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Abstract: We perform a theoretical and empirical analysis of a set of Cascading Style Sheets
(CSS) document complexity metrics. The metrics are validated using a practical framework that
demonstrates their viability. The theoretical analysis is performed using the Weyuker’s properties−a
widely adopted approach to conducting empirical validations of metrics proposals. The empirical
analysis is conducted using visual and statistical analysis of distribution of metric values, Cliff’s delta,
Chi-square and Liliefors statistical normality tests, and correlation analysis on our own dataset of
CSS documents. The results show that five out of the nine metrics (56%) satisfy Weyuker’s properties
except for the Number of Attributes Defined per Rule Block (NADRB) metric, which satisfies six out
of nine (67%) properties. In addition, the results from the statistical analysis show good statistical
distribution characteristics (only the Number of Extended Rule Blocks (NERB) metric exceeds the
rule-of-thumb threshold value of the Cliff’s delta). The correlation between the metric values and
the size of the CSS documents is insignificant, suggesting that the presented metrics are indeed
complexity rather than size metrics. The practical application of the presented CSS complexity metric
suite is to assess the risk of CSS documents. The proposed CSS complexity metrics suite allows
identification of CSS files that require immediate attention of software maintenance personnel.

Keywords: CSS; software complexity metrics; software maintainability; metric validation

1. Introduction

Web applications have become indispensable to a growing number of business organizations
today as they now form an integral part of their business strategies [1]. Considering this point of
view, it is essential that web applications be maintainable so as to have a long lifecycle. However,
achieving this objective is not a trivial task. As large-scale web applications become increasingly
complex, the quality of such systems decreases. Of all the quality attributes, maintainability is one of
the most important attributes that should be taken into consideration during the development of web
applications. Maintaining the quality of large-scale web applications after they have been built can
be very challenging. One of the approaches to decrease the maintainability effort is by managing the
complexity of applications. Another approach is to predict code bug [2] or smells [3] thus contributing
to prolonging the lifecycle of programs too. Software complexity is measured in order to, among other
things, be able to predict the maintainability and reliability of software given that code metrics can
serve as indicators of software defects [4]. A good number of complexity metrics have been proposed
to measure software programs. In many cases, these metrics are based on cognitive informatics [5]—an
approach to evaluating the complexity of software based on cognitive weights [6–8].

Metrics have been suggested for both procedural (or functional) and object-oriented languages [9].
Notable metrics for procedural languages includes the Halstead complexity measure [10], McCabe’s
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cyclomatic complexity [11], and Lines of Code (LoC) for functional/procedural languages, and
Chidamber and Kemerer (CK) Metric Suite [12] for object-oriented languages. In comparison to
programming languages however, little work has been done in proposing metrics for other notation
systems such as metaprograms [13], or style sheet languages. Recently, complexity metrics were
suggested for the web application domain, including Extensible Markup Language (XML) schema
documents [14], Web Services [15,16], and Document Type Definition (DTDs) [17]. These components
are a requisite part of contemporary web applications. Several complexity metrics have been proposed
for XML. For example, Feuerlicht and Hartman [18] proposed a Service Entropy Metric (SEM) that
estimates the complexity of XML message structures on which web service interfaces are based. Pušnik
et al. [19] suggested a full set of composite metrics based on the 25 properties of XML documents for
assessing an XML Schema’s quality. An overview of complexity metrics for XML schema languages is
presented in Reference [20].

