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1. Introduction 

Ribbed reinforced concrete slabs (Fig. 1) have 

been designed for many decades. Earlier, structural engi-

neers used to evaluate internal forces of ribbed reinforced 

concrete slabs using analytical calculation methods which 

had implemented various assumptions for simplification 

purposes. The internal forces in slab members were calcu-

lated assuming that beams behave as absolutely rigid sup-

ports for the slabs. Meanwhile, in the design process of 

beams it was assumed that the columns or bearing walls are 

non-deforming supports [1]. However, the real structural be-

haviour of ribbed slabs is more complicated, where the slab 

members deform together with the connected beams, 

whereas the columns are not absolutely rigid supports. The 

settlement of different columns in the same structure can 

vary significantly depending on the characteristics of col-

umns and soil under the foundations. This effect is espe-

cially relevant when analysing statically indeterminate 

structures, where analysis of the overall structural behaviour 

can lead to considerable differences of the estimated internal 

forces, compared to the results of simplified calculation 

methods. Application of design restrictions and safety fac-

tors in such cases allows design of safe structures [2, 3, 4]. 

However, the design process of optimal and cost-efficient 

structural solutions requires implementation of more ad-

vanced analysis methods. 
 

 
 

Fig. 1 Ribbed reinforced concrete slab supported on col-

umns 

 

Finite element method (FEM), which is imple-

mented in most of currently used structural engineering soft-

wares, allows to consider the real structural behaviour in the 

analysis [5–7]. Nowadays, structural engineers have a pos-

sibility to model almost all structures of analysed building 

in the same calculation model, which makes it possible to 

consider the overall structural behaviour and even the effect 

of non-uniform soil properties under different foundations. 

Nevertheless, in order to make the analysis simple and fast 

enough, various simplifications are still being adopted: usu-

ally, the internal forces are estimated assuming only the 

elastic behaviour of reinforced concrete structure, while the 

effect of reinforcement in the evaluation of internal forces is 

not taken into account. These and some other factors are 

considered only when the structural design of separate 

members is performed according to the previously estimated 

values of internal forces [8–11]. 

In this kind of internal forces analysis, the beams 

are modelled as one-dimensional Bar members, while for 

modelling of the slabs, two-dimensional Plate elements are 

used. In both cases, the elements are flat and aligned so that 

the bars would be located in the plane of the plates. The de-

scribed way of modelling the structural members is conven-

ient because the values of all internal forces (bending mo-

ments, axial and shear forces, torsional moment) are calcu-

lated and are easily applicable to further design of structural 

members. Meanwhile, when the analysed structure is mod-

elled using volumetric elements, the results are presented in 

form of stresses instead of internal forces. Analysis of the 

results presented in the form of stresses and their application 

in detailed design of the particular members is more com-

plicated. In addition, modelling and calculation of the struc-

tures consisting of Solid elements is a complex task, that re-

quires considerably more resources. Consequently, in most 

cases engineers decide to use Bar and Plate elements for the 

structural analysis [12]. 

Simplification of the calculation model by using 

Bar and Plate elements also has a negative side. Since rein-

forcement of slab and beam members in ribbed reinforced 

concrete slab is joined, the beams act together with the slabs 

forming an integrated system: the ((T) shape cross-section 

beams and the slabs between them). When the ribbed RC 

slabs are modelled and calculated using Bar and Plate ele-

ments, the centroidal axes of the beam and the slab members 

are in the same level, therefore instead of (T) shape cross-

section, (+) shape cross-section beams are used in FEM 

analysis. Despite having the same cross-sectional area as the 

(T) shape cross-section, other geometrical properties of the 

(+) shape cross-section (I is moment of inertia, etc.) are dif-

ferent. Thus, different bending stiffness values EI of the 

beam members are obtained which change the distribution 
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of the internal forces acting in continuous beams and the de-

