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Abstract: We propose a method for generating the synthetic images of human embryo cells that could
later be used for classification, analysis, and training, thus resulting in the creation of new synthetic
image datasets for research areas lacking real-world data. Our focus was not only to generate the
generic image of a cell such, but to make sure that it has all necessary attributes of a real cell image
to provide a fully realistic synthetic version. We use human embryo images obtained during cell
development processes for training a deep neural network (DNN). The proposed algorithm used
generative adversarial network (GAN) to generate one-, two-, and four-cell stage images. We achieved
a misclassification rate of 12.3% for the generated images, while the expert evaluation showed the
true recognition rate (TRR) of 80.00% (for four-cell images), 86.8% (for two-cell images), and 96.2%
(for one-cell images). Texture-based comparison using the Haralick features showed that there is
no statistically (using the Student’s t-test) significant (p < 0.01) differences between the real and
synthetic embryo images except for the sum of variance (for one-cell and four-cell images), and
variance and sum of average (for two-cell images) features. The obtained synthetic images can be
later adapted to facilitate the development, training, and evaluation of new algorithms for embryo
image processing tasks.
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1. Introduction

Deep neural networks (DNN) have become one of the most popular modern tools for image
analysis and classification [1]. One of the first accurate implementations of DNN, AlexNet [2], was
quickly bested by a deep convolutional activation feature (DeCAF) network, which extracted features
from AlexNet and evaluated the efficacy of these features on generic vision tasks [3]. VGGNet
demonstrated that increasing the depth of convolutional neural network (CNN) is beneficial for the
classification accuracy [4]. However, the deeper neural network is more difficult to train. ResNet
presented a residual learning framework to ease the training for very deep networks [5]. The ResNet
architecture, which combined semantic information from a deep, coarse layer with appearance
information from a shallow network, was adapted for image segmentation [6]. Region CNN (R-CNN)
was proposed as a combination of high-capacity CNNs with bottom-up region proposals in order to
localize and segment images [7].

The breakthrough of DNNs in quality led to numerous adaptations in solving medical image
processing problems such as the analysis of cancer cells [8] and cancer type analysis [9]. Deep
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max-pooling CNNs were used to detect mitosis in breast histology images using a patch centered on
the pixel as context [10]. The U-Net architecture with data augmentation and elastic deformations
achieved very good performance on different biomedical segmentation applications [11]. A supervised
max-pooling CNN was trained to detect cell pixels in regions that are preselected by a support
vector machine (SVM) classifier [12]. After a pre-processing step to remove artefacts from the input
images, fully CNNs were used to produce the embryo inner cell mass segmentation [13]. A set of
Levenberg–Marquardt NNs trained using textural descriptors allowed for predicting the quality of
embryos [14].

Image analysis methods were also applied to embryo image analysis. Techniques for extracting,
classifying, and grouping properties were used to measure the quality of embryos. Real-time grading
techniques for determining the number of embryonic cells from time-lapse microscope images help
embryologists to monitor the dividing cells [15]. Conditional random field (CRF) models [16] were
used for cell counting and assessing various aspects of the developing embryo and predicting the stage
of the embryonic development. In addition to grading, embryonic positioning was achieved using
linear chain Markov model [17]. Different solutions were developed for segmenting and calculating
the number of cells: ImageJ, MIPAV, VisSeg [18]. Moreover, cell segmentation by marking its center
and edges makes it possible to determine their shapes and quantities more quickly and accurately [19].
Two-stage classifier for embryo image classification was proposed in [20].