Cascading Style Sheets (CSS) are another important part of web applications. It is a style sheet
language that is used to structure the presentation of web pages written in markup languages,
such as Wireless Markup Language (WML), Hyper Text Markup Language (HTML), and eXtensible
HTML (XHTML), for implementing user-friendly and aesthetically attractive web interfaces. The
main advantage that CSS offers is separation of the content aspects from the presentation aspects as
suggested by the ‘separation of concerns’ paradigm [21]. Despite this advantage, users perceive CSS as
over-complex and this has hampered its far-reaching adoption. While CSS are perceived as complex,
the domain of style sheets remains under-researched and no metric has been proposed to measure CSS
complexity [22]. Keller and Nussbaumer [23] proposed a quality metric based on abstractness factor in
order to understand why CSS codes written by humans were better than those automatically generated
by tools. The goal of his research was to use the result of the metric as a benchmark for improving
CSS authoring tools. The work however did not deal with measuring complexity of CSS. Mesbah and
Mirshokraie [24] in their work began by identifying the inheritance and cascading features of CSS as the
main factors that make CSS code difficult to maintain. They went on to propose an automated method
to aid CSS code maintenance by analyzing the performance dependencies between the CSS rules and
Document Object Model (DOM) elements in a web application and detecting overridden declaration
properties, unmatched and ineffective selectors, and undefined class values. A key significance of their
approach is that it can help to ensure a clean code base by reporting unused code, which can then be
deleted. This will in turn reduce complexity of the CSS code. Selecting high-quality CSS templates for
website design can increase website maintainability and reduce work effort required in the future.

In our previous work [25], we presented structural factors that contribute to complexity in CSS
documents. While evaluating the complexity of CSS, it was identified that size, number of blocks, reuse
of rule blocks, cohesion and attribute definition are the factors responsible for increasing the complexity.
The study proceeded to propose metrics based on these factors. The metrics proposed include: Rule
length (size); number of rule blocks (size); entropy (variety in rule block structure); number of extended
rule blocks (rule block reuse); number of attributes defined per rule block (attribute definition in rule
blocks); and number of cohesive rule blocks (cohesion). The metrics were validated using a practical
framework. The validation results showed that the metrics were useful and applicable. The work
however did not perform theoretical validation. Additionally, empirical validation of the metrics was
not carried out. These aspects form the focus of this article.

The ultimate objective of this study is to carry out the theoretical and empirical validation on CSS
metrics previously proposed in Reference [25]. The structure of the remaining parts of the article is as
follows. In Section 2, we describe the proposed metric suite. The methodology adopted comprising
of theoretical and empirical analysis as well as risk assessment is conducted in Section 3. Section 4
presents the results obtained and discusses the threats to validity. Section 5 concludes the work.
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2. Definition and Demonstration of Proposed Metrics

“The greater the size of a CSS the more complex the CSS will be. Since size is an important measure,
we are proposing rule length metric which is similar to lines of code in procedural programming and
number of rule block metric which is similar to the number of modules in structured programming.

Also, the more dissimilar the rule blocks in a CSS are to one another, the more complex it will
be to understand. Since variety in rule block structure is an important measure, we are proposing
entropy metric.

The smaller the number of modules that are reused in CSS increases the complexity of the CSS.
Since reuse is an important measure, we are proposing number of extended rule blocks metric.

Furthermore, cohesion plays a vital role in the complexity of CSS as the lower the level of cohesion
among rule blocks, the more complex the CSS. Since cohesion is an important measure, we are
proposing number of cohesive rule blocks as metric.

In addition, the more the attributes defined for a rule block the more complex it will be. Since
attribute definition in rule blocks is an important measure, we are pro- posing number of attributes
defined per rule block as metric. In the paragraphs that follow, we describe the proposed metrics in
detail” [25].

In this section, the various metrics are demonstrated using the following CSS example:

/* CSS Code Listing 1 */

* {

padding: 0;

margin: 0;

}

a {

text-decoration: underline;

color: #FFF;

}

a:hover {

text-decoration: none;

}

body {

background: #281525 url(images/bg0.jpg) top center no-repeat;

background-size: 100%;

line-height: 1.75em;

color: #CCB7C0;

font-size: 12pt;

}

h2 {

font-size: 1.75em;

}

h2,h3,h4 {

color: #FFF;

font-family: Abel, sans-serif;

margin-bottom: 1em;

}
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h3 {

font-size: 1.5em;

}

h4 {

font-size: 1.25em;

}

#content {

padding: 0;

width: 765px;

float: left;

