in the dataset. 

After filtering, the band power of frequency ranges: 8–14 Hz, 14–19 Hz, 19–
24 Hz, 24–30 Hz, was computed for each of the four signals. The 16 resulting 

energy bands were used for the feature vector generation. 

3.4. CSP preprocessing 

Common spatial patterns (CSP) is a preprocessing technique (filter) for 

separating a multivariate signal into subcomponents that have maximum differences 

in variance [38]. The separation allows for easier signal classification. In general, the 

filter can be described (10) as a spatial coefficient matrix W: 

 
       (10) 

where S is the filtered signal matrix, E is the original EEG signal vector. The 

columns of W denote spatial filters, while the inverse of W (i.e.,    ) are spatial 

patterns of the EEG signal. The criterion of CSP for a two C1, C2 class problem is 

given by: 

 
            (     )  (11) 

 
              (     )     (12) 

where 
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     (   )
)  (13) 

 

          
(

   

     (   )
) (14) 

are the class covariance matrices. The solution can be acquired by solving 

generalized eigenvalue problem by decomposing the problem into multiple standard 

eigenvalue sub-problems. Multiclass solutions are combined of multiple spatial 

filters. For more information, see [39]. Due to the broad and positive 

acknowledgement of the CSP, the method was used in this work to filter the EEG 

data before commencing feature extraction. 

http://en.wikipedia.org/wiki/Multivariate_analysis
http://en.wikipedia.org/wiki/Variance
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3.5. Methods for classification 

From an extensive list of known EEG signal classifiers, the most commonly 

used in other literature were selected for the initial analysis, i.e., Support Vector 

Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA) and k-Nearest Neighbours (kNN). A brief overview of the 

classification algorithms will be given further. 

3.5.1.  Linear and quadratic discriminant analysis 

A classifier employs the Bayes’ theorem for the classification. The 

discriminant analysis estimates the parameters of the Gaussian distribution for each 

class (15), and the trained classifier finds the class with the smallest 

misclassification cost. The posterior probability that a point x belongs to the 

class C is the product of the prior probability and multivariate normal density. The 

density function of the multivariate normal with mean μc and covariance Σc at a 

point x is given by: 

 
 (   )  

 

(      )
   

   ( 
 

 
(    )

   
  (    ))  (15) 

where      is the determinant of   , and   
   is the inverse matrix

8
. 

 

If P(C) represents the prior probability of class C, then, the posterior 

probability that an observation x is of class C is given by (16): 

 
 (   )  

 (   ) ( )

 ( )
  (16) 

where P(x) is a constant equal to the sum over C of P(x|C)P(C). 

The Linear discriminant (or Fisher discriminant) analysis model is named for 

its inventor, R. A. Fisher [40]. Linear method (LDA) has the same covariance matrix 

for each class, and only means vary. For quadratic discriminant analysis (QDA), 

both means and covariances of each class vary. 

                                                 
8
 https://www.mathworks.com/help/stats/prediction-using-discriminant-analysis-models.html 
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3.5.2.  Support Vector Machine 

 
Figure 11. Finding separating SVM hyperplane between features 

The Support Vector Machines (SVM) were introduced by Boser, Guyon and 

Vapnik [41] in 1992. SVM is a two-class algorithm that classifies data by finding 

the best hyperplane (17) separating all one class points from all of the other classes 

(with the largest margin) as shown in Figure 11. 

          (17) 

where w is the hyperplane coefficients vector, x is the point, and b is the hyperplane 

constant vector. 

The problem is of dual quadratic programming nature that can be reduced to 

the Lagrangian optimization problem. A scheme of ONE vs ALL or ONE vs ONE is 

used if more than two classes are needed. 

3.5.3.  k-Nearest Neighbours 

kNN is one of the simplest algorithms for classification. A feature vector is 

classified by a majority vote of its neighbours. The object class is assigned to the 

most common one found among k nearest neighbours (e.g., to class “square” as 

given in Figure 12). 

 

 
Figure 12. Classifying object with a kNN classifier (k = 5) 
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3.6. Data selection and experiment 

3.6.1.  Evaluation procedure 

The feature extraction methods that were mentioned in the previous sections 

were implemented and compared in the experiment. All experiments were 

completed by using MATLAB numerical computation environment, BioSig library 

for biomedical signal processing and libSVM for multiclass SVM classification 

tasks. The ideas of using different EEG signal energy processing methods and CSP 

filtering (with initial code implementation) were acquired from the earlier work of 

Piotr Szachewicz [42]. The classifiers were trained and validated by using tenfold 

cross-validation. The default parameters were used for LDA and QDA classifiers as 

provided by MATLAB package. The grid search method was used for SVM RBF 

(radial basis function) gamma and cost parameter optimization [43]. The used values 

were: C = 10, γ = 0.25. 

3.6.2.  BCI IV 2a dataset 

A BCI signal database “2a” [44] from the BCI IV competition held in 2008 

was used for classifier training and testing. At the time of writing this dissertation, 4-

class motor-imagery test dataset was the only one known data that was freely 

available online.  

The analysed experiment dataset consisted of 22 channels that EEG signal 

recorded at 250 Hz sample rate for 9 healthy test subjects (total 288 motor imagery 

trials per subject). The signal stored in the dataset was already additionally 

preprocessed by using a bandpass-filter between 0.5 Hz and 100 Hz, and 50 Hz 

notch filter was enabled to suppress power line noise. 

The EEG signals in the dataset were recorded by using a cue-paced 

(synchronous) mode of operation in two sessions on different days for each subject. 

During each session, the test subjects were asked to imagine movement of one out of 

four different motoric motions (left hand, right hand, feet, tongue) for 3 seconds. 

Each of the trials (Figure 13) in the dataset started with an audible signal (beep), 

followed by visual information (cue) to perform one of the mental tasks and a short 

break after the mental task. 

Before using the data in all experiments described in this work, additional 

artifact correction of EEG data was done to discard invalid trials as mentioned in 

[44] by Brunner et al. The corrected EEG data were bandpass-filtered between 7 Hz 

and 30 Hz in order to cover μ and β brain rhythm frequencies and further used for 

the feature extraction in this work. 
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Figure 13. Single trial timing scheme 

3.6.3.  Accuracy calculation 

The accuracy of the BCI data classification results was computed by 

calculating the Cohen’s kappa [45] coefficient κ as given by Equation (18): 

   
     

    
  (18) 

where p0 is the classification accuracy, pe is the hypothetical accuracy of a 

random classifier for the data (pe = 1/4 for four-class problems). 

3.7. Results 

All experiment results are given in Table 3 and Table 4. As it can be seen from 

the tables, by using simple EEG features, the mean kappa for the LDA method 

scores the highest accuracy (and average) almost everywhere. This could be an 

indication of good linearization or good linear separation of the EEG features. Still, 

a combination of CSP filtering and SVM classification beats the LDA for single 

feature type, but the difference is negligible. A maximum average kappa of 0.495 

was reached in tests (i.e., accuracy of 62%), which is still far from 90% accuracy 

achieved in other [46] work that uses more advanced techniques. Since Channel 

difference method does not support CSP filtering, N/A values are presented. 
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Table 3. Classification results using CSP filtering (kappa values) 

Classifier Ch.diff Teager TDP 
Mean 

power 
BP C-Avrg 

kNN N/A 0.3890 0.4327 0.4249 0.3393 0.3965 

LDA N/A 0.4437 0.4950 0.4638 0.4154 0.4545 

QDA N/A 0.3868 0.4344 0.4259 0.3515 0.3997 

SVM N/A 0.3645 0.3835 0.4605 0.4075 0.4040 

F-avrg N/A 0.3960 0.4364 0.4438 0.3784  

 

Table 4. Classification results without CSP filtering (kappa values) 

Classifier Ch.diff Teager TDP 
Mean 

power 
BP C-Avrg 

kNN 0.3678 0.1538 0.2045 0.1867 0.1225 0.2071 

LDA 0.4346 0.4147 0.4134 0.4400 0.2487 0.3903 

QDA 0.3179 0.2864 0.2790 0.3185 0.1480 0.2700 

SVM 0.4372 0.1553 0.1791 0.2950 0.1877 0.2509 

F-avrg 0.3894 0.2525 0.2690 0.3101 0.1767  

 
The average feature performance (F-avrg) indicates that Mean power and TDP 

features are the best feature methods when using CSP filtering. However, Channel 

difference method achieves the best result when CSP filtering is not being done. 

Band power algorithm was the worst performer in tests. A graphical view of the 

same data is given further in Figure 14 where CSP filtering normalization influence 

can be seen better (left with CSP, right no CSP). 

 

 
Figure 14. Average feature results for classifiers 

It should be noted that the Channel difference method performance follows 

along the Band Power performance when CSP is used due to the obvious reason: the 

method needs to extract different signal frequency bands by using the BP algorithm. 

This can be seen in Figure 15 further. Since Channel difference method cannot use 

CSP filtering, one result bar is not shown. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

kNN LDA QDA SVM

K
ap

p
a 

va
lu

e 

kNN LDA QDA SVM

Ch.diff

Teager

TDP

Mean power

BP

C-Avrg



45 

 
Figure 15. Average accuracy per feature type 

The view showing method accuracy per subject as in Figure 16 (left no CSP, 

right with CSP) is quite important. Some subjects are resistant to the existing EEG 

methods; thus, the subject-specific (adaptive) techniques are required in order to 

achieve higher classification accuracy. The positive normalizing effect can be seen 

in the CSP case by giving greater average accuracy. 

 
Figure 16. Average accuracy per subject 

All experiment source code, test data and detailed results can be acquired from 

repository: https://github.com/tomazas/icist2015. 

3.8. Conclusions 

This chapter analysed multiple signal energy feature extraction methods and 

their usage for 4-class motor imagery BCI classification problem. After conducting 

experimental analysis, such conclusions can be made: 

1. Mean power and/or TDP among the tested feature extraction methods 

show the best accuracy (0.4638 kappa ~ 59% and 0.4950 kappa ~ 62%, 

respectively), when doing EEG signal classification with CSP filtering. 
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2. A positive influence on the accuracy and test results were visible (10–15% 

increase) when the CSP filter was applied. This clearly states that CSP is 

effective and should be used for the EEG feature filtering. 

3. The best classification performance was demonstrated by LDA among the 

tested classifiers (0.4545 kappa ~ 59%). Such results provide insight that 

LDA algorithm can be successfully used for the EEG signal classification 

if the EEG features can be linearly separable and/or EEG data is properly 

preprocessed. 

4. A proposed Channel difference algorithm for signal feature extraction was 

able to achieve the best average classification result (0.3894 kappa ~ 54%) 

among the other tested feature extraction algorithms, when CSP filtering 

was not used (outperforming others by 6–16%). The ability to reach 

classification results close to CSP (0.4438 kappa ~ 58%) shows that the 

approach is effective. 