The rising progress of generative adversarial networks (GANs) applications on medical imaging
state that most of the research is focused on synthetic imaging, the reconstruction, segmentation, and
classification and proves the importance of the sector. Wasserstein-based GANs were applied for
the synthesis of cells imaged by fluorescence microscopy capturing these relationships to be relevant
for biological application [21]. The quality of generated artificial images also improved due to the
improvements to deep neural networks [22] as well as on progressive growing of GANs for image data
augmentation [23]. Variational autoencoders (VAE) and generative adversarial networks (GANs) are
currently the most distinguished according to the quality of their results. The VAE models are more
often used for image compression and recovery. Both methods have drawbacks, as recovering a part of
the information loses some data and often introduces image fading or blurring. This effect could be
reduced by matching the data as well as the loss distributions of the real and fake images by a pair of
autoencoders used as the generator and the discriminator in the adversarial training [24]. Utilization of
both generator and discriminator growing progressively from a low-resolution standpoint and adding
new layers for an increase in fine details allowed for achieving a current state-of-the-art inception score
of 8.80 on CIFAR10 dataset [25]. Network modifications can be applied to minimize fading of the
resulting images [24]. Generative stochastic networks (GSN) were used to learn the transition operator
of a Markov chain whose stationary distribution estimates the data distribution [26]. Deep recurrent
attentive writer (DRAW) neural network architecture [27] was used to generate highly realistic natural
images such as photographs of house numbers or other digits in the MNIST database. Dosovitskiy
et al. [28] introduced an algorithm to find relevant information from the existing 3D chair models
and to generate new chair images using that information. Denton et al. [29] introduced a generative
parametric model capable of producing high-quality samples of natural images based on a cascade of
convolutional networks within a Laplacian pyramid framework. Radford and Metz [30] introduced a
simplification of training by a modification called deep convolutional GANs (DCGANs). GANs can
also recover images from bridging text and image modelling, thus translating visual concepts from
characters to pixels [31]. Zhang et al. [32] proposed stacked GANs (StackGAN) with conditioning
augmentation for synthesizing photo-realistic images. GANs could also be applied for generating
motion images, e.g., the motion and content decomposed GAN (MoCoGAN) framework for video
generation by mapping a sequence of random vectors to a sequence of video frames [33]. The GAN for
video (VGAN) model was based on a GAN with a spatial-temporal convolutional architecture that
untangles the scene’s foreground from the background and can be used at predicting plausible futures
of static images [34]. Temporal GAN (TGAN) was used to learn a semantic representation of unlabeled
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videos by using different types of generators via Wasserstein GAN, and a method to train it stably in
an end-to-end manner [35]. MIT presented a 3D generative adversarial network (3D-GAN) model to
recreate 3D objects from a probabilistic space by leveraging recent advances in volumetric CNNs and
GANs [36]. Li et al. [37] used multiscale GAN (DR-Net) to remove rain streaks from a single image.
Zhu [38] used GANs for generating synthetic saliency maps for given natural images. Ma et al. [39]
used background augmentation GANs (BAGANs) for synthesizing background images for augmented
reality (AR) applications. Han et al. presented a system based on a Wasserstein GANs for generating
realistic synthetic brain MR images [40].

All these results are achieved by using large expert-annotated and ready-made databases and also
exposing the problem of lacking good, core training datasets. In this work, we aimed to develop a
method to generate realistic synthetic images that could later be used for classification, analysis, and
training, thus resulting in the creation of novel synthetic datasets for research areas lacking data such
as human embryo images. Here we used human embryo images obtained during cell development
processes for training a DNN. We propose an algorithm for generating one-, two-, and four-cell images
(the selection was based on the initial dataset provided by our medical partners) to increase the
overall number of unique images available for training. For generating images, we have developed a
generative adversarial network for image recovery, filling, and improvement. The significance of our
approach would be that the method was applied to embryonic cell images as a type of image. It was
very important for the GAN to accurately reproduce the outline of the cell (often poorly visible even in
microscopy picture), since the whole image was almost the same (gray) and the cell itself is translucent.
Our focus was not only to generate the generic image of a cell as such, but to make sure that it has all
necessary attributes of a real cell image to provide a fully realistic synthetic version. We believe that as
a large number of real embryo images required for training neural networks are difficult to obtain due
to ethics requirements, the synthetic images generated by the GAN can be later adapted to facilitate
the development, training, and evaluation of new algorithms for embryo image-processing tasks.