}

#footer {

text-align: center;

margin: 40px 0 80px 0;

color: #543E51;

text-shadow: 1px 1px 1px rgba(0,0,0,0.75);

}

2.1. Rule Length (RL)

A CSS document consists of a list of rules described according to the World Wide Web Consortium
(W3C) specifications. The Rule Length (RL) metric counts the number of lines of rules in a CSS, while
excluding white spaces or comment lines as comments and white spaces are not executable. The value
of the RL metric is computed as the number of rule statements in a CSS file. Here, a rule statement can
be any of the elements of a CSS file presented as follows:

• Selector attribute(s) finishing with a semicolon “;”, e.g., “color: #00FF00”;
• Selector(s) and an opening brace of a rule block “{”, e.g., “body {” as well as
• A closing brace of a rule block represented by “}”

From the given CSS Code Listing 1, there are 43 lines aside comments and line spaces hence the
RL metric has 43 lines.

2.2. Number of Rule Blocks (NORB)

Number of Rule Blocks (NORB) is calculated as the number of rule blocks in a CSS file. A rule
block refers to a selector and its attributes (properties). This is illustrated by the following syntax:

/* Syntax of a rule block */

selector [, selector2, . . . ] [:pseudo-class] {
property: value;

property2: value2;

. . .
propertyN: valueN;

}

Usually, a CSS document has at least one rule block.
In the CSS Code Listing 1, there are 10 rule blocks hence the value of NORB is 10.
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2.3. Entropy Metric (E)

The concept of entropy is one that has been adopted for software measurements on different
occasions [2,3,14]. The entropy of a CSS file with n unique classes of elements can be computed
using their frequency of occurrence as an unbiased estimate of their probability P(Ci), i = 1, . . . , n
. The frequency of the equivalence classes of the CSS file is the number of corresponding elements
divided by the total number of CSS rule blocks. The unique class of elements means that elements
with the same structural complexity are categorized to the same equivalence class ( Ci ). The entropy
value is computed by first finding the equivalence classes by grouping similar rule blocks, which have
the same number of attributes.

Finally, the Entropy (E) metric is calculated as follows:

E = −
n∑

i=1

P(Ci) log2 P(Ci) (1)

There are seven similar classes as follows:

C1 = {*, a} = 2 elements
C2 = {a:hover} = 1 element
C3 = {body} = 1 element
C4 = {h2, h3, h4} = 3 elements
C5 = {{h2, h3, h4}} = 1 element
C6 = {#content} = 1 element
C7 = {#footer} = 1 element

Applying the formula we have:
E(CSS) = (2/10)log2(2/10) + (1/10)log2(1/10) + (1/10)log2(1/10) + (3/10)log2(3/10) + (1/10)log2(1/10)

+ (1/10)log2(1/10) + (1/10)log2(1/10)
= 0.3219 + 0.2303 + 0.2303 + 0.3612 + 0.2303 + 0.2303 + 0.2303
= 1.8346

2.4. Number of Extended Rule Blocks (NERB)

The Number of Extended Rule Blocks (NERB) metric calculates the number of rule blocks that are
extended in a CSS file. For instance, in the CSS Code Listing 1 example, rule block a{ . . . } is extended
to give a:hover{ . . . }. Hence, the value of NERB is one.

2.5. Number of Attributes Defined per Rule Block (NADRB)

The Number of Attributes Defined per Rule Block (NADRB) metric calculates the average number
of attributes defined in the CSS rule blocks. It is calculated as the total number of attributes in all rule
blocks divided by the total number of rule blocks.

From the CSS Code Listing 1 example, there are 23 attributes in all the rule blocks combined and
there are 10 rule blocks in all, as already established. Hence,

NADRB = 23/10 = 2.3

2.6. Number of Cohesive Rule Blocks (NCRB)

The Number of Cohesive Rule Blocks (NCRB) metric counts all CSS rule blocks having only
one attribute.