5. Some subjects (T5, T6) show high resistance to current feature extraction 

methods; thus, the subject-specific (adaptive) techniques are needed in 

order to achieve higher classification accuracy. 

6. Many improvement possibilities exist for future work, including the 

development of better feature extraction algorithms that are able to adapt 

to the subject specific EEG information. Moreover, other new 

classification techniques can be used for solving the motor-imagery 

problem. 

  



47 

4.  DEEP LEARNING AND NEURAL NETWORKS
9
 

4.1. Overview 

It was seen in the previous chapter that simple, linear and other commonly 

used feature extraction and classification methods do not provide the necessary 

accuracy for 4-class MI BCI, and other still unexplored techniques or solutions are 

needed to solve the MI task. 

A relatively new and perspective approach to the EEG data classification was 

found in the deep learning branch of machine learning. The convolutional neural 

network (CNN) is a novel animal visual cortex inspired method for image based 

classification that has not been widely used with EEG, let alone motor-imagery task. 

With the abilities to generalize/pool and self-learn the needed features in non-linear 

ways, it can provide benefits for the EEG classification. Since the EEG motor 

imagery task lacks accurate solutions, the CNN could be the new perspective way to 

look deeper into the same problem. Regarding its novelty and success in other fields, 

it was chosen as the main tool for four-class EEG motor imagery problem analysis 

in this work. 

By using CNN for classification, subtle fine tuning is required to receive the 

best results. This involves selecting a proper neural network architecture, feature 

method and feature map size. These nuances and their effect on classification 

performance are further analysed and discussed in this work. 

Furthermore, the feature extraction and feature map (image) generation 

methods for classification are of great significance. In the simplest cases, the EEG 

signal and feature vector can be treated as a one-dimensional signal. In order to 

move to two-dimensional image classification, two dimensional features or feature 

transformation methods are required. Possible techniques for such a task are 

presented and discussed in the next sections. 

4.2. Deep learning 

In recent years, an increasing number of papers that use CNN for EEG 

classification task have been published. Multiple approaches have been proposed for 

solving motor imagery and other related problems. A short review of the common 

techniques is presented in the remainder of this section. 

CNN was successfully used by Mirowski et al. [47] to predict epileptic 

seizures from the EEG. The authors have proposed to use four types of bivariate 

statistical properties of the EEG signal as features for classification. They argue that 

the commonly used univariate features (computed on each EEG channel separately) 

lack the required channel relationship information. Cross-correlation, non-linear 

interdependence, Lyapunov exponent and wavelet synchrony feature information 

                                                 
9
 This chapter uses parts of the article [1] UKTVERIS, T., and V. JUSAS. Application of 

Convolutional Neural Networks to Four-Class Motor Imagery Classification Problem. Information 

Technology And Control, vol. 46 (2), 2017, 260–273 (Sections 4.1–4.11). 
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was packed into 2D images for the classification. The prediction accuracy of 70% 

was achieved. Another work in the field of EEG analysis was dedicated to solving 

the SSVEP (Steady State Visually Evoked Potential) signal classification problem 

by Cecotti and Gräser [48], where a subject is introduced to the visual stimulation at 

a specific frequency. A four layer CNN network topology with a Fourier transform 

filter in second layer was tested. The selected architecture proved to achieve up to 

97% classification accuracy. It was noted that the switch from time domain to 

frequency domain gave a positive effect on the classification performance. However, 

the introduced reliability rejection criteria for each class made the final solution less 

robust, produced a lot of sample rejections and gave average generalization. The 

different application of CNN to the SSVEP is described in a paper by Bevilacqua et 

al. [49]. The authors used a four layer network architecture with a hidden L2 Fast 

Fourier Transform (FFT) layer for frequency extraction. Due to the nature of the 

problem, the signal analysis was done in the frequency domain. Channels Pz, PO3, 

PO4, Oz (of 10-20 electrode system) were used to record EEG samples at 256 Hz 

within 2 second windows. The images of 4x512 elements were composed of filtered 

EEG data and used as an input for the CNN classifier. The network was trained for 

1000 epochs. The mean accuracy of 88% was obtained by this method. 

CNN capability of detecting P300 events from the EEG was showcased by 

Cecotti and Gräser [50] with the accuracy of 95%. The signal analysis was 

conducted separately in time and space domains. The images of 64x64 in size 

created from 64 channels of down-sampled EEG data were used for the 

classification. Seven different CNN models were verified. Additionally, the work 

employed a strategy to use vector based CNN kernels instead of matrix kernels in 

order to prevent mixing features related to space and time domains. A technique 

based on trained network first layer weight analysis was used to extract 8 most 

relevant electrodes for each subject. 

Recently, CNN has been used by Manor et al. [51] to solve RSVP (Rapid 

Serial Visual Presentation) task (where a subject has to detect a target image within 

five possible categories). The authors introduced a spatio-temporal regularization 

penalty for the EEG classification to reduce network overfitting. The accuracy of 

75% was reached with CNN architecture of three layers, having 64x1 convolutional, 

two pooling and two fully connected filters. The images of 64x64 (64 channels by 

64 time samples) were used as an input for the network. The advantages of using 

neural network models against manually designed feature extraction algorithms were 

presented along with the criticism of the manual method for unclear and endless 

possibilities of combining different methods in an efficient way.  

Various techniques directly related to the current motor imagery problem have 

been proposed over the years in literature. Qin and He in [52] describe the analysis 

of a two-class motor imagery problem. The authors proposed a technique to analyse 

the EEG in the frequency domain. A time-frequency distribution (TFD) images were 

constructed based on the complex Morlet wavelet decomposition for electrode pairs. 

The TFDs were subtracted from symmetrical channels to form weight matrices that 

were used to compute in weighted energy for the classification. A Laplacian filter 

was used for signal preprocessing. The average classification rate of 78% was 
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achieved for this method. Another approach based on the energy entropy 

preprocessing and Fisher class separability criteria was proposed in [53] by Xiao et 

al. The authors analysed a two-class motor imagery problem in time-frequency 

domain. Similar TFD distributions (spectrograms) were constructed from the EEG 

short-term Fourier transform (STFT) data. Three different classification methods 

were compared. The classification accuracy for the two-class problem was 85%. A 

more sophisticated approach for 3-class motor imagery analysis was done by Zhou 

et al. in [54]. The study proposed a new method to extract the MRICs (movement 

related independent components) and utilized ICA (Independent Component 

Analysis) spatial distribution patterns for such a task. Different ICA filter designs 

were tested. The ICA filter design was confirmed to be subject invariant. The 

classification accuracy of 62% was received.  

A more recent study by Bai et al. [55] on 4-class motor imagery proposed a 

novel Wavelet-CSP (Common Spatial Patterns) with the ICA-filter method. The 

EEG artifacts were removed by using negative entropy-based ICA. The mean 

accuracy of 76% was achieved by using SVM (Support Vector Machine) classifier.  

One of the latest works in the field of CNN and 4-class motor imagery is the 

paper by Yang et al. [56]. The authors proposed a frequency complementary feature 

map selection (FCMS) method. ACSP (Augmented CSP) feature filtering was used 

in their work. Two other feature selection methods, i.e., the random map selection 

(RMS) and selection of all feature maps (SFM), were analysed. FCMS was the best 

performing method due to its ability to limit the ACSP feature redundancy in 

different frequency bands. The CNN used 5 layer architecture with 5x5 filters 

(kernels). The work as well demonstrated that CNNs are capable of learning 

discriminant, deep structure features for the EEG classification without relying on 

the handcrafted features. The average classification accuracy that was achieved was 

69%. 

4.3. Convolutional Neural Networks (CNN) 

Convolutional neural networks are biologically-inspired variants of MLPs 

(multi-layer perceptrons). They have been successfully used for character 

recognition in the past by LeCun et al. [57] and currently have gained interest from 

the researchers due to the performance capabilities. CNNs consist of one or more 

convolutional layers with the weights of the layer shared across the input. Multiple 

layers form a non-linear “filter” chain. The convolution is designed to handle 2D 

data, as opposed to the other neural networks that operate on 1D vectors. This ability 

makes the extracted features easier to view and interpret. 

4.3.1.  Feed-Forward Neural Network  

A typical neural network function as presented by Vedaldi and Lenc [58] is 

defined as: 

  ( )    (   (  (    )   )    ), (19) 
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  (20) 

where x = (x1,…,xk) is the network layer input (a M×N size image with K channels), 

w = (w1,…,wn) is the vector of learned parameters (weights). The function f 

transforms a set of K images into a new set of K’ images of size M’×N’. 

4.3.2.  Convolution  

A 3-dimensional convolution operation for k’-th filter (from a set of filters) can 

be expressed as (21): 

         ∑                  

   

  (21) 

where y is the output (image) sample of the convolution (for k’-th filter) at 

coordinates (i', j'), xij is k-th image input sample at coordinates (    ,     ), wij are 

the k-th filter (set of weights), and i, j are the indices (coordinates) of the filter. 

4.3.3.  Pooling 

The CNN concept of pooling is a form of non-linear down-sampling. Pooling 

partitions the input image into a set of non-overlapping rectangles and for each such 

sub-region, outputs the maximum or average value. In this way, it is possible to 

reduce the feature size (and computation) as required and provide translation 

invariance. Pooling function is given by (22): 

         {                        }, (22) 

where y is the output, p is padding, and i, j are the indices of the k filters.  

4.3.4.  Non-Linear Gating 

Typical CNN non-linear filters use linear functions with a non-linear gating 

function, applied identically to each component of the feature map. The simplest 

function is the Rectified Linear Unit (ReLU). Such filter can be written as: 

         {      } , (23) 

where y is the output, x are the input filters, and i, j are the indices of the k filters.  

4.3.5.  Normalization 

Another important CNN building block is channel-wise normalization. This 

operator normalizes the vector over the feature channels at each spatial location in 

the input map x. The form of the normalization operator is the following: 
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   (24) 

where y is the output; κ, α, β are normalization parameters, G(k) = [k−⌊ρ/2⌋, 

k+⌈ρ/2⌉]∩{1,2,…,K} is a group of ρ consecutive feature channels in the input map. 

4.3.6.  Softmax 

The operation computes the softmax operator across the feature channels xijk, 
and, in a convolutional manner, at all spatial locations t    ̅̅ ̅̅ ̅. It is a combination of 

an activation function (exponential) and a normalization operator: 

      
     

       
   

  (25) 

where y is the output of the softmax operation, and i, j are the indices of the k filters. 