2. Materials and Methods

2.1. Architecture of the Generative Adversarial Network (GAN)

The generative adversarial network (GAN) consists of two parts: A generator G and a discriminator
D (Figure 1).
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Figure 1. A pipeline of a generative adversarial network (GAN).

The discriminator tries to distinguish true images from synthetic, generator-generated images.
The generator tries to create images with which the discriminator could be deceived. The discriminator
is implemented as a fully connected neural network with dense layers that represents an image as a
probability vector and classifies it into two classes, a real or a fake image. The generator is a reverse
model that restores the former image from a random noise vector. During the training, the discriminator
is trained to maximize the probability of assigning the correct class to the training images and images
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generated by the generator. At the same time, the generator is trained to minimize classification error
log(1−D(G(z))). This process can be expressed in terms of game theory as a two-player (discriminator
and generator) minimax game with cost function V(G, D) [41]:

max
G

min
D

V(D, G) = Ex∼P(x)[log(D(x))] + Ez∼P(z)[log(1−D(G(z)))]. (1)

The discriminator evaluates the images created by the training database and the generator. The
architecture of the discriminator network is shown in Figure 2. The network consists of six layers.
The monochrome 200 × 200 pixel image in the first layer is transformed and expanded into a single
line vector. The dense layer is used in the second, fourth, and sixth layers. The LeakyReLU [42]
function, where α = 0.2, is used in the third and fifth layers as it allows a small gradient when the unit
is not active:

LReLu(x) = max(x, 0) + αmin(x, 0). (2)
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Figure 2. Architecture of the discriminator network.

At the network output, we get a one if the network guesses that the image is real or zero if the
network guesses that the image is fake.

The generator is composed of 11 layers (Figure 3). The input layer contains 1 × 100 vector
of randomly generated data. These data are transformed using the dense, LeakyReLU, and batch
normalization layers. The ReLU layer uses α = 0.2. The batch normalization layer was used to
normalize the activations of the previous layer at each batch, by applying a transformation that
maintains the mean activation close to 0 and the activation standard deviation close to 1 [43]:

x̂i ←
xi − µβ√
σ2
β + ε

. (3)
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The batch normalization momentum value was set to 0.8, while all other values were used as per
default Keras model values. The output produces a 200 × 200 pixel sized black-and-white image.

2.2. Training

We trained one (single) network to generate all types of cell images. For the training, we have
used the Adam optimization algorithm [44] with a fixed training speed of 0.00002, and β1 = 0.7 for
training the generator. During training, the Adam algorithm calculates the gradient as follows:

gt ← ∆θ ft(θt−1). (4)

The biased first moment estimate is updated as follows:

mt ← β1mt−1 + (1− β1)gt. (5)

The biased second moment estimate is update as follows:

vt ← β2vt−1 + (1− β2)g2
t . (6)
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Then we compute the bias corrected first moment estimate as follows:

m̂t ←
mt

1− βt
1

. (7)

The bias corrected second moment estimate is computed as follows:

v̂t ←
vt

1− βt
2

. (8)

This gives the update parameters as follows:

θt ←
θt−1 − am̂t
√

v̂t′′ + ε
. (9)

The binary cross-entropy function is used to evaluate the error as follows:

−
1
N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]. (10)

2.3. Evaluation of Image Quality

The problem with using the GAN model is that there are no clear ways to measure it qualitatively.
There are few most commonly used criteria to evaluate GAN network: Average log-likelihood, classifier
classification [41], and visual fidelity of samples [45]. These methods have both advantages and
disadvantages. Log-likelihood and classifiers attribute the image to a certain class with a matching
factor. However, they only indicate whether the generated image is like the average of one of the
classes but does not value a qualitatively generated image. Such a qualitative assessment requires a
human evaluator, but with a large amount of data, such estimates can change independently and be
biased [46]. Likewise, a different expert person could evaluate the same data somewhat differently.