From the CSS Code Listing 1 example, there are four rule blocks that fulfill this criterion namely:
a:hover, h2, h3, and h4. They all possess single attributes within their rule blocks.
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3. Validation of the Proposed Metrics

We carry out both theoretical and empirical validation in order to evaluate our proposed CSS
metrics. For the theoretical validation, we evaluate the CSS metrics against formal Weyuker’s
properties [26,27]. Weyuker’s properties [28] are measures that must be satisfied by every complexity
measure in order to be considered as a good and acceptable one. Furthermore, Weyuker’s properties
are straightforward and easy to understand [29]. In addition, Weyuker’s properties have been proved
as an appropriate measure for evaluation of new complexity measures [29].

We present the description of Weyuker’s properties in the following subsection.

3.1. Theoretical Validation by Weyuker’s Properties

Property 1 implies that a measure should not rank all CSS documents as having an equal complexity:

Property 1. ((∃P) (∃Q) ( |P| ,|Q|), here P and Q are programs.

Property 2. Let c be a non-negative number then there is only a finite number of programs, which have
complexity c.

Property 3 implies that two distinct CSS files can have the same complexity value.

Property 3. There are distinct programs P and Q such that |P| = |Q|.

Property 4 implies that there can be two equivalent CSS rules achieving the same goal yet having
distinct complexity values.

Property 4. (∃P) (∃Q) (P ≡ Q & |P| ,|Q|).

Property 5 states that any subset of a CSS rule is always less than or equal to the value of the entire
rule set.

Property 5. (∀P) (∀Q) ( |P| ≤ |P; Q| and |Q| ≤|P; Q|).

Properties 6a and 6b seek to find out if there are any three CSS rules (P, Q, and R) such that P
has the same complexity value as Q and when R is joined to each of them they produce different
complexity values.

Property 6a. (∃P) (∃Q) (∃R) ( |P| =|Q|) & (|P; R| , |Q; R|).

Property 6b. (∃P) (∃Q) (∃R) ( |P| =|Q|) & (|R; P| , |R; Q|).

Property 7. If a program Q is formed by permuting the order of the statements of program P, then (|P| , |Q|).

Property 8 means that if semantic renaming of symbols, variables or program does not change the
complexity, then this property is satisfied.

Property 8. If P is constructed by the renaming of Q, then |P| = |Q|.

Property 9 allows for the possibility that as the number of the CSS rules grow, additional complexity
is introduced.

Property 9. (∃P) (∃Q) (|P|+ |Q| < |P; Q|).
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3.2. Empirical Validation

Empirical validation is vital to prove the practical usefulness of any metric. According to
Reference [30], it is the only way through which researchers can assist industry in selecting a new
technology. In order to interpret and comprehend software metrics, calculating appropriate ranges
and thresholds of metrics is imperative [31]. Moreover, well-defined thresholds have good relation to
software quality [32]. Therefore, researchers have proposed to use statistical characteristics of metrics
to obtain their ranges and thresholds [33]. Although, most of software metrics do not follow the normal
distribution, normality of distribution is a desired property as it provides more flexibility in calculating
metric thresholds [34].

To assess normality of metric values, we follow the recommendations presented in Reference [35].
We use the Q-Q (quantile-quantile) plot graphs the quantiles (i.e., values that divide a data set into
equal parts) of the data for checking normality visually. We also use a violin plot (a specific case of a
boxplot). A symmetric plot with the median value of the data set placed at approximately the center of
the plot suggests that the data may have originated from a Gaussian distribution.

The statistical normality tests are an additional tool to the visual assessment of normality. Here
we use the Chi-square test and Lilliefors corrected Kolmogorov-Smirnov (KS) test, as also suggested in
Reference [35]. The tests provide a decision for the null hypothesis that the tested data originates from
a normal distribution at the 0.05 level of significance.

To assess reliability of metrics, we use the method described in Reference [36]. We divide the
metric values randomly into two groups. To compare the distribution of values among both groups,
we apply Kruskal Wallis and Mann-Whitney U tests [37] using the 0.05 level of confidence (i.e., p-value
< 0.05). Both tests are non-parametric statistical tests that do not assume a Gaussian distribution of
data values. We apply the Bonferroni correction to adjust the threshold p-value by dividing it by the
number of tests executed. If there is a statistically significant difference (i.e., p-value < 0.05/number of
tests), we reject the null hypothesis and report that the division into groups (i.e., the sampling strategy)
affects the distribution of values, i.e., the metric is not reliable.