flection of the beam members, as well as the deformation of 

the whole ribbed reinforced concrete slab. One of the possi-

ble ways to solve the described problem is an establishment 

of eccentricities in the structure. The centroidal axes of 

beam members can be moved lower simulating (T) shape 

cross-section in calculation software’s by using function 

“offset” [13]. However, this solution is not very practical for 

structural engineers. Application of the eccentricities creates 

additional axial forces that change the distribution of the in-

ternal forces in the beams and other structural members, 

therefore the design process of the analysed structure be-

comes considerably more complicated [14]. Another alter-

native approach to assess the described problem is to modify 

Young’s modulus of concrete in the Bar members or to ap-

ply adjustment coefficients for moment of inertia. Neverthe-

less, the latter approach is also rather complicated for engi-

neers due to the fact that design codes and engineering liter-

ature do not include any method describing what adjustment 

coefficients should be used and how their values should be 

estimated. General recommendations can be found on web-

sites of design software’s developers and in forums. In ad-

dition, various other ways of accurate beam members bend-

ing stiffness estimation can be found in the literature, yet all 

of them have positive and negative aspects [13–18]. The 

correct estimation of internal forces in the ribbed RC slabs 

and the accurate bending stiffness assessment are relevant 

topics discussed in various engineering forums and discus-

sions [13–15]. 

In this paper a comprehensive explanation is pre-

sented on the calculation of moment of inertia I adjustment 

coefficients that can be used for more precise calculations 

of internal forces acting in ribbed reinforced concrete slabs, 

when FEM design software’s are used for the analysis. The 

presented calculation method is also applicable for other 

types of structures, such as basement walls, counterfort re-

taining walls, etc. Not only the derivation of moment of in-

ertia I adjustment coefficient, but also the comparative re-

sults of deflections and internal forces, estimated using the 

effective flange widths of (T) shape cross-section beams 

which are specified in different design codes, are presented 

in this study. Deflections of beams calculated using dis-

cussed calculation approach (modelling ribbed slab from 

Bar and Plate elements) are compared with beam deflection 

results obtained from calculation model with Solid ele-

ments. Four differently loaded ribbed RC slabs with differ-

ent geometrical properties were used for the comparative 

analysis. Moreover, the results were compared when differ-

ent support conditions of the analysed slabs were taken into 

account. The comparative analysis results showed that mo-

ment of inertia adjustment coefficients equations, presented 

in this paper, give an opportunity for engineers to estimate 

internal forces in ribbed RC slabs simply and accurately 

enough by using FEM calculation software’s. The derived 

equations are also applicable in cases when the span to depth 

ratio of the beams is small, where the shear deformation in-

fluences the total deflection significantly. 

2. Methods 

A single span monolithic ribbed reinforced con-

crete slab with equal spacing between five beams and the 

slab supported on top of the beams (Fig. 2) is analysed in 

order to investigate moment of inertia adjustment coeffi-

cients for beams. 
 

 
 

Fig. 2 3D model of analysed ribbed slab 

 

To estimate moments of inertia values of the beam 

members it is needed to determine the effective flange 

widths of (T) and (+) shape cross-sections. Effective flange 

widths of the cross-sections have been calculated by using 4 

different empirical methods. According to the first method, 

beff values were chosen equal to slab widths which distribute 

acting loads to the particular analysed beam member 

(Fig. 3). The following three calculation methods are speci-

fied in RC structures design codes (STR [2], EC2 [3] and 

ACI [4]), which present different beff calculation methods. 

More effective flange widths beff calculation methods can be 

found in the literature [19, 20] aside from the mentioned 

methods that are compared in this paper. 
 

 
a b 

 

Fig. 3 Load distribution schemes (a – pinned supports,  

b – fixed supports) 

 

It is first needed to calculate (T) and (+) shape 

cross-section (Fig. 4) moments of inertia by using equations 

of engineering mechanics in order to obtain moment of in-

ertia adjustment coefficient. Moment of inertia of (T) shape 

cross-section beam in ribbed RC slab around its centroidal 

axis can be estimated using Eq. (1) [21, 22]. 
 

 
a    b 

 

Fig. 4 a – (T) shape cross-section, b – (+) shape cross-sec-

tion; where: K = h–yt–hf= yc–hf 

 
23

23

- -
12 2

- ,
12 2

eff f f

T eff f t

w w w

w w t

b h h
I b h h y

b h h
b h y

 
   

 

 
   

 

 

(1)

 

 



 180 

where: IT is (T) cross-section moment of inertia; beff is effec-

tive flange width (beff =beff,1+bw+beff,2); hf is flange depth; bw 

is web thickness; hw is web height; yt is distance from tensile 

edge to the centroid of cross-section. 