We use a combined method to evaluate the results obtained in our study, which includes: (1)
Human expert evaluation, (2) histogram comparison, and (3) texture feature comparison. The generated
images are evaluated by human experts (three medical research professionals) to determine if they are
being reproduced qualitatively. If we can determine its class from the received image, the image is
quality-restored. The expert based scoring was calculated using a visual Turing test [47] as this method
has already been proven effective in the evaluation of synthetic images generated by GANs [48].

The histogram comparison method checks whether the histogram of the generated images
corresponds to the histogram of the images in the training database. For comparison, we used the
normalized average histogram of training data H1, and the normalized average histogram of generated
images H2. Further, we apply four different methods for comparison as it is recommended in [49]. The
correlation function determines the likelihood of two image histograms. Its value of two identical
histograms equals one:

C(H1, H2) =

∑
I

(
H1(I) −H1

)(
H2(I) −H2

)
√∑

I

(
H1(I) −H1

)2∑
I

(
H2(I) −H2

)2
. (11)

The Chi-square function takes the squared difference between two histograms. The squared
differences are divided by the number of samples, and the sum of these weighted squared differences
is the likelihood value:

χ2(H1, H2) =
∑

I

(H1(I) −H2(I))
2

H1(I)
. (12)
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The histogram intersection calculates the similarity of two discretized histograms, with a possible
value of the intersection lying between no overlap and identical distributions. It works well on
categorical data and deals with null values by making them part of the distribution.

I(H1, H2) =
∑

I

min(H1(I), H2(I)) (13)

The Bhattacharyya distance approximates the normalized distance between the histograms using
the maximum likelihood of two object histograms as follows:

B(H1, H2) =

√
1−

1√
H1H2N2

∑
I

√
H1(I)H2(I). (14)

The texture-based comparison uses the texture analysis features based on grey level co-occurrence
matrix (GLCM), which are related to second-order image statistics that were introduced by Haralick [50]
as follows: (1) Angular second moment (energy), (2) contrast, (3) correlation, (4) variance, (5) inverse
difference moment (homogeneity), (6) sum average, (7) sum variance, (8) sum entropy, (9) entropy, (10)
difference variance, (11) difference entropy, (12) information measure of correlation, (13) information
measure of correlation II, and (14) maximal correlation coefficient.

2.4. Ethics Declaration

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Faculty of Informatics, Kaunas University of Technology (No.
IFEP201809-1, 2018-09-07).

3. Experiment and Results

3.1. Dataset and Equipment

We have used the embryo photos taken with Esco Global incubator series, called Miri TL (time
lapse). The embryo image sets were registered in the German, Chinese, and Singapore clinics. No
identity data were ever provided to the authors of this paper. The Esco’s embryo database consists of
three image classes that together have 5000 images with a resolution of 600 × 600 pixels. Number of
different images in classes: One-cell—1764 images, two-cell—1938 images, four-cell—1298 images.
Images are obtained from 22 different growing embryos in up to five stages of cell evolution. The
database was then magnified by rotating each photo at 90, 180, and 270 degrees. Resulting number
of different images in classes: (one-cell images—1764 × 4 = 7056; two-cell images—1938 × 4 = 7752;
four-cell images—1298 × 4 = 5192). The images were taken in the following culturing conditions:
Temperature of 37 ◦C, stable level of 5% CO2, and the controllable values of nitrogen and oxygen
mixture. The embryos were photographed in a culture coin dish made from polypropylene with a
neutral media pH = 7. The inverted microscopy principle was used, with 20x lenses, without zoom,
with focusing and with field of view of 350 um. A camera sensor used was IDS UI-3260CP-M-GL
(IDS Imaging Development Systems GmbH, Obersulm, Germany). An example of embryo images in
the Esco dataset is presented in Figure 4. The evaluation and training of GANs was done on an Intel
i5-4570 CPU with a GeForce 1060 GPU and 8 GB of RAM.
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Figure 4. Sample images from Esco embryo image dataset.