We also use a non-parametric measure of effect size, Cliff’s delta [38], which estimates the
probability that a randomly selected value from one group is larger than a randomly selected value
from another group, minus the reverse probability as follows:

delta =

∑
[x1 > x2] − [x1 < x2]

NM
(2)

here x1 and x2 are values within group 1 and group 2, respectively, N and M are the sizes of groups,
and [·] is the Iverson operator. Cliff’s delta values range from 1 to −1, whereas fully overlapping
distributions have a Cliff’s delta of 0.

To assess the relationship between metric values and document size, and between the metrics, we
use Pearson’s correlation. Following the suggestions presented in Reference [39], values exceeding 0.7
are considered as strong, while values exceeding 0.4 are considered as moderate, while the significance
is evaluated using the p-value.

3.3. Assessment of Risk

To evaluate the risk categories of CSS documents associated with their high complexity/low
maintainability, we follow the approach presented in [34] (see Table 1).

Table 1. Relationship between metric threshold values and risk values.

Percentile Risk Category Risk Value

70% Low 0
80% Moderate 1

2
90% High 1



Computers 2019, 8, 54 8 of 18

The 70%, 80%, and 90% percentiles of the metric’s values are used as thresholds to assign the
categories of low, moderate, and high risk. The low risk category is assigned a risk value of 0, the
moderate risk category is assigned a risk value of 0.5, and the high risk category is assigned a risk
value of 1. Finally, the aggregate risk is calculated as an average of risk values across all metrics.

4. Results

4.1. Dataset

For the empirical validation of our proposed metrics, we analyzed a dataset of forty CSS documents
randomly downloaded from a popular CSS template site—https://templated.co/.

Table A1 in Appendix A shows the links to all the CSS files used in this evaluation. A tool
was developed to analyze and retrieve the RL, NORB, NADRB, and NCRB metric values of the CSS
dataset files.

The measures of the analyzed CSS documents are given in Table 2.

Table 2. The metric values for the analyzed CSS documents.

ID RL NORB E NERB NADRB NCRB SIZE (kB)

1 224 48 2.3681 3 2.67 20 118
2 329 65 2.8601 4 3.06 16 340
3 368 74 2.8933 7 2.96 19 391
4 300 63 2.8951 7 2.84 16 123
5 463 89 2.9670 8 3.20 22 265
6 364 73 2.8543 6 2.97 18 301
7 280 59 2.4394 4 2.75 21 148
8 362 77 2.8475 7 2.66 23 85.7
9 205 48 2.6844 4 2.27 15 265

10 340 69 2.8635 6 2.93 15 180
11 298 62 2.8028 6 2.81 18 98.8
12 258 52 2.8809 6 2.96 11 1090
13 336 65 3.0634 7 3.19 15 34.3
14 292 62 2.9080 7 2.71 15 37.8
15 359 73 2.9353 6 2.92 17 295
16 300 62 2.8028 6 2.82 18 174
17 248 48 2.9561 6 3.08 8 1390
18 360 69 2.8185 6 2.87 17 743
19 296 62 2.9032 8 2.77 17 70.4
20 305 63 2.7977 6 2.84 16 88.5
21 339 69 2.8060 6 2.91 17 246
22 298 63 2.8877 7 2.73 16 169
23 343 69 2.8435 6 2.97 17 141
24 332 70 2.7145 6 2.73 22 509
25 348 74 2.6639 6 2.70 20 57.1
26 307 61 2.9648 7 3.02 16 30.7
27 253 54 2.6322 4 2.69 20 194
28 373 77 2.8725 7 2.84 21 315
29 249 50 2.8916 3 2.98 13 72.8
30 276 60 2.7650 6 2.60 19 147
31 309 65 2.8749 7 2.77 16 143
32 349 70 2.9146 7 2.99 15 190
33 302 61 2.9095 7 2.92 18 56.8
34 260 53 2.8763 6 2.91 12 803
35 349 74 2.6783 6 2.72 20 121

https://templated.co/
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Table 2. Cont.