The moment of inertia of (+) shape cross-section, 

which is created modelling ribbed slab from Bar/Plate ele-

ments in FEM softwares, can be calculated by using Eq. (2) 

(assuming that kM=1): 

 
3 33

,1 ,2

, ,
12 12 12

eff f eff fw

mod M

b h b hb h
I k     (2) 

 

where: I+,mod is modified moment of inertia of (+) shape 

cross-section corresponding to (T) cross-section moment of 

inertia; kM is moment of inertia adjustment coefficient which 

takes into account the difference between (+) and (T) cross-

section moment of inertia. 

Hence, in order to model ribbed slab where beam 

members would have the same stiffness as the beams of the 

actual structure, the adjustment coefficient kM or kM,V of mo-

ment of inertia should be applied to the Bar part of (+) shape 

cross-section (web), so that the total moment of inertia of 

(+) shape cross-section would be equal to (T) shape cross-

section moment of inertia (I+,mod = IT). Coefficient kM should 

be used when the effect of shear deformations is not consid-

ered to deflection of the beams. Whereas, kM,V coefficient 

has to be used instead of kM when shear deformations should 

be taken into account. 

When shear deformations are not considered, the 

moment of inertia adjustment coefficient kM can be calcu-

lated using Eq. (3) – i.e. by equating the right hand sides of 

Eq. (1) and Eq. (2) and solving for kM.
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where: ∆bi is half of web width because modelling with Bar 

and Plate elements results in duplication of cross-sections 

(i=1, 2). Note: With few small alterations Eq. (3) could be 

applied for cases where height of the beam is used without 

considering height of the slab (duplication of the slab and 

the beams does not exist) [15]. 

In the real structure, and also when the calculations 

are made using Solid elements, deflection of the beam mem-

bers is influenced not only by flexural deformation, which 

is caused by bending moment, but also by shear deformation 

obtained from the acting shear forces. The latter one is sig-

nificant when the span to depth ratio of the beams is small 

(l/h ≤ 10) [23]. The total deflection of the beams that con-

sists of both flexural and shear deformations is expressed by 

Eq. (4) [24–26]. 

 

0 0 ,bend shear

Tl l

M M V V
dx dx

EI GA
         (4) 

 

where: δ is the total (T) beam deflection; δbend is deflection 

component caused by bending moment; δshear is deflection 

component caused by shear deformations; l is span of the 

beam; E is modulus of elasticity of concrete; G is shear mod-

ulus of concrete (G≈0.4E); μ is shear deformation coeffi-

cient dependant on the shape of cross-section; M0 is bending 

moment due to unit load in the cross-section located in dis-

tance z from the support; M is bending moment due to ex-

ternal loads in the cross-section located in distance z from 

the support; V0 is shear force due to unit load in cross-sec-

tion z; V is shear force caused by external loads in cross-

section located in distance z from the support; A is the cross-

sectional area. 

The total beam deflection in mid-span cross-sec-

tion depends on the span length, the type of loads, bending 

stiffness of the beams and support conditions. Generally, 

when the beams of ribbed slab are loaded by uniformly dis-

tributed load, the total (T) beam deflection (Fig. 3, a) may 

be calculated using Eq. (5) [25]: 

4 2

,
8T

ql ql
k

EI GA
    (5) 

 

where: q is line load on the primary beam (including the 

self-weight of the structure) (kN/m); k is a coefficient de-

pendant on the type of supports and load type (k=1/384, 

when supports are fixed; k=5/384, when supports are 

pinned; k=2/384=1/192, when one support is fixed and the 

other one is pinned). 

When the effect of shear deformations is consid-

ered in the evaluation of beams deflections, it is needed to 

calculate the shear deformation coefficient μ, which is used 

for the estimation of moment of inertia adjustment coeffi-

cient kM,V. Value of shear deformation coefficient depends 

on the shape of cross-section. Calculation methods of the 

described coefficient can be found in the literature, i.e. 