4.3.7.  Need for Common Spatial Patterns (CSP) 

The CSP method (more thoroughly described in section 3.4) has been selected 

for the EEG signal filtering, since it is a widely adopted signal preprocessing method 

and has other interesting features as shown by Naeem et al. [59]: it decomposes the 

raw EEG into subcomponents (spatial patterns) having maximum differences in 

variance. Furthermore, Wang et al. in [60] concluded that this technique allows 

better feature separation in feature space and more accurate signal classification. 

Moreover, the property of CSP to decrease the feature dimensionality is very 

suitable for the EEG data complexity reduction. It has been shown by Uktveris and 

Jusas in [61] and other works that this method gives a substantial EEG signal 

classification performance increase; thus, it is a highly recommended filtering 

method. 

4.4. Feature extraction methods 

A multitude of EEG feature extraction methods have been studied by Uktveris 

and Jusas in [61] and other literature. Their output usually is a one dimensional 

feature vector that can be used for classification. The ability to adapt the algorithms 

for two-dimensional CNN has not been thoroughly analysed. It is also important to 

know if the adapted methods can give similar or better results when applied in 2D 

for CNN. Thus, a review of the most common feature extraction techniques and their 

implementations for the CNN is presented in this work. A short description of the 

EEG feature methods that were tested and analysed in this work is given next. 
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4.4.1.  Mean channel energy (MCE) 

The energy of each i-th EEG channel xi is computed as the mean of N squared 

time domain samples (26). The result is then transformed by using a Box-Cox [62] 

transformation (i.e., logarithm) in order to make the features more normally 

distributed, and, finally, the resulting values are combined into a feature vector: 
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)       ̅̅ ̅̅̅   (26) 

4.4.2.  Channel variance (CV) 

The variance for each i-th EEG channel is the second moment of the signal xi 

computed about its mean   ̅. The result is normalized by using Box-Cox for the final 

feature vector: 
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An example of a feature map generated by using this technique is given in Figure 

17. The EEG trial data from the dataset described in section 4.9.1 was used to make 

the image. 

 

Figure 17. Feature map generated with CV method 

4.4.3.  Mean window energy (MWE) 

This technique computes (28) the mean signal energy of N windows of size W 

= s/N for each i-th EEG channel (where s is the EEG channel sample count). The 

resulting coefficients are Box-Cox transformed (28) to form the final map: 
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The maximum window count in the experiments was selected as p = n (where n is 

the EEG channel count) in order to form rectangle feature maps. 

4.4.4.  Principal Component Analysis (PCA) 

PCA is a filtering technique that decomposes an input signal into the main 

components by using orthogonal transformations. Wang et al. showed in [63] that it 

could be used to suppress artifacts and noise in the EEG signal as well. The 

decomposition (29) is carried out multiple times: initially, to determine the principal 

components, secondly, to suppress noisy components at the decomposition levels 1–
3:  

  ̂      (  )       ̅̅ ̅̅̅   (29) 

where n is the number of EEG channels. The final feature vector consists of the 

filtered  ̂  EEG mean energy elements (30) that were normalized via Box-Cox: 
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The multi-resolution of 5 levels with Daubechies least-asymmetric wavelet (4 

vanishing moments) was used for the decomposition in this work. 

4.4.5.  Mean band power (BP) 

The algorithm is already described in section 3.3.2; thus, it will not be 

repeated. By using the obtained result  ̅   from the initial BP step, the required mean 

power values yij are computed via (31): 
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where i is the band number and j is the EEG channel of length N. The computed 

result is used as the feature vector components. 

4.4.6.  Channel FFT energy (CFFT) 

As analysed by Cecotti and Gräser in [48], this method employs the Fast 

Fourier Transform (FFT) for computing i-th EEG channel signal    energy 

estimation in the frequency domain. The FFT result is squared, and the sum of all 

elements is computed:  
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where n is the number of the EEG channels. The final feature vector components yi 

are formed after the Box-Cox normalization transformation is applied. 

4.4.7.  Channel Discrete Cosine Transform (DCT) 

The signal energy concentration can be estimated via DCT as shown by 

Birvinskas et al. in [64]. The sum of N squared DCT coefficients of each i-th EEG 

channel signal    forms the feature vector components of this method (33). Features 

yi are normalized by using Box-Cox transform: 
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4.4.8.  Time Domain Parameters (TDP) 

TDP has already been described in section 3.3.3; thus, it will not be repeated. 

The components yi of the final feature vector have been computed by using (34): 
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where n is the number of EEG channels, and  ̅  are the smoothed derivative values. 

4.4.9.  Teager-Kaiser Energy Operator (TKEO) 

TKEO has already been described in section 3.3.4; thus, it will not be repeated. 

The components of the final feature vector were computed by using (35). 
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where n is the number of EEG channels, and    are TKEO energy vector for i-th 

EEG channel. 

4.4.10. FFT energy map (FFTEM) 

This method generates a 2D feature map from EEG by using FFT. Each i-th 

EEG channel signal x is transformed into the frequency domain and forms a single 

row in the feature map as shown in (36). Full signal window was used to gain a 

global energy view(state) as opposed to the work by Hu et al. [65], which used 

short-term FFT windows to capture the energy dynamics. The full view has the 

advantage of incorporating the entire frequency domain without losing data at the 

cost of additional noise that does not necessarily belong to the valuable MI EEG. 



55 

        (  )       ̅̅ ̅̅̅  (36) 

The computed map H was scaled to required feature map size for the CNN 

classification. Figure 18 shows an example result map that was generated with this 

method. EEG trial data from the dataset described in section 4.9.1 was used to make 

the image. 

 

Figure 18. FFT energy map example 

4.4.11. Complex Morlet Wavelet Transform (CWT) 

CWT is a time-frequency analysis method used by Le Van Quyen et al. in [67] 

for obtaining wavelet coefficient maps Wx (37) at specific frequencies f and time  , 

which were analysed more by Qin and He in [52]: 
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All EEG channel signals combined as one x(t) signal were convolved with a 

number of different frequency Morlet Wavelets (38), where         and n is the 

number of wavelet cycles (38): 
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Finally, the   (   ) was decomposed back to the initial EEG dimensions, and 

the mean energy coefficients of each channel formed a single row (39) in the feature 

map: 
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where n is the frequency/row count and N is the Wx row count. In this work, 22 

different frequencies were used of [0; 30] Hz range band along with the wavelet 

cycles of range [0.5; 5]. An example output of this method is given in Figure 19. 

The EEG trial data from the dataset described in section 4.9.1 was used to make the 

image. 
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Figure 19. Feature map generated with CWT 

4.4.12. Raw signal features (RAW) 

RAW is a baseline method that uses the initially preprocessed EEG signal as 

values for the feature map. Each i-th EEG signal x channel directly maps to the 

feature map Hi i-th row as shown in (40): 

            ̅̅ ̅̅̅   (40) 

If necessary, the resulting feature map is scaled (upsampled) to the required 

image size for the CNN training. 

4.4.13. Signal energy map (SEM) 

This method is using raw EEG signal energy values for the feature map 

generation. The Box-Cox normalized energy of each i-th EEG signal x channel is 

computed, and the resulting vector is directly mapped to the feature map Hi i-th row 

as shown in (41): 

         
       ̅̅ ̅̅̅   (41) 

If necessary, the resulting feature map is scaled (upsampled) to the required image 

size for the CNN training. An example map generated with this method is given in 

Figure 20. The EEG trial data from the dataset described in section 4.9.1 was used to 

make the image. 

 

Figure 20. Feature map generated with SEM 
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4.5. CNN architecture selection 

Choosing the correct network architecture for the problem gives a greater 

probability of getting better classification results. CNN supports serially connected 

layers. Due to the large number of different layer types, it is not trivial to find an 

optimal chain that closely matches the given problem.  

The tests for 11 different CNN architectures were completed. Starting from the 

simplest and ending with the more complex ones, the tested architecture 

configurations in a simplified notation are given in Table 5. The used notation is 

explained in Table 6. A visual example of CNN architecture ICRPFSO can be seen 

in Figure 21. 

The dataset described in section 4.9.1 was used for the architecture evaluation. 

The fixed test parameters for CNN were the following: image size 44x44px, initial 

learning rate 0.01, momentum 0.01, epochs 500, batchsize 128, features algorithm 

MCE. 

Table 5. List of evaluated CNN architectures  

# CNN configuration Notes 

1 IC(4)RPFSO 4 filters 

2 IC(4)RP(4)FSO stride 4 

3 IC(8)RPFSO 8 filters 

4 ICRPFSO  

5 IC(32)RPFSO 32 filters 

6 IC(64)RPFSO 64 filters 

7 ICRPCRPFSO  

8 ICRFSO  

9 ICFSO  

10 IC(7x1)RC(1x7)RPFSO Non-rect filters 

11 IC(1x7)RPC(7x1)RPFSO Non-rect filters 

Table 6. CNN layer symbolic notation 

Notation Description (default parameters) 

I input layer of size (44x44x1) 

C convolutional layer (7x7, 16 filters) 

R ReLU layer 

P max pooling layer (2x2, stride 2) 

F fully connected layer (4 classes) 

S softmax layer 

O classification (output) layer 
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Input image 

44x44 

Convolution layer 

16 filters (6x6) 

7x7 

ReLU layer 

16 filters (6x6) 

Pooling layer 

16 filters (3x3) 

1x1 2x2 

1x1 

Fully connected layer 

(4 outputs) 

Softmax 

layer 

 

Output 

layer 

 

flatten 

…
 

Figure 21. Example view of architecture ICRPFSO 
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The evaluation results are shown in Figure 22. It can be noted that the testing 

accuracy is around ~ 65% between the most of the configurations. However, the 

training accuracy displays a more dynamic profile from 50% to 80%. In this case, 

the CNN configuration with the least amount of computational-processing resources 

(i.e., the simplest) should be selected as optimal: 1, 2, 4 or 10. 

 

Figure 22. CNN architecture evaluation 

4.6. CNN parameter tuning 

CNNs are more complex, since they have more hyper-parameters than a 

standard multi-layer perceptron (MLP). However, the usual learning rates and 

regularization constants still apply. CNN training parameters, initial learning rate, 

momentum, batch size and the number of epochs must be tuned for the best 

performance. Since a 4D parameter grid based search is too resource intensive, a 

parameter range scanning approach was carried out to find the best accuracy of the 

given parameter value. The same initial CNN parameters as specified in section 4.5 

were taken as base and changed during the tuning operation. The tuning process is 

described next. 

The momentum value denotes the contribution for the next gradient value from 

the previous iteration in Stochastic Gradient Descent (SGD) method. Larger 

parameter values decrease the effectiveness of faster learning as shown in Figure 23. 