3.2. Results

The training of GAN was carried out in 200,000 iterations, with a sample size of 256 images per
batch. The duration of training using GeForce 1060 GPU was about 15 h 45 min.

From the final generated images, one can easily count the number of embryonic cells and determine
the class (Figure 5). During subsequent iterations, the generator restored the embryo image and
reduced the amount of noise in the generated images.

Table 1. Evolution of embryo cell images during GAN training.

Epoch 0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000

one-cell
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Figure 5. Example of final generated embryo cell images using the proposed algorithm. From left to
right: One, two, and four cells. Images were filtered from “salt and pepper” noise using a median filter.
See Table 1 for raw outputs.

During the training, embryo cell images were generated at every 25,000 iterations. An example of
these images is shown in Table 1.

After 25,000 iterations, we can see that he managed to restore the plate’s flair and release the
background, but the embryo itself was not restored. After 100,000 iterations, the generator has been
able to clearly reproduce the image of the embryo cell.

The error function values for both generator and discriminator are shown in Figures 6 and 7.
During an initial training up to 20,000 iterations, the error function value of the generator increases
rapidly. Further increase of the error function results in a slower pace. Once the training number
reaches 75,000 iterations, the value of the generator error function begins to increase with the training
of two-cell and four-cell images. The generator becomes able to produce more complex images, which
is also visible from the generated sample images (see Table 1). The one-cell image can be identified
from 50,000 iterations, whereas two-cell and four-cell images can be recognized from 75,000–125,000
iterations. From the discriminator error feature, we can see that starting from 20,000 iterations it
becomes difficult to separate real images from artificially generated images, and the value of the error
function is less than 0.15. A value of discriminator log loss increases, as discriminator is unable to
differentiate between a real image and a generated image.
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For the expert-based evaluation (see Table 2), 1500 images (500 in each class) were generated. The
number of artificial one-cell images, where one cell was clearly recognized, was 96.2%. The quality of
two-cell and four-cell image generation of more complex images deteriorated. Of the two-cell images,
the number of cells could be clearly determined from 86.8% of the images. When evaluating the
four-cell images, 80% accuracy was obtained, i.e., one out of five images was generated inaccurately
(as decided by an expert).

Table 2. Evaluation of the generated embryo image cells by human experts.

Class Test Images (Generated) Good Images Accuracy by Expert Selection

one-cell 500 481 96.2%
two-cells 500 434 86.8%
four-cells 500 400 80.00%

Additionally, the image similarity was evaluated by comparing their histograms. In Figure 8, one
can see the comparison of image histograms, where the blue curve is the average histogram of the
training image dataset and the red is the average histogram of the artificially generated images. In all
three classes, we can see that the generated image is brighter than the real one. This could be explained
due to the slight “salt-and-pepper”-type noise in the generated image. The highest histogram match
was obtained in the single-cell-generated images. This shows that the generator was better able to
reproduce images of a simpler structure. Note that Figure 8 shows an evaluation of a generated cell
image with a maximum epoch number of 200,000. The particular histogram cannot be identical as
a single network generates images of different cells. This comparison was done by evaluating the
average histogram of all (training and generated) image histograms.
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Table 3 shows the results of a comparison of normalized histograms using correlation, Chi-square,
intersection, and Bhattacharyya distance formulas. In all four cases, the largest histogram coincidence
was shown by the one-cell generated images, while the two-cell and four-cell images performed worse.

Table 3. Evaluation of generated artificial embryo cell images using histogram comparison criteria.

One-cell Two-cells Four-cells

Correlation 0.995 0.990 0.986
Chi-square 0.236 0.455 0.442
Intersection 1.883 1.849 1.873
Bhattacharyya 0.147 0.210 0.208

We also compared the values of the textural (Haralick) features for the original and generated
embryo images and evaluated the statistical difference between the values of features using the
Student’s t-test. The results were significant (p < 0.01) for all Haralick features except the sum variance
feature (one-cell images), variance and sum average (two-cell images), and the sum variance feature
(four-cell images).