“Shear Form Factors for Various Cross-Sections” [27] pre-

sents one. A non-linear variation of shear stresses in the 

beam cross-sections has to be considered since the interme-

diate (T) shape cross-section and the edge (Γ) shape cross-

section beams are asymmetrical with respect to the horizon-

tal axes, [21, 22]. (Γ) shape cross-section differs from (T) 

shape cross-section by the fact that it has flange only on one 

side of the web, i.e. it contains only one of the two values - 

beff,1 or beff,2 (Fig. 4). Thus, all analysed ribbed slabs consist 

of two (Γ) shape cross-section beams (edge beams) and 

three (T) cross-section beams (intermediate beams). Shear 

coefficients for various cross-sections can be estimated us-

ing empirical equations presented in the literature or calcu-

lated by FEM softwares [28]. For (T) and (Γ) shape cross-

sections used in the analysed ribbed slabs shear coefficients 

were calculated using Eq. (6) [27]. 
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where: x1, x2 and x3 are coefficients for the calculation of 

shear coefficient expressed by Eq. (7) – Eq. (10). 
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where: 
t fK h y h   (Fig. 4). 
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Calculation of coefficient x3 is different for (T) and 

(Γ) shape cross-sections. In case of (T) cross-section x3 may 

be calculated using Eq. (9): 
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For (Γ) shape cross-sections Eq. (10) can be used to 

calculate x3 coefficient: 
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Then, moment of inertia adjustment coefficient, con-

sidering the effect of shear deformations, can be estimated 

according to Eq. (11). 
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where: ka is coefficient taking account of support conditions 

and the type of loading (in case of uniformly distributed 

load: ka=120 – when supports are fixed; ka=24 – when sup-

ports are pinned; ka=57.8 – when one support is fixed and 

the other is pinned). 

Simplified effective flange width beff estimations of 

beams cross-sections according to STR [2], EC2 [3] and 

ACI [4] are presented bellow (Fig. 5 and Table 1). 
 

Table 1 

beff calculation according to STR, EC2, ACI 

STR [2] 

For (T) and (Γ) shape cross-section beams: 

when h,h f 0.1 ;bb;lb iwiw 
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3

1
effb  

when h,h f 0.1  .hb;bb;lb fwiwiw 
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3

1
effb  

Note: STR specifies different equations for evaluation of beff in 

cantilever beams. 

EC2 [3] 

For (T) and (Γ) shape cross-section beams: 

;bbb i,effeff  wb  

where: 00 201020 l..b.b ii,eff  l  and .bb ii,eff   

ACI [4] 

For (T) shape cross-section beams: 

 .bb;hb;l.b iwfwieff 216250   

For (Γ) shape cross-section beams: 

.bb;hb;lbb iwfwiweff 
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12

1
 

 

In beff evaluation for beams with rigid supports l0 

was assumed to be equal to 0.7li. Whereas, l0 value was as-

sumed to be equal to span length of the beams li when cal-

culating beff for beams with pinned supports. 

 
 

Fig. 5 beff calculation scheme 

Four monolithic ribbed reinforced concrete slabs 

with different geometrical properties were analysed in order 

to perform previously mentioned calculations and to inves-

tigate the importance of moment of inertia adjustment coef-

ficients. Schemes of the analysed slabs are illustrated in 

Figs. 6 and 7, while their geometrical properties are pre-

sented in Table 2. 

Table 2 

Geometrical properties of ribbed RC slabs 

Slab No. l, m s, m h, m bw, m hf, m 

1 6.0 6.0 0.60 0.40 0.20 

2 10.0 6.0 1.00 0.40 0.20 

3 6.0 4.0 0.50 0.30 0.15 

4 4.0 4.0 0.40 0.20 0.15 

 

All ribbed slabs were loaded with identical 

q=5 kN/m2 uniformly distributed area load in the analysis 

(self-weight was not considered separately). Deflections of 

beams obtained from calculation models using Bar and Plate 

elements were compared with deflections estimated from 

calculation models which are modelled from solid slab 

members. Slab elements in the volumetric slab models were 

divided into finite elements with size equal to 1/5 web width 

of the beams (Fig. 8). 
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Fig. 6 Scheme of ribbed slab with fixed supports and deflec-

tions of beams and slab 
 

 
 

Fig. 7 Scheme of ribbed slab with pinned supports and de-

flections of beams and slab 
 

 
 

Fig. 8 Fragment of volumetric model of slab divided into fi-

nite elements (analysis performed using Robot Struc-

tural Analysis software [7]) 

 

In order to compare beam deflections, five differ-

ent calculation models were created for each slab modelled 

using Bar and Plate elements that contained beams with the 

same cross-section but different bending stiffness. In the 

first case moment of inertia of beams were not modified 

(Fig. 9 notation NC). In the other calculation models mo-

ments of inertia of the beams were multiplied by moment of 

inertia adjustment coefficients which were evaluated assum-

ing the effective flange widths equal to: 

• beff,AL=s for (T) shape cross-section beams and 

beff,AL=s/2+bw/2 for (Γ) shape cross-section beams 

(where: s is the distance between the beams). 