In tests, the values above 0.6 push the CNN to overfitting and thus decrease the 

generalization and testing accuracy. The value of zero for momentum is not 

recommended, since that invokes a loss of historical gradient learning information. 
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Figure 23. Momentum evaluation 

The optimal number of training epochs ensures that the network learns and 

generalizes the provided features. The excessive epochs deteriorate the testing 

accuracy, since the network is overfitting. Figure 24 shows that the optimal count 

for training is 400–500 epochs. 

 

Figure 24. Epoch count evaluation 

The batch size is the image count that is used for the single epoch training. It 

has a direct effect on the network learning quality as shown in Figure 25. The 

maximum batch size is the number of the total images, e.g., N = 288 in the 

experiments. The values lower than N/4 prevent the network from the fully 

maximizing learning efficiency: greater values only increase the computational costs 

at the price of no change in the testing accuracy. 
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Figure 25. Batch size evaluation 

The initial learning rate must be adopted for each problem. The experiments 

show that the value should not be bigger than 0.1, while the network testing 

accuracy peak is achieved with the values close to 0.01 as shown in Figure 26. 

Lower values allow learning fine grained features, while large ones have the 

tendency to overfit the network. 

 

Figure 26. Initial learning rate evaluation 

4.7. Feature map and filter dimensions 

The problem is to find the right level of granularity in order to create data 

abstractions at the proper scale given a particular dataset. Different feature maps and 

filter sizes were analysed for the motor imagery problem. The dimensions from 8x8 

to 64x64 of feature maps were tested. The test results are given in Figure 27.  
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Figure 27. Feature map size evaluation 

The plot shows that the optimal feature map size is 24x24 with the accuracy of 

65%, even though a more accurate solution of 66% exists at size 44x44. Choosing a 

smaller size feature map ensures faster computation and processing speeds. 

Moreover, it should be noted that the accuracy convergence is reached when the 

feature map size is at least twice (15x15) the size as the convolution layer filter size 

(7x7 in the experiment). When the optimal size is reached, the further increase in 

dimension only introduces extra computational costs. 

Convolution layer filter size limits the learning granularity by encompassing 

fixed size feature map regions. Ten different filter sizes were tested in the range [2; 

11] for 22x22 feature maps. The test results are displayed in Figure 28. 

 

Figure 28. Convolution layer filter size evaluation 

The optimal filter size, which gives the highest accuracy, is 7x7 and 11x11. 

Choosing the smaller filter size ensures faster processing speeds. The filters of size 

2x2 and 3x3 exhibit too few weights to learn the details of the provided data fully. 

4.8.  Feature map generation 

Many feature extraction methods form a single one-dimensional (1D) vector of 

coefficients known as the feature vector. A problem arises, since the CNNs are 
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designed to process only two-dimensional data (2D images). An alternative is to 

interpret the one-dimensional signal as a 2D single row image of dimensions WxH, 

where W is the width and H is the height (H = 1). However, the negative aspect of 

this approach is that only a single row CNN filters/kernels will be usable, and no 

row interdependence of the data will be taken into account. 
Thus, a solution needs to be implemented to overcome this problem. This work 

reviews and proposes multiple feature vector adaptation techniques and algorithm, 

which allows transforming 1D feature vector data into 2D data that is viable for the 

use with CNNs. The adaptation step fits into the main EEG data classification chain 

as shown in Figure 29. 

 

 

Figure 29. Adaptation in the EEG classification chain 

Since CNNs typically take relatively small size (NxN) square/rectangular 

images (e.g., 7x7px, 22x22px, 44x44px, etc.) for the classification, there can be 

three possible outcomes when the size N is compared to the feature vector length L. 

Let’s denote this comparison ratio as FVLIR (feature vector length and image ratio). 

The ratio definition is given in (42), and a more categorized view can be seen in 

Table 7. 

        
 ⁄     (42) 

where N is the feature map (image) size, L is the feature vector length. 

Table 7. Feature vector adaptation techniques 

FVLIR Technique Options 

< 1 (too short) 

1. Duplication 

2. Upsampling (interpolation/expansion) 

3. 2D mapping 

horizontal/vertical 

multiplier 

mapping function 

1 (fits) 
1. Direct packing 

2. 2D mapping 

horizontal/vertical 

mapping function 

 

> 1 (too long) 

1. Cutoff 

2. Wrapping 

3. Downsampling (reduction) 

4. 2D mapping 

length 

horizontal/vertical 

step size 

mapping function 

Based on the FVLIR value (i.e., L and N comparison result), the adaptation 

technique can be selected. The proposed techniques will be detailed in the next 

sections.  

EEG 

signal 
Bandpass 

filter 

Feature 

extraction 

2D 

adaptation 
CNN 

training 
Classification 
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4.8.1. Feature duplication 

This approach is only viable for the feature vectors that are too short to be 

packed directly into the image (L < N). An example (Figure 30) of such 

transformation is to duplicate the feature vector in both directions to fill the feature 

map space. 

 

Figure 30. Horizontal and vertical vector duplication 

Some additional filtering can be applied to the new repeated copies. An 

example of such feature map is given in Figure 31. 

 

Figure 31. Feature map generated via vector duplication 

4.8.2. Feature upsampling 

Upsampling or interpolation allows to expand the feature vector and should be 

used when the feature vector length is less than the image width (L < N). This 

method will create additional n (multiplier) samples by interpolating between the 

existing data points (Figure 32). 

Feature vector 

2D image Final 2D image 
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Figure 32. Upsampling feature vector 

 

In the process, this will extend/lengthen the signal and shift it to the lower 

frequencies in the frequency domain because of the extended/lengthened signal 

oscillations. 

If only one vector per single EEG trial is generated, the duplication technique 

will need to be used to replicate the extended vector vertically. If each row directly 

maps to each EEG channel; then, only direct packing will be necessary. 

4.8.3. Direct packing 

Direct packing technique places the feature vector directly into the image 

because the feature vector length and image size matches. Each vector is added to 

the row or column of the image (depending on the packing direction). The example 

of this approach can be seen in Figure 33. 

 

Figure 33. Horizontal direct feature vector packing 

4.8.4. Feature cutoff 

This technique can be used when the feature vector length is bigger than the 

image size (L > N). The vector tail that does not fit into the image (> N) is cut off 

(Figure 34), and only head forms a row in the image. The duplication or direct 

Feature vector 

2D image 

Upsampled/extended vector 

Feature vector 1 

2D image 

Feature vector 2 

… 

… 
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packing can be used further to complete the whole image. It is not recommended to 

do this for long feature vectors as a significant amount of information can be missed. 

 

Figure 34. Feature vector cut-off 

4.8.5. Wrapping 

Wrapping packs a very long feature vector (Figure 35) into the image by 

chopping the vector into multiple (image size N) chunks. Each part forms a single 

row/column of the final image. The method should be employed when the feature 

vector length is close to the square of the image size (L  N
2
) or larger. 

 

Figure 35. Wrapping feature vector 

4.8.6. Downsampling 

Downsampling is the opposite procedure of upsampling in which a feature 

vector longer than the image size (L > N) is shortened/reduced by removing every n-

th (step) element from the initial vector (Figure 36): 

2D image 

Cut off vector 

Feature vector 

0 

0 0 

2D image 

Feature vector 

0 0 

0 

0 

… 
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Figure 36. Downsampling feature vector 

Once the vector size matches the image size (L = W), the direct packing or 

duplication will need to be done. 

4.8.7. 2D mapping 

In the mapping method, there is a need to select such a transformation H that 

allows converting 1D signal into 2D: 

          (43) 

The example of such approach is to use function f that takes element pairs (x,y) 

from the feature vector and maps them to 2D Cartesian coordinate system as shown 

in Figure 37. 

    (     )  (     )  (44) 

 
Figure 37. Feature vector element pair transformation to 2D map 

 

2D image 

Downsampled vector 

Feature vector 

0 

Feature vector 

0 

2D image 
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x2 

(x1, x2) 

… 

… 
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In order to get a more meaningful feature representation on a 2D image, the 

feature vector element pairs can be constructed from the statistical measurements 

(e.g., x1 = mean channel energy, x2 = channel energy variance) and normalized in the 

range [-1; 1]. 

4.8.8. Adaptation algorithm 

Given the feature vector length L and feature map/image size N, one can 

follow the algorithm depicted in Figure 38 to determine the recommended 

adaptation technique for the EEG trial feature vector transformation. The technique 

is selected in a way that it will try to preserve as much of the input data as possible 

and remove the least amount of features during 2D transformation. 

 

Figure 38. Feature vector adaptation algorithm 

Based on the provided adaptation algorithm flow, the selected and used 

transformation techniques for feature extraction methods in experiments are shown 

in Table 8. The direct packing is used if the feature method generates 2D feature 

map or vector of the same size as image size N; otherwise, upsampling or 

downsampling is done for 2D data as well as duplication for 1D data. The default 
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vector length and image size baseline is set to match 22 EEG channels in order to be 

able to make square size training images easier for the CNN classifier. 

Table 8. Adaptation method’s proposed transformation techniques 

Method 

Features 

dimension 

(vector size L) 

Determined 2D transformation 

N > 22 N < 22 N = 22 

MCE 1D (1x22) duplication cutoff/downsampling direct packing 

CV 1D (1x22) duplication cutoff/downsampling direct packing 

MWE 2D (22x22) upsample downsampling direct packing 

PCA 1D (1x22) duplication cutoff/downsampling direct packing 

BP 1D (1x22) duplication cutoff/downsampling direct packing 

CFFT 1D (1x22) duplication cutoff/downsampling direct packing 

DCT 2D (22x22) upsample downsampling direct packing 

TDP 1D (1x22) duplication cutoff/downsampling direct packing 

TKEO 1D (1x22) duplication cutoff/downsampling direct packing 

FFTEM 2D (22x22) upsample downsampling direct packing 

CWT 2D (22x22) upsample downsampling direct packing 

RAW 1D (1xSamples) downsampling downsampling downsampling 

SEM 1D (1xSamples) downsampling downsampling downsampling 

4.8.9. Effects of the feature map scaling 

A baseline method and the simplest approach from all the feature extraction 

techniques is to classify raw EEG signal samples. The raw EEG data form factor of 

NxM, (where N is the number of channels, M is the number of samples, N<<M) 

restricts the direct use of it for the CNN feature images due to a large number of 

samples. Thus, it must be scaled down. Generally, a feature map of WxH size 

(where W is width and H is height) can be formed by down/up-scaling the raw EEG 

signal or extracted feature data. The technique of resizing can use bilinear or other 

type of filtering in order to prevent sharp data transitions, limit noise and smooth out 

the final feature map. An example of filtering that is applied to the raw EEG feature 

maps can be seen in Figure 39 (from left: nearest, bilinear, bicubic filtering). 