ID RL NORB E NERB NADRB NCRB SIZE (kB)

36 395 79 2.8925 7 3.00 18 226
37 374 73 3.0873 7 3.11 15 156
38 475 94 2.8554 7 3.00 20 374
39 628 121 2.5217 7 2.07 44 128
40 354 69 2.6601 3 3.13 20 540

4.2. Performance of the Measures against Weyuker’s Properties

Table 2 gives the summary of the performance of the proposed CSS metrics against formal
Weyuker’s properties. Here, ‘*’ means that a measure satisfies a Weyuker property, and ‘-’ means that
the measure does not satisfy a Weyuker property.

As we can see from Table 2, different CSS documents have different RL, NORB, E, NERB, NADRB
and NCRB values. Though some of the CSS documents had similar values for some metric, it was not
the case for all the CSS documents. Hence, Property 1 is satisfied by our metrics suite.

Property 3 implies that it is possible for two distinct CSS files to have the same complexity value.
As can be observed in Table 2, different CSS documents have the same RL (e.g., CSS documents 4 and
16), NORB (e.g., CSS documents 1, 9 and 17), E (e.g., CSS documents 11 and 16), NERB (CSS documents
1, 29 and 40), NADRB (e.g., CSS documents 3 and 12), and NCRB values (e.g., 1, 25, 27, 35, 38, and 40)
and hence Property 3 is also satisfied by all the proposed measures.

All the proposed metrics are independent of the arrangement or rearrangement of rule blocks in a
CSS rule. In other words, permuting the order of the rule blocks in the CSS will not cause a change in
the measures. Therefore, none of our metrics satisfy property 7.

Property 8 means that if semantic renaming of symbols, variables or program does not change the
complexity, then this property is satisfied. Renaming of CSS documents does not modify the metric
value. As a result, Property 8 is satisfied by all our metrics.

Therefore, all the proposed CSS metrics satisfy properties 1, 2, 3, 5, 8; while none of our metrics
satisfy properties 4, 7, and 9 (Table 3).

Table 3. Performance of measures against Weyuker’s properties.

Property

Measures
RL NORB E NERB NADRB NCRB

1 * * * * * *
2 * * * * * *
3 * * * * * *
4 - - - - - -
5 * * * * * *
6 - - - - * -
7 - - - - - -
8 * * * * * *
9 - - - - - -

Our metrics satisfy five out of nine Weyuker’s properties which indicates that our measure is a
good measure. It is worth mentioning that for a measure to be rated as good and acceptable, it is not
mandatory to fulfill all the properties [40].

4.3. Empirical and Statistical Evaluation Results

To assess distribution of the metric values we used the visual approach: the violin plots of the
metric values are presented in Figure 1 while the Q-Q plots are presented in Figure 2. We can see that
although the distribution of all metric values is skewed, they are still similar to normal distribution as
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they have a single maxima and tails. The observation is confirmed by the Q-Q plots, which clearly
show a linear relationship between quantile values of metrics.
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not rejected but the p-values exceeded a threshold value of 0.05). The results suggest the need for
applying normalization transform to the values of metrics to make them more usable.

The results of Cliff’s delta are presented in Figure 3. Following the rule-of-thumb given in [41] the
metric values smaller than 0.1 are considered as acceptable. In our case, only the NERB metric has
exceeded the value of 0.1
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Following the suggestions presented in [42], complexity metrics should not be confused to size
metrics, because correlation to size can produce a wrong impression that some metrics are valid.
Moreover, asserted size has a confounding effect on the metric validity [43]. To check for the absence
of correlations, we employed both a visual approach (see Figure 4) as well as calculated Pearson
correlation between CSS metric values and the CSS document sizes (in kB) (see Figure 5).