To compare the Haralick features from both (original and generated) image datasets, we also used
the Pearson correlation between the principal components of feature sets extracted using principal
component analysis (PCA). For both feature sets, the first principal component (PC1) explains more
than 98% of variance, so we use only PC1 for further comparison. The results are presented in Table 4
and show a very high correlation between the PC vectors.
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Table 4. Results of principal component analysis (PCA) of Haralick features from original and synthetic
embryo images.

One-cell Two-cells Four-cells

Explained variance of PC1 (original) 99.90% 99.94% 99.86%
Explained variance of PC1 (synthetic) 98.95% 99.60% 99.73%

Correlation between values of PC1 (original) and PC1 (synthetic) 1.0000 0.9997 0.9999

4. Discussion

As the correct comparison with other algorithms not possible due to very different source datasets
used, we tried to compare within the misclassification rate, by comparing percentage of the images
from all generated groups were assigned to correct class or not at all. Our HEMIGEN method was
rated at 12.3%.

Table 5 provides a comparison of the misclassification rate of synthetic images when compared to
the results obtained by other authors. Gaussian mixture deep generative network (DGN) demonstrated
36.02% misclassification rate [51]. DGN with auxiliary variables and two stochastic layers and skip
connections achieved the 16.61% misclassification rate [52]. Semi-supervised classification and image
generation with four-layer generator demonstrated 8.11% misclassification rate on house number
image generation [48]. The adversarial learned inference (ALI) model, which jointly learns a generation
network and an inference network using an adversarial process, reached a misclassification rate of
7.42% using CIFAR10 test set (tiny images) [53]. The WGAN-based approaches ranged from 6.9% [21]
to 50% [40] depending on the application. The methods indicated are only “loosely” comparable,
taking into account the differences (importance) of features of synthetic image targeted and scopes of
the works by other researchers.

Table 5. Misclassification rate.

Model Images Analyzed Overall Misclassification Rate

DGN [51] Digits 0 to 9 and combination (based on SVHN,
and NORB sets) (realistic images) 36.02%

Skip Deep Generative Model [52] Digits 0 to 9 and combination (based on SVHN,
and NORB sets) (realistic images) 16.61%

GAN (feature matching) [48] LSVRC2012 dataset with 1,000 categories
(non-realistic images) 8.11%

ALI [53] 25 types of shapes (non-realistic images) 7.42%
WGAN [40] 6 classes of brain MR images (realistic images) 50%

WGAN-GP [21] 8 classes of florescent microscopy images
(realistic images) 6.9%

HEMIGEN (our approach) Once cell, Two cells, Four cells (realistic images) 12.3%

We also checked for the problem of mode collapse where the generator would produce the same
image over and over, thus fooling discriminator, while no new image would be generated in real-life.
We have not found this case in our approach, possibly due to an adequate number of different embryos
used. Some generated images had embryos, which overlap one another, but this was not considered a
failure, but a realistic case of cell division.

5. Conclusions

We used generative adversarial networks trained on real human embryo cell images to generate a
dataset of synthetic one-, two-, and four-cell embryo images. We have achieved the highest quality of
generated images for single-cell embryo images, where 96.2% of the synthetic embryo images were
recognized as accurate and usable by human experts. The worst accuracy was achieved for the synthetic
four-cell images, of which only 80% could be identified correctly. These results were confirmed by the
histogram comparison, which achieved the highest scores for synthetic single-cell images (an average
correlation of 0.995 was achieved when comparing histograms of real and synthetic one-cell embryo
images), as well as by comparison of image textures analyzed using the Haralick features.
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As our algorithm allows us to manipulate the size, position, and number of the artificially
generated embryo cell images, these images can then be used to train and validate other embryo image
processing algorithms, when the real embryo images are not available, or the number of available real
embryo images is too small for training neural networks.
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