 

Figure 39. Example of 22x22 raw EEG feature maps 

The initial testing results of the three different image filtering techniques for 

raw EEG signal classification are given in Table 9. The results show ~ 10% 

difference in classification accuracy when various filtering techniques are applied. It 
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can be seen that for raw EEG signal analysis, the nearest filtering method should be 

used in order to retain original signal details as much as possible. For other feature 

types, the effect could be the opposite. 

Table 9. Raw EEG feature map resize filtering accuracy 

Filter method Training Testing 

Nearest 0.47 ± 0.14 0.43 ± 0.11 

Bilinear 0.35 ± 0.11 0.33 ± 0.12 

Bicubic 0.33 ± 0.10 0.32 ± 0.11 

4.9. Experiments 

The main purpose of the experimentation activities was to investigate the 

capabilities of the CNN classifier for four-class motor imagery classification 

problem as well as to analyse the influence of various CNN architectures, feature 

maps, filter sizes and other parameters to classification accuracy. The experiments 

were conducted in the analysis step (tuning the CNN network parameters) and the 

main motor imagery classification step (for each subject). 

The experiment results were measured and evaluated by using normalized 

accuracy in the range [0; 1]. The CNN network parameters were tuned and verified 

before the final classification step. The tests were carried out by using ten-fold cross 

validation. Moreover, the ability of CNN to learn from feature data was validated 

visually by inspecting the learned filter/weight images. 

The final classification results for each subject are provided in the results 

section further. 

4.9.1.  Dataset 

The same BCI signal dataset 2a (contributed by Brunner et al. [44]) from the 

BCI IV competition held in 2008 and described earlier in Section 3.6.2 of this work 

was used for the classifier training and testing. 

4.9.2. Details of implementation 

The software code for the experiments was implemented in MATLAB 

2016b/9.1 numerical computation environment. CNN is a new MATLAB 

functionality (starting from the 2016a/9.0 version), which uses GPU processor for 

parallel computations. Other alternatives for the convolutional neural networks exist, 

such as the open source MatConvNet library created by Vedaldi and Lenc [58]; 

however, due to the stability issues, the library was left as an option for future CNN 

evaluations. Parts of the open source BioSig library for biomedical signal processing 

and imaging were used in the EEG signal analysis.  

CNN convolution layer’s initial filter weights in all the tests were set to have a 

Gaussian distribution with a mean of 0 and a standard deviation of 0.01. The default 

for the initial bias was 0. 
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4.10. Results 

The final classification results were obtained after the analysis, and CNN 

parameter fine-tuning step. A CNN with initial learning rate of 0.01, momentum of 

0.1, batch size of 128, 200 epochs and architecture I(22x22)C(4x4,16)RPFSO was 

trained and tested for the final evaluation of all subjects. The results were verified by 

using 10-fold cross-validation scheme. The accuracies with their standard deviation 

values are displayed in Table 10, and a graphical view is given in Figure 40. From 

the results, it can be seen that the best performing approach (70% in training and 

68% in testing) is the FFT energy map method. The second and third best methods 
in tests are the Channel variance (68%/61%) and Signal energy map (67%/61%) 

features. The lowest accuracy of (41%/31%) was achieved by the TDP feature 

method. 

 

Figure 40. CNN classification results 
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Table 10. Classification results for the feature methods 

Method Training Testing 

MCE 0.66 ± 0.19 0.58 ± 0.20 

CV 0.68 ± 0.18 0.61 ± 0.22 

MWE 0.66 ± 0.19 0.58 ± 0.20 

PCA 0.61 ± 0.16 0.55 ± 0.20 

BP 0.52 ± 0.18 0.39 ± 0.11 

CFFT 0.66 ± 0.19 0.58 ± 0.20 

DCT 0.54 ± 0.17 0.42 ± 0.11 

TDP 0.41 ± 0.11 0.31 ± 0.07 

TKEO 0.43 ± 0.12 0.34 ± 0.05 

FFTEM 0.70 ± 0.18 0.68 ± 0.20 

CWT 0.46 ± 0.10 0.43 ± 0.13 

RAW 0.48 ± 0.14 0.37 ± 0.11 

SEM 0.67 ± 0.18 0.61 ± 0.20 

The best FFTEM method accuracy has been compared to the other known 

methods (Table 11) found in the literature and against BCI IV finalists. The 

accuracy that was obtained is similar to the BCI IV competition winner and close to 

the other state-of-the-art methods. 

Table 11. Comparison of the existing methods 

Author Features Classifier Kappa 
Classification 

accuracy 

Song et al. [69] (BCI IV 3rd 

place) 

CSP Ensemble multi-class 0.31 48% 

Xygonakis et al. [24] CSP Ensemble model 0.46 59% 

Guangquan et al. [69] (BCI IV 

2nd place) 

Log 

variance 

LDA and Bayesian 0.52 64% 

She et al. [25] CSP Non-linear Extreme 

Learning Machine 

0.52 64% 

Yang et al. [56] (BCI IV 1st 

place) 

FBCSP Naïve Bayes Parzen 

Window 

0.57 68% 

Proposed technique FFTEM CNN 0.57 68% 

She et al. [11] CSP PPTSVM 0.63 72% 

Ang et al. [68] FBCSP Naïve Bayes Parzen 

Window 

0.66 75% 

All experiment source code, test data and detailed results can be acquired from 

repository: https://github.com/tomazas/itc2017. 

4.11. Conclusions 

This chapter analysed Convolutional Neural Networks and their application to 

four-class motor-imagery problem. After an in-depth CNN analysis and parameter 

fine-tuning, promising results were achieved. After evaluating results, such 

conclusions were made: 

1. The FFT energy map method demonstrated the best feature determination 

abilities and achieved 68% mean testing accuracy for all the BCI IV 
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competition 2a dataset subjects. The gained accuracy is slightly better than 

in the new techniques proposed by Tabar and Halici in [70] and similar to 

more complex state-of-the-art EEG analysis techniques by Yang et al. 

[56]. 

2. The introduced feature vector adaptation method allowed using feature 

extraction methods that produce 1D feature vectors for 2D feature map 

CNN classification. The implemented technique was successfully 

validated during the experiments. 

3. The use of less complex feature extraction methods like FFT energy map 

shows high CNN method potential for the motor imagery EEG analysis 

and capability to discern complex brain signal oscillatory patterns. 

4. It is enough to use non-complex CNN architectures (as ICRPFSO) to be 

able to achieve the best accuracy results, reduce computational resource 

usage and shorten the processing time. 

5. CNN parameter fine-tuning is required to achieve higher accuracy results 

and efficient computational resource usage. A range based search 

approach is enough to tune parameter values without exceeding time and 

computational resource limits. 

6. The best CNN filter size for the given MI problem was found to be 7x7 to 

learn the details of the provided features effectively. While the best feature 

map size has to be 24x24 pixels (and at least twice the size of the filter 

size). Larger dimensions introduce extra computational costs, while 

smaller produce too few weights. 

7. CNN has proven to be a good choice for the EEG MI classification task. 

Further work can be continued in order to provide more efficient feature 

extraction methods adapted specifically to the CNNs and favouring 

processing speed and accuracy. 
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5.  DESIGN OF EEG ACQUISITION SYSTEM
10

 

5.1. Introduction 

The increasing awareness of brain-computer interfaces (BCI) for brain signal 

analysis has sparked new interest in electroencephalogram (EEG) acquisition device 

development. Various rehabilitation [71], entertainment and even security [72] 

applications can be implemented by post-processing [73, 74, 75] such electrical 

signals recorded from the human scalp. However, the development of BCI is a 

challenging task due to the noisy and variable nature of the EEG signal itself. The 

lack of validation, design knowledge and analysis for such systems impede progress 

in this field. Even if there were adequate trials to use mobile devices for such a 

problem [76], professional high-quality and high-resolution analog front-ends are 

required to capture the non-stationary brain signals in microvolt ranges. With the 

introduction of dedicated EEG low-noise programmable analog-to-digital converters 

(ADCs), such as the ADS1298, such tasks can be achieved more easily. Professional 

and high-quality EEG capture systems are available from multiple vendors such as 

G.Tec, TMSi, etc. Due to their more than four thousand US dollar price (Table 12), 

these devices are not meant for general public or entry-level development and thus 

prevent wider BCI adoption and research. Furthermore, there is minimal knowledge 

of design or operational information on how these devices are actually validated and 

achieve their proclaimed specifications. Additionally, there are no compact EEG 

systems allowing the scaling and reconfiguration of hardware based on the problem 

requirements (up to 64 or more channels). Achieving this would help to manage and 

reduce complexity and minimize runtime costs. 

Table 12. State-of-the-art brain-computer interface (BCI) systems 

System 

Sampling 

Speed, 

Hz 

# of 

Channels 
Accuracy CPU Electrodes I/O CMRR 

Price 

€ 

g.tec [77] 

Nautilus 
500 64 

24-bit, <60 

nV (LSB), 

<0.6 μV 

RMS 

TI 

DSP 

Active-

dry/gel 

Wireless 

2.4 

GHz/USB 

>90 dB 
>4.5 

k 

g.tec 

HIamp 
38.4 k 256 

24-bit, <60 

nV (LSB), 

<0.5 μV 

RMS 

TI 

DSP 

Active-

dry/gel 
USB >90 dB >31 k 

TMSi 

Mobita 

[78] 

2000 32 
24-bit, <24 

nV 
N/A Passive dry 

Wi-Fi 

IEEE 

802.11 

b/g 

>100 

dB 
N/A 

TMSi Porti 

[79] 
2048 32 

22-bit, <1 

μV RMS 
N/A 

Active-

shielding 

Bluetooth/ 

optic fiber 
>90 dB N/A 

                                                 
10

 This chapter uses parts of the article [66] UKTVERIS, T., and V. JUSAS. Development of a 

Modular Board for EEG Signal Acquisition, Sensors (Basel, Switzerland), vol. 18,7 2140, 2018 

(Sections 5.1–5.6). 
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TMSi Refa 2048 136 
22-bit, <1 

μV RMS 
N/A 

Active-

shielding 

Optic 

fiber 
>90 dB N/A 

With respect to the previously mentioned problems, this work presents a new 

low-cost modular and vertically stackable development board that can be used for 

entry-level EEG signal acquisition. Furthermore, the proposed design allows the 

system to be easily scalable and adapted to various EEG tasks, while maintaining 

significant cost savings. Simple but effective validation methods are presented for 

the acquisition and overall design assessment. 

The next sections of this dissertation give a more detailed review of the 

proposed solution. Section 2 reviews state-of-the-art designs and approaches found 

in the literature. Section 3 provides a system architecture view and discusses various 

technical decisions. The methods for system board evaluation and validation along 

with the experiments are described in Section 4. The review and comparison of 

results with other similar systems are discussed in Section 5. Final conclusions and 

directions for the future research are presented in the last Section 6. 