From visual inspection, we can observe small effects of the size of the CSS documents on the
values of CSS complexity metrics. The results are confirmed by the Pearson correlation values, which
show insignificant correlation to metric values (RL, NORB, NERB NCRB metrics—negative correlation;
E, NADRB—positive correlation). In all cases, the coefficient of determination was insignificant
(R2 < 0.12).

Correlation between metric values in the metric suite is considered bad as correlated metrics, e.g.,
can skew the results of some applications such as defect prediction, while removing correlated metrics
from the metric suite improves the consistency [44]. From the correlation matrix presented in Figure 5
we can see that strong correlations are observed between the RL and NORB metrics (r = 0.99, p < 0.001),
NORB and NCRB (r = 0.77, p < 0.001), RL and NCRB (r = 0.73, p < 0.001). Moderate correlations are
observed between E and NADRB (r = 0.62, p < 0.001), E and NERB (r = 0.59, p < 0.001), NADRB and
NCRB (r = −0.58, p < 0.001), E and NCRB (r = −0.52, p < 0.001), NORB and NERB (r = 0.47, p < 0.01),
RL and NERB (r = 0.46, p < 0.01).

These results suggest that the metric suite is redundant and one or two metrics could be removed
without the significant loss of information.
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4.4. Threats to Validity

We follow guidelines provided in Reference [45] in discussing the threats to validity of our study.
Threats to internal validity involve selection of systems and analysis methods. We randomly have

sampled 40 CSS documents from the templated.co CSS repository. As a result, our findings might be
definitive to CSS documents hosted on https://templated.co/ only.

Threats to external validity involve the generalization power of our results. Our findings might
not be directly applicable to other types of style sheet languages. Yet our approach can be useful for
benchmarking quality and maintainability of web applications.

Threats to reliability validity include the ability to replicating this study. We have attempted to
report all the necessary information to allow replication of our study.

Threats to conclusion validity address the relation between the selection of the dataset and the
result. As noted by Gil and Lalouche [4], code metrics are context dependent and the distribution
of their values in different projects varies. The selection of CSS documents involved arbitrary
decisions. Including other CSS documents may have changed the statistical properties of the calculated
metric values.

4.5. Discussion

Software metrics are important for evaluation of software maintainability. Developing software
programs that are less complex and more maintainable means that these programs (or programming
artefacts, such as data files or specifications as CSS, in general) have a lower probability of bugs, are
more stable and have a longer prospective lifecycle [46]. Having the ability to evaluate maintainability
early enough by calculation of software metrics can help to avoid costly repairs in the future as well
as to improve the availability of critical software systems [47] such as, for example, online banking
systems, which among other heavily use and depend upon CSS documents. The primary role of
the proposed metrics suite is, therefore, to be a part of the risk assessment process when evaluating
and predicting the risk of failure of online systems and websites [48]. Software metrics that indicate
potential software failures, are in high demand in the areas of software testing and maintenance, when
developing complex software-intensive systems.

As an example, we present the risk assessment results in Figures 6 and 7. The results show
that the combinations component of the CSS dataset exceeds threshold values of all CSS metrics
and is assigned to the high-risk category, suggesting the immediate need for attention by software
maintainability personnel.

In future, we plan to develop a tool to estimate the various metrics as the other previous tools
are not comprehensive and also integrate the suite into one comprehensive metric that can be used
in estimating the complexity of CSS documents as well as documents written in other stylesheet
languages such as Sass (Syntactically awesome style sheets) for web application developers in the
context for risk assessment framework for online systems and applications.

https://templated.co/
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5. Conclusions

In this article we have presented and analyzed six metrics—Rule Length (RL), Number of Rule
Blocks (NORB), Entropy Metric (E), Number of Extended Rule Blocks (NERB), Number of Attributes
Defined per Rule Block (NADRB), and Number of Cohesive Rule Blocks (NCRB), which can be used to
assess complexity in Cascading Style Sheets (CSS).