5.2. Overview 

More than a few papers exist that describe the developed prototypes of EEG 

acquisition systems. F. Pinho et al. [80] presented a computationally powerful, 

wearable system with 32 active dry electrodes (based on TLC272 precision op-amp) 

for long-term epileptic patient monitoring. The battery-powered design featured a 

24-bit resolution analog-to-digital conversion unit ADS1299 that is capable of 

sampling up to 1 ksps (1k samples/s). The EEG data could be processed real-time on 

a dedicated 1 GHz ARM CPU or sent to a host PC over Wi-Fi 802.11 b/g for the 

analysis and post-processing. Even though the focus of the work was to create a 

standalone system with a higher performance CPU, the maximum battery life of 25 

h was the main limitation while running under the maximum load. Since the device 

was not optimized for size, this required longer wires and use of active electrodes. 

A similar approach was used by S. Feng [81] in designing their EEG 

acquisition system for solving a steady state, visually evoked potentials (SSVEP) 

problem. A 16-channel cape for a Beagle Bone Black development board (having an 

AM3358 ARM Cortex-A8 1 GHz CPU) has been developed with two ADS1299 

ADCs and capable of sampling at the speed of 1 ksps. The authors claimed that their 

system was superior due to its provided embedded processing power and ability to 

work up to 12 h on two lithium batteries. However, while the produced cape 

consumed only 5% (101.2 mW) of the total required power under maximum load, 

the use of such system for portable battery powered applications is currently still a 

big challenge. 

B. Senevirathna et al. [82] designed a low-cost 7-channel, small size and 

battery-powered EEG solution for long-term monitoring of schizophrenic patients. 

The board used a single ADS1299 ADC that was controlled by using SAM G55 

microcontroller. The authors claimed their system captured the analog data at 250 
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Hz sample rate and sent it over Bluetooth by using 230.4 k baud. The power 

consumption of 69 mA was reported with all channels in active state. Similarly, T.T. 

Vo et al. [83] introduced a low-cost 8-channel EEG recording device for the BCI 

applications. Having an STM32F4 microcontroller, a single ADS1299, and capable 

of sending data over Bluetooth, the design was dedicated to favour small size and 

low power usage. A sampling speed of 250 Hz was used to record EEG via wet, 

gold-cup electrodes. Despite successful validation, both previously mentioned 

devices lack spatial resolution for the EEG, and the overall board expandability was 

not considered. 

A new re-design for an ECG acquisition system featuring a 24-bit ADS1298 

ADC was done by D. Campillo [84]. The author interfaced the 8-channel analog-to-

digital converter to an MSP430F5529 microcontroller running at 12 MHz. The 

presented system board was capable of sampling at 500 Hz rate, the intrinsic channel 

noise (ICN) was 9 µV, and the common mode rejection ratio (CMRR) was 94 dB. 

The board was tested for more than 12 h of continuous use. The main limitation of 

the system for EEG use was the lack of channels for good spatial resolution. 

M. Wild et al. [85] presented a tiny 4-channel in-ear proof of concept EEG 

acquisition device. Built upon OpenBCI project ideas, the authors designed a BCI 

board with ADS1299 ADC that was interfaced by using an Atmega328 

microcontroller. The raw EEG data were sent over Bluetooth to remote a PC host for 

processing. Another 16-channel EEG recording device that is using dry electrodes 

has been developed by V. Nathan et al. [86] and tested with SSVEP, P300 speller, 

and motor imagery BCI tasks. The recorded raw EEG data were sent to the host PC 

via Bluetooth for final processing.  

5.3. System architecture 

This section gives a detailed overview of the main components along with the 

integration and communication mechanisms that were used to develop the system 

board. 

5.3.1.  Analog front-end 

Designing a reliable, high-accuracy, precision analog front-end (AFE) is not a 

trivial task [87] that is why commercial, off-the-shelf solutions should be considered 

first. There exist multiple AFE devices in the market that are capable of discretizing 

the analog EEG signal. Since the main brain EEG oscillatory waves propagate in a 

low-frequency range of 0–40 Hz, a high-sampling performance AFE is not required. 

Thus, the main focus should be directed to the AFEs with a maximum number of 

supported channels, noise reduction capabilities and high acquisition resolution. E. 

Mastinu et al. [88] have compared two popular production grade AFEs, i.e., 

ADS1299 and RHA2216, and found that they provide similar results, although 

slightly better noise performances and higher myoelectric pattern recognition (MPR) 

accuracy was measured for ADS1299. D. Acharya et al. reviewed ADS1299 
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development board produced by Texas Instruments [89] for the EEG task. Based on 

the evaluation given in their paper, the ADS was recommended for the EEG 

acquisition due to low power use, low input referred noise (0.205 μVrms–6.5 

μVrms) and the overall improvement over provided features in the same device 

segment. 

In addition, the OpenBCI development board, which is popular among 

researchers [90] and entry-level enthusiasts, uses ADS1299 device for the AFE. 

According to M. Zieleniewska et al. who compared OpenBCI to the top-class EEG 

amplifier from TMSi [91], the signal quality was comparable to the commercial 

EEG amplifier and sufficient for research and advanced BCI applications, despite 

the board and electrode shielding problems. 

Due to its extensive features, wide use in the industry and many applications, 

ADS1299 and alternative ADS1298 were selected as the AFE for the developed 

system. Free samples of ADS1298 were acquired from Texas Instruments. 

ADS1298/9 is a device [92] for biopotential measurements and medical 

instrumentation (electrocardiogram (ECG), electromyogram (EMG) and EEG) with 

eight low-noise programmable gain amplifiers (PGAs) and eight high 24-bit 

resolution Delta-Sigma ADCs. The device has a self-test, temperature and lead-off 

detection mechanisms. Although similar and designed for the same application, the 

main differences between the devices are given in Table 13. 

Table 13. Main differences of ADS1298/9 devices 

Parameter ADS1298 ADS1299 

Sample rate (max), ksps 32 16 

Input type 
Differential 

Single-ended 
Differential 

Power consumption, mW 6 41 

Min analog voltage, V 2.7 4.75 

SNR, dB 112 121 

Max programmable gain 12 24 

CMRR, dB -115 -110 

5.3.2.  Host microprocessor 

There are no general solutions for choosing the host processor for interfacing 

AFE. In the literature [80–91], depending on the use case and required 

computational performance, the host processor ranges from microcontrollers to 

embedded microprocessors with 1 GHz or higher frequency. It is inappropriate to 

choose high-performing CPU for such battery-powered EEG recording devices. All 

intensive computations, such as machine learning should be carried out remotely on 

a host PC. The CPU in this work was chosen in order to reach the required 

maximum analog front-end sampling speed of 1 ksps (1k samples/s) and the 

communication with wireless device modules speed. 
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Figure 41. EEG system board component integration view 

For the initial system version (Figure 41), an Atmega2560 microcontroller 

(MCU) has been selected running at 16 MHz. Interrupt based serial peripheral 

interface (SPI) communication for the ADC sampling and data transmission over 

wireless connection has been implemented. Two ADS1298 AFEs were tightly 

packed (top and bottom) on a single 4-layer printed circuit board (PCB) (Figure 42a) 

giving in total 16-channel EEG in the standalone system. Additional general purpose 

inputs-outputs (GPIOs) were broken out by two headers. For wireless 

communications, two add-on boards were used, i.e., Bluetooth 4.0 Low Energy HM-

11 (top) and a popular ESP8266 Wi-Fi module (bottom). Additionally, an 

accelerometer and gyroscope MPU 6050 module controlled over I2C bus was added 

into the system. Local data storage was implemented by using a micro SD card slot. 

The image of a finished initial system board version can be seen in Figure 42b. The 

dimensions of the credit card sized board are 10 cm × 5 cm. 

 

 

 

(a) (b) 
Figure 42. Designed PCB: (a) Top and bottom of the PCB board, (b) Initial version of the 

finished system PCB board 

In order to achieve expandable and modular architecture, a SPI header was 

exposed to the PCB for stacking additional boards up to the total count of four, thus, 

reaching in total 64 EEG channels. All ADS1298 devices were connected by using 
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the cascaded configuration mode (Figure 43). The other supported “Daisy-Chain” 

configuration type that was not acceptable due to the limitation-inability to read and 

write each ADS registers and was not used in this work. 

 
Figure 43. Cascaded view of multiple connected ADS1298 devices 

5.3.3.  Wireless communication 

In order to decouple the system board from various AC and other noise 

sources, the EEG data must be sent to the host PC over a wireless connection. 

Furthermore, wireless transfer is the main solution for replacing long electrode cable 

braids and limiting the cable swing introduced signal noises and artifacts [93]. 

Multiple alternatives exist for such task. The most common approach is to send data 

over Bluetooth due to the very low power consumption of such technological 

devices. However, the short connection range and low data rates (baud) are the main 

bottlenecks of this technique when the higher sample rate or higher count of the 

EEG channels are used. Another approach is to use higher bandwidth 

communication technologies [94] such as Wi-Fi 802.11. By employing Wi-Fi, the 

bottleneck changes, and the limiting factor is the speed of the MCU. 

Both technological approaches were used in the proposed EEG system. The 

Bluetooth component was implemented by using mini HM-11 BLE 4.0 module that 

is limited to a maximum baud of 230,400. The Wi-Fi component was implemented 

by using ESP8266-12E module via universal asynchronous receiver-transmitter 

(UART) and SPI interfaces that are limited to the maximum baud of 921,600 and 

MCU speed, respectively. The required baud rate B (Table 14) in bits for sending 
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uncompressed EEG data of different sampling speed Fs and the number of EEG 

channels Nch can be computed by using Equation (45): 

     (     )      (45) 

Table 14. Bandwidth requirements for the raw EEG data 

# of EEG 

Boards 

Sampling 

Speed, Hz 

# of 

Channels 

BAUD, 

BPS 

BLE 4.0 

UART 

ESP8266 

UART/SPI 

1 250 16 96,000 Yes Yes/Yes 

2 250 32 192,000 Yes Yes/Yes 

2 500 32 384,000 No Yes/Yes 

2 1000 32 768,000 No Yes/Yes 

4 250 64 384,000 No Yes/Yes 

4 500 64 768,000 No Yes/Yes 

4 1000 64 1,536,000 No No/Yes 

5.3.4.  Electrode system and head cap 

A prototype acrylonitrile butadiene styrene (ABS) plastic head cap (Figure 

44a) based on the popular open-source Ultracortex OpenBCI model was printed by 

using a 3D printer and used in tests. The placement of electrodes in the head cap 

conforms to the international 10–20 electrode system. 