These metrics were theoretically and empirically validated using Weyuker properties: five out of
the nine metrics (56%) satisfy the Weyuker properties, except for the NADRB metric, which satisfies six
out of nine (67%) properties. This qualifies them as good metrics from a formal viewpoint. In addition,
the results from the empirical and statistical study show good statistical distribution characteristics
(only the NERB metric exceed the rules-of-thumb threshold value of Cliff’s delta). The correlation
between the metric values and the size of CSS documents was insignificant, suggesting that the
presented metrics were indeed complexity rather than size metrics. However, the correlation analysis of
metrics within the presented metric suite revealed cases of redundancy suggesting that the optimization
of the suite by removing one or two metrics is possible.

The practical application of the presented CSS complexity metric suite is to assess the risk of CSS
documents. The analysis of our CSS dataset allowed identification of the CSS file that would require
immediate attention of the software maintenance personnel.
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Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The analyzed CSS document IDs and associated Web Links.

ID Web Links

1 https://templated.co/argon
2 https://templated.co/boldness
3 https://templated.co/boldness2
4 https://templated.co/classifieds
5 https://templated.co/combinations
6 https://templated.co/compass
7 https://templated.co/consistent
8 https://templated.co/corporatestuff
9 https://templated.co/estatebroker

10 https://templated.co/flamingo
11 https://templated.co/flowering
12 https://templated.co/fotofolium
13 https://templated.co/fruityblue
14 https://templated.co/handcrafted
15 https://templated.co/igunalounge
16 https://templated.co/infrastructure
17 https://templated.co/inwild
18 https://templated.co/islandpalm
19 https://templated.co/lettering
20 https://templated.co/limitless
21 https://templated.co/networked
22 https://templated.co/officememo
23 https://templated.co/outdoor
24 https://templated.co/petalsandflowers
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Table A1. Cont.

ID Web Links

25 https://templated.co/redallover
26 https://templated.co/redandblack
27 https://templated.co/reinstated
28 https://templated.co/rifle
29 https://templated.co/simplified
30 https://templated.co/woodcrafting
31 https://templated.co/stampalike
32 https://templated.co/naturalprime
33 https://templated.co/grasstown
34 https://templated.co/fullycharge
35 https://templated.co/spikyflower
36 https://templated.co/simpledisplay
37 https://templated.co/modelling
38 https://templated.co/surround
39 https://templated.co/halcyonic
40 https://templated.co/bigbusiness2
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model using shannon, rényi and tsallis entropies. Entropy 2018, 20, 372. [CrossRef]

4. Gil, J.Y.; Lalouche, G. When do software complexity metrics mean nothing?-when examined out of context.
J. Object Technol. 2016, 15, 1–25. [CrossRef]

5. Wang, Y. On Cognitive Informatics. In Proceedings of the Second IEEE International Conference on Cognitive
Informatics (ICCI 2002), London, UK, 20–20 August 2003.

6. Misra, S.; Akman, I.; Koyuncu, M. An Inheritance Complexity Metric for Object Oriented Code: A Cognitive
Approach. SADHANA 2011, 36, 317–338. [CrossRef]

7. Misra, S.; Akman, I. Weighted Class Complexity: A Measure of Complexity for Object Oriented Systems. J.
Inf. Sci. Eng. 2008, 24, 1689–1708.

8. Wang, Y.; Shao, J. A New Measure of Software Complexity based on Cognitive Weights. Can. J. Electr.
Comput. Eng. 2003, 28, 69–74.

9. Misra, S.; Adewumi, A.; Fernandez-Sanz, L.; Damasevicius, R. A suite of object oriented cognitive complexity
metrics. IEEE Access 2018, 6, 8782–8796. [CrossRef]

10. Halstead, M.H. Elements of Software Science, Operating, and Programming Systems Series; Elsevier: New York,
NY, USA, 1977; Volume 7.

11. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, 4, 308–320. [CrossRef]
12. Chidamber, S.R.; Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Trans. Softw. Eng. 1994, 20,

476–493. [CrossRef]
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