 

  

(a) (b) (c) 

Figure 44. Headcap components: (a) 3D Printed plastic head cap used for tests, (b) Electrode 

cap from Florida Research Institute, (c) Plastic electrode holder with a spring system 

Since gel-based electrodes require the application of conductive paste and tend 

to dry out when used for prolonged times, a reusable dry type EEG electrodes 

(Figure 44b) from Florida Research Institute were tested instead. Dry electrodes 

must have good contact with skin to limit resistance to 10 kΩ or less [95]. Pressing 

the electrode against the skin surface tends to improve the contact with the skin. To 

prevent skin-electrode contact degradation (and thus impedance increase) and due to 

the advances in 3D printed part usage for EEG [96], a spring tension system (Figure 

44c) for each electrode was used in screwable socket type holders to hold the 

electrode in place. 
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5.3.5.  Accelerometer 

The addition of an accelerometer and gyroscope into the acquisition system 

allowed the detection of artifacts in the EEG signal (as in Reference [97]) that were 

introduced due to the movement of the patient. It is not always possible for the 

subject to stay still for long periods of time. Due to the high component integration, 

it was optimal to use a pre-existing MPU-6050 module package for the initial 

version of the system PCB. 

5.3.6.  Cost of parts 

The developed system consists of easily obtainable hardware parts. The initial 

goal was to design the PCB only from the essential pieces that are required for an 

EEG acquisition board. Table 15 shows the parts that were used, their prices and a 

possible source for building a single board (16-channels) without including 

manufacturing cost. In order to build a system with 64 channels, four such boards 

must be produced. The total price for a single board is about 114€ at the time when 

the author was writing this dissertation. This opens more possibilities for researchers 

and the general public to experiment with BCI. These significant savings come at 

the expense of performance and have no professional support for hardware and 

software. 

Table 15. Bill of materials of a single EEG board 

Part# Item Usage Source Count 
Price/Pcs, 

Eur 

Total, 

Eur 

1 
4 Layer PCB 

board 

Base for mounting SMT 

devices 
Seeed 1 8.00 8.00 

2 ADS1298IPAG Analog front-end chip Mouser 2 31.00 62.00 

3 ESP8266-12E Wi-Fi module eBay 1 1.40 1.40 

4 
MPU6050 GY-

521 

Accelerometer+gyro 

module 
eBay 1 0.92 0.92 

5 Atmega2560 Main CPU eBay 1 4.20 4.20 

6 HM-11 Bluetooth 4.0 module eBay 1 1.34 1.34 

7 SN74LVCC3245 TTL to 3V3 level shifter Mouser 1 0.98 0.98 

8 LM2664 Voltage inverter Mouser 1 0.73 0.73 

9 MCP1825S 5 V LDO/0.5 A Mouser 1 0.50 0.50 

10 MCP1825S-3V3 3.3 V LDO/0.5 A Mouser 1 0.50 0.50 

11 MIC5219-2.5 2.5 V LDO/0.5 A Mouser 1 0.88 0.88 

12 TPS72325 −2.5 V LDO/0.2 A Mouser 1 2.23 2.23 

13 
Other 

components 

Capacitors, resistors, 

diodes, buttons, pin 

headers, sockets 

Mouser 1 30.00 30.00 

    
Total 

(€): 
82.68 113.68 
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5.4. Evaluation 

This section presents the EEG acquisition system board evaluation techniques 

and tests done to validate the operational correctness. While there are methods to 

verify the system by using high-priced third-party test equipment [98], simpler 

techniques exist to assess the system. The proposed methods are detailed in further 

sections. Stacked, four board system was validated with 64 electrodes. The 

validation tests were done by using a high-resolution (HR) mode with a PGA gain of 

one and sample rate of 500 Hz, while 1 kHz sampling rate was used for Wi-Fi 

bandwidth evaluation. 

5.4.1.  Internal ADC tests 

ADS1298 analog front-end device contains several internal operation modes 

for validating the internal ADCs. The validation and calibration of ADCs are crucial 

for correct EEG recordings. ADS registers (CONFIG1, CONFIG2 and CONFIG3) 

were programmed to connect the internal test signal output to each channel ADC 

input (INT_TEST = 1). If channel ADCs are working correctly, the corresponding 

signal would be seen on each channel output. Three different signal generation 

modes were tested: slow 1 Hz square wave (TEST_FREQ = 0), fast 2 Hz square 

wave (TEST_FREQ = 1) and “DC” mode, which allowed constant high voltage 

(VCC) to be set for each channel. 

For each signal type, several second recordings have been captured by using 

500 Hz sample rate. An example of 8-channel data from each test is shown in Figure 

45. The recordings presented typical 1 Hz and 2 Hz square waves and DC pattern. 

This allowed concluding that ADCs were working properly. In order to validate the 

system integrity, each time ADS1298 was started, the same signals were used for 

device calibration. 

 
Figure 45. 1 Hz, 2 Hz and DC of recorded internal ADC test signals 
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5.4.2. Lead-off detection 

Lead-off detection allowed validating ADS function to recognize the addition 

or removal of electrodes from the human scalp properly. This function ensures that 

electrodes will have contact with the scalp skin before any EEG recording is made. 

Lead-off detection has been validated by enabling lead-off detection for each of the 

EEG channels in ADS registers (LOFF_SENSP = 0xFF). The electrodes were 

placed on the subject’s scalp, and the status of LOFF_STATP register was checked. 

The value of 0xFF for the register was expected for proper subject skin contact and 

value of 0x00 if all the electrode leads were removed. Additionally, each individual 

channel was checked by using the same routine. The device passed the lead-off 

detection test for all channels successfully. 

5.4.3.  EEG capture software 

An open-source OpenBCI graphical user interface (GUI) was modified (Figure 

46) to support the board that was developed in this work. The GUI was used for 

monitoring, recording and testing purposes. All raw EEG signal filtering (low-pass, 

high-pass and notch filters for 50/60 Hz [99]) were implemented in the software. 

Support for up to 64 channels has been introduced along with the accelerometer data 

visualization. 

 
Figure 46. OpenBCI GUI used for validating each ADS1298 
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5.4.4.  Teeth clenching and eye blinks 

One type of the EEG signal artifacts that can be easily captured during the 

recording session is muscle induced teeth clenching and eye blinks [100]. The 

existence of these unwanted artifacts allows validating the sensitivity of the analog 

front-end. The EEG recording session has been initiated to see the artifact influence 

on the system. For this reason, eight electrodes were placed on the subject’s scalp 

(based on the electrode placement system 10–20), and two different states were 

recorded, i.e., teeth clenching and eye blinks. The resultant EEG trace of the 

experiment is shown in Figure 47. Clenching artifacts are clearly visible (samples 

270–450), while harder to recognize eye blinks have notable periodic behaviour 

(samples 525–700). The recording shows that the analog front-end is susceptible to 

muscle movement artifacts and confirms the sensitivity of the system. 

 
Figure 47. Teeth clenching and eye-blink test EEG signals 

5.4.5.  Alpha waves 

Another common technique for the EEG recording system validation is to 

analyse alpha waves [101]. These waves can be recorded in a wakeful human 

subject during relaxation, when the subject’s eyes are closed. 
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Figure 48. Alpha waves detection of the recorded EEG signal 

Detection and recording of the alpha waves were tested by connecting the 

electrodes (O1, Oz, O2 from 10–20 electrode placement system) to the subject’s 

scalp and asking them to relax, open their eyes for 30 s and stay relaxed with closed 

eyes for one minute. During the closed eyes interval, an increased activity in 7.5–

12.5 Hz region in frequency domain showed a typical alpha wave signal (Figure 48) 

of brain’s occipital lobe area. The acquired results proved that the system was able 

to successfully record EEG signal of such phenomenon. 

5.4.6. ECG signal detection 

One of simpler tests that can be initiated to validate any instrumental ADC is 

to record the activity of the heart (electrocardiogram or ECG). A healthy patient 

ECG was recorded by using three leads. An example of a 78 bpm ECG diagram is 

shown in Figure 49. Typical periodic QRS complexes are visible in 2 mV peak 

signal, which denotes proper functioning of the signal capture front-end. 

 
Figure 49. ECG signal recorded by using the developed board 
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5.4.7.  Input referred noise 

Input referred noise is each channel’s characteristic showing the noise 

generated by internal ADS1298 chip circuitry and ADCs. The noise level for each 

channel was checked by sorting all channels inputs via ADS1298 register CHnSET 

= 1 (where n = 1 to 8) configuration and recording the noise floor for 10 s to a micro 

SD card by using different PGA and sampling rate settings. The averages of each 

channel noise are given in Table 16. 

An example of noise floor recording for a single channel is given in Figure 50. 

The average channel input-referred noise value for this signal was 6.59 μVpp. 

 
Figure 50. Channel input-referred noise signal (Fs = 1000 Hz, PGA = 3) 

Table 16. Average channel input-referred noise µVPP 

Sampling  

frequency 

Fs, Hz 

   PGA    

1 2 3 4 6 8 12 

32000  2876  1883  937  753  617  357  283 

16000  710  285  152  152  101  66  48.83 

8000  118  43.90  33.62  33.09  21.65  15.66  11.54 

4000  47.49  27.70  15.41  11.49  11.08  10.72  8.94 

2000  31.70  13.88  10.25  10.25  6.32  5.70  5.74 

1000  16.56  8.67  7.82  6.04  4.55  5.23  3.38 

500  14.85  5.92  4.92  4.77  3.94  3.13  2.87 

It can be seen that noise is effectively cancelled as the sampling rate is 

decreasing (due to the averaging done by ADS). The maximum noise decrease of 

around 1883/5.92 = 318 times has been observed for PGA = 2. High sampling 

frequency is not required for the EEG applications; thus, the rates up to 1 kHz are 

more than enough to capture brain oscillations in 7–30 Hz range confidently. 

Further, the higher gain value allows reducing the input-referred noise. The 

maximum noise reduction of around 710/48.83 = 14.5 times has been seen in 

experiments for Fs = 16 kHz. 
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5.4.8. SNR and precision 

Signal-to-noise ratio (SNR) shows the ability of the system to discern effective 

signals from the background noise. When working with EEG signals, it is a 

requirement to have as high SNR as possible, since valuable signal is in the same 

micro-volt range as the noise. The SNR in decibel scale is defined as shown in 

Equation (46): 

           (
       

      
), (46) 

where Asignal and Anoise are the root-mean-square (RMS) amplitudes of the signal and 

noise. In order to evaluate the SNR of the designed system, the EEG recording 

experiment was conducted. First, a noise signal of 1 min length was recorded on all 

ADS1298 channels by using 250 Hz sampling speed, and the average noise RMS 

amplitude was calculated from all data. Next, a known amplitude effective 10 Hz 

sine signal was generated as input on each channel, and the same length recordings 

were taken. These acquired signals were used to calculate the average RMS 

amplitude and, finally, the SNR value. The input sine signal amplitude was scaled 

from 0 dB (100% VCC) to −100 dB (0.001% VCC) to capture system behaviour for 

very large and very small signals fully. The same technique was repeated for 500 Hz 

sample rate. The results of the experiment are shown in Figure 51. It can be noted 

that over 100 dB SNR is reached for the input signals whose amplitude is greater 

than −12 dB (>25% VCC). For typical 10–100 µV (−100 dB to −80 dB) EEG 

signals, the SNR value varies from 12 dB to 35 dB. A lower sampling rate gives 

higher SNR due to higher ADS1298 signal averaging/oversampling (noise 

cancellation). 

 
Figure 51. Signal-to-noise ratio (SNR) evaluation results 

ADC precision evaluation used the same previously recorded data. Each of the 

recorded signal samples was compared with the original sine input signal values to 

find the conversion error. The results of this experiment can be seen in Figure 52. 

The average obtained error was 0.07% with a 0.22% standard deviation. The 

obtained results show a good match with the ones published in the official TI 

ADS1298 datasheet and allow qualifying the system as a properly working device. 
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Figure 52. Signal precision for 60 sec recording (Fs = 250 Hz, PGA = 6) 

5.4.9.  Common Mode Rejection Ratio (CMRR) 

The ability to reject common mode signal is crucial for the EEG recording 

systems. A higher common mode rejection ratio (CMRR) ensures that less common-

mode signals will appear in the measurements. CMRR is a property of a differential 

amplifier [102]. The output of such an amplifier can be modelled as a sum of 

differential and common mode components as shown in Equation (47): 

                 , (47) 

where Ad is the differential and Acm is common mode gains expressed as Equations 

(48) and (49): 

           , (48) 

            , (49) 

where 

    (     ), (50) 

    (     )  , (51) 

with Vp being the voltage on positive input and Vn being the voltage on negative 

input. While        and      for the ideal amplifiers. In real applications, 

       and       . Equation (49) equality holds only when the same common 

mode signal is fed to both amplifier inputs as the differential gain component is 

eliminated due to      . CMRR can be calculated by evaluating Equation (52): 

          (
  

   
)  (52) 
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The test was performed by connecting each channel differential inputs INxP, 

INxN (for      ̅̅ ̅̅ ) and generating an external fixed frequency sine input common 

mode signal. The voltages were measured, and the average CMRR was computed by 

using Equation (52). The test was done for different gain values 1, 2, 4, 12 and 

frequencies from 1 Hz to 1 kHz. The results of the CMRR evaluation can be seen in 

Figure 53. 

 
Figure 53. Common-mode rejection ratio measurement results 

The test results show that the increase in gain from 1 to 12 allow ~ 15 dB better 

rejection ratio for 1–10 Hz signals to be achieved, despite a much quicker decline 

seen from 15 Hz to 1 kHz. It should be noted that the smallest gain value of one 

provides a stable CMRR of ~ 97 dB for signals up to ~ 70 Hz. In order to achieve 

the highest stable CMRR for EEG signals in 7–30 Hz frequency range, a gain value 

of four should be used. 

5.5. Discussion 

The implemented system exposes similar characteristics to the other state-of-

the-art implementations while introducing new expandability features. The summary 

of functionality and comparison between the other systems found in the literature is 

given in Table 17. 

It should be noted that most of the systems are designed to be non-

expandable/modular from the start. Having a configurable system allows scale on 

demand and control to be achieved, minimizing the complexity for each problem. 

Thus, modularity has been taken into account while designing the proposed system. 

Since ADS1298 can be easily cascaded, such chip property was exploited. 

Furthermore, the EEG applications require a moderate number of electrodes to 

capture brain oscillations reliably. High-end commercial systems are capable of 

recording 256 channels EEG. However, this creates a significant complexity and is 

harder to analyse and process later. The proposed design incorporates a configurable 

number of available channels, up to 64 (four stacked boards), while starting from 

eight channels (single sided board). Such an electrode count is commonly used in 

literature for capturing the EEG data with adequate head scalp coverage. 
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Some of the compared systems use active electrodes instead of passive or 

active shielding to remove cable swing/movement induced artifacts. The 3D printed 

head cap allows the minimization of the length of cables and fix them into position, 

thus, limiting movement-related artifacts. In order to fully suppress such artifacts, a 

switch from passive to active electrodes should be made. Since ADS1298 is not 

designed to work with the external pre-amplification stage, other AFE solutions will 

be necessary. 

Table 17. Comparison of the existing systems 

Property 

Propos

ed  

system 

Pinho 

et al. 

[80] 

Campillo et 

al. [84] 
Boquete et al. [103] 

Myung et al. 

[94] 

Modular Yes No No No No 

Channels 64 32 8 8 16 

Sampling 

frequency, 

Hz 

1000 1000 500 400 512 

Electrodes 
Passive 

dry 

Active 

dry 
Passive dry 

Ag/AgCl 

adhesive 
Wet gel 

Resolution, 

bits 
24 24 12 12 24 

I/O 

BLE 

4.0, 

WiFi 

802.11 

b/g/n 

WiFi 

802.11 

b/g/n 

UART 
Zig-bee 

802.15.4 
WiFi 802.11 d 

CPU 
Atmega 

2560 

DM37

30 
MSP430 Atmega 2560 

STM32 

F103 

Clock 

frequency, 

MHz 

16 1000 12 16 72 

CMRR, dB -110 -115 -94 - - 

Max gain 12 24 12 10k - 

Local 

processing 
No Yes No No No 

Power, mAh 250 500 - 100 80 

The maximum sampling resolution is denoted by the AFE used for each device. 

Currently, a lot of the devices use a 24-bit AFE to record fine details of the EEG 

signal. However, it is hard to reach such high discretization resolution due to various 

PCB designs and physical issues. Thus, the real resolution is usually much lower 

due to the noise in the least significant bits (LSBs). 

Depending on the application, the EEG signal processing can be done online or 

offline. Since mobile EEG devices usually run on battery power (to avoid additional 

common-mode and other noise from power sources), the power usage must be 

minimized. The selection of the low-power microprocessor, such as Atmega2560, 

running at 16 MHz and drawing ~ 30 mA@5V on full load still allowed the required 

1 ksps (1k samples/s) bandwidth to be handled from 8x ADS1298. The power 
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consumption of 8x ADS1298 was ~ 48 mA@5V and MPU 6050 accelerometer ~ 2 

mA@5V, while the most energy was wasted for the Wi-Fi connection ~ 170 

mA@3.3V. This added up to 250 mAh for the whole four board stack running at 

maximum load (see Figure 54). With a typical 3000 mAh LiPo smartphone battery, 

the system can function up to 12 h. 

 
Figure 54. Power use in W/h 

Maintaining a cost-efficient solution, while providing sufficient quality, is an 

important topic worth discussing. Since the first-ever EEG devices were made, the 

most critical analog system part shrunk and was embedded inside the silicon chip of 

the ADC, such as ADS1298. By doing this, higher quality for noise suppression and 

other parameter controls were achieved. In addition, the integration part got simpler 

since the microprocessor only needs to interface with the ADC chip. The bill of 

materials (BOM) has shrunk, and the most expensive part of the EEG system is the 

ADC chip itself. With the increasing integration level, the future of the EEG systems 

could evolve into a single programmable chip. With this extreme level of 

integration, further finer control of acquisition system properties could be achieved. 

5.6. Conclusions 

This chapter presented a modular biopotential acquisition system design that is 

capable of recording up to 64 EEG channels by exploiting a novel, stackable 

configuration.  

1. Full board tests have been completed, and results showed correct working 

behaviour of each of the system components. The selected system 

architecture and ADC chip for the EEG acquisition proved to be a 

successful choice for building a compact and modern system.  

2. The proposed simple evaluation techniques allowed verifying the system’s 

ability to capture EEG signal correctly and effectively while providing the 

needed feedback for further development of the board. 

3. Passed internal ADC tests were the initial step for verifying device 

correctness. The in-range to the official ADS1298 datasheet input referred to 
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the noise value of 6.59 μVpp, and average CMRR of −97 dB in 0–70 Hz 

band was received in other performed tests.  

4. The ability to capture EEG alpha waves phenomenon or ECG correctly as 

well signalled that the system was working as expected. During the 

experiments, 12–35 dB SNR for 10–100 μV EEG signals and greater than 

100 dB SNR for signals with amplitudes bigger than 25% VCC were 

measured.  

5. SNR and precision were found to match the proclaimed device 

characteristics closely as stated in the official Texas Instruments datasheet.  

6. With a maximum power consumption of ~ 250 mAh on the full load and 

more than 10 times lower manufacturing cost (compared to commercial 

devices), the proposed system can be a portable device for cEEG or ECG 

acquisition and monitoring. 

7. The system comparison with other developed boards found in the literature 

showed similar or better performance. However, compared to the 

commercial grade hardware, the system lacked better noise suppression, and 

further improvements are needed.  

8. Since enhanced noise suppression is required for such high-resolution AFEs, 

further research and development can be directed towards active electrode 

implementation and shielding. 
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6.  CONCLUSIONS 

1. After the analysis of scientific papers on the topic of four-class motor-

imagery (MI) classification, it has been determined that deep learning 

classification methods have not been widely analysed and used for the 

specified problem. 

2. After the experimental evaluation of common feature extraction and 

classification algorithms for four-class motor imagery problem, it has been 

determined that new feature extraction and classification methods are 

necessary. 

3. Solutions to the MI problem have been proposed and validated 

experimentally: 

a) new filtering/feature extraction Channel difference method has 

been introduced. It has been shown that the Channel difference 

method (54% accuracy) compares similarly to the CSP method 

(58% accuracy) and outperforms other tested feature extraction 

methods by 6–16% when not using CSP filtering. 

b) Convolutional Neural Networks (CNN) were adapted for the MI 

task. It has been shown that CNN method is effective, achieves 

68% accuracy when using FFT energy maps for feature extraction 

and compares similarly (69% accuracy) to the other state-of-the-

art classification methods found in the literature.  

c) proposed new feature vector adaptation technique allowed using 

feature extraction methods that produce 1D feature vectors for 2D 

feature map CNN classification successfully. The technique has 

been validated during the experiments, and promising 

classification results were achieved. 

4. Due to the lack of four-class MI test datasets, low-cost solutions for 

scientific EEG signal recording devices and lack of design information in 

literature, a new EEG system capable of recording 64 channels of EEG MI 

signals has been successfully designed and manufactured. 

5. The produced EEG system has been validated experimentally by using 

proposed simple but effective methods. The comparison with existing 

devices showcased similar or better performance: 

a) unique modular/stackable design with sampling speed up to 1 

kHz; 

b) high CMRR of -97dB in 0-70 Hz has been measured;  

c) typical 12–35dB SNR for 10–100μV signals; 

d) low power consumption < 250mAh. 
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