• beff,STR is calculated according to STR [2]; 

• beff,EC2 is calculated according to EC2 [3]. 

• beff,ACI is calculated according to ACI [4]. 

3. Results 

The effective flange widths beff were calculated ac-

cording to the three different design codes discussed in this 

paper (Table. 1) in order to determine moment of inertia ad-

justment coefficients for the cross-sections of the analysed 

beams. All investigated ribbed RC slabs showed the same 

tendency of the effective flange widths beff: 

beff,AL>beff,STR>beff,EC2>beff,ACI. Every ribbed slab was calcu-

lated assuming fixed and pinned supports of the beams and 

the slabs (Figs. 6 and 7). In addition, all calculations were 

performed using kM and kM,V moment of inertia adjustment 

coefficients. The comparison of deflections and bending 

moments is illustrated in Figs. 9 and 10, while the notations 

used in the comparison of results (Figs. 9 and 10) are defined 

in Table 3. 

Table 3 

Notations used in Fig. 9 and 10 

Notation Definition 

δbars /δsolids 
ratio of beams deflection calculated using Bar 

model (δbars) and Solid model (δsolids). 

Mk>1.0/Mk=1.0 

ratio of maximum bending moments in the 

beams using moment of inertia adjustment co-

efficient (Mk>1.0) and without modification 

(Mk=1.0). 

Performed analysis of moment of inertia adjust-

ment coefficients kM and kM,V indicated that lower values of 

coefficients are obtained when ribbed RC slab has fixed sup-

ports. It was noticed that in all cases the values of kM,V coef-

ficients were estimated smaller than kM values. For (Γ) shape 

cross-section beams, moment of inertia adjustment coeffi-

cient kM varied from 1.36 to 2.11, whereas for (T) shape 

cross-section beams kM varied from 1.60 to 2.41 in the ana-

lysed ribbed RC slabs with fixed and pinned supports. In 

case of ribbed slabs with fixed supports kM,V values scattered 

in the range 0.57 – 1.26 for (Γ) shape cross-section beams, 

while kM,V values for (T) shape cross-section beams varied 

between 0.79 and 1.42. Respectively, in slabs with pinned 

supports kM,V values varied from 1.28 to 1.74 for (Γ) shape 

cross-section beams, and kM,V range was obtained from 1.50 

to 2.05 for (T) shape cross-section beams. It can be seen 

from the summarized results that in all cases shear defor-

mations lead to smaller bending stiffness of the beams and 

greater deflections were estimated as the result. Fixed sup-

port conditions resulted the deflection component caused by 

bending moment being smaller in the total deflection  

(Eq. (4)), when deflection from shear deformations was con-

stant. 

Deflection ratios of beams in the analysed ribbed 

RC slabs, when calculations were performed using 

Bar/Plate elements and using Solid elements, are illustrated 

in Fig. 9. It can be seen from the presented comparative de-

flection results that application of moment of inertia adjust-

ment coefficients kM and kM,V allows to estimate the  deflec-

tions more accurately (deflections were obtained closer to 

the ones predicted by 3D calculation model) 

As the result of analysis of all calculated beam de-

flections in the ribbed RC slabs modelled by using Bar/Plate 

and Solid elements, the observations are presented in a sys-

tematic way: 

 Without application of moment of inertia adjustment 

coefficients kM, and kM,V  the deflections of beams in the cal-

culation models consisting of Bar/Plate elements were 

higher in all cases compared to the 3D calculation models 

consisting of Solid elements. The deflections were higher by 

15.2% – 96.0% for (Γ) shape cross-section beams, while for 

(T) shape cross-section beams, the estimated deflections 

were higher by 20.2% – 98.0%. Hence, in some configura-

tions of slabs, the beams were almost twice slenderer than 

they should have been.
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Fig. 9 Beams deflection comparison in ribbed RC slabs modelled using Bar/Plate elements and Solid elements. NC – beams 

without moment of inertia modification (kM=kM,V=1.0); AL, STR, EC2 and ACI – kM and kM,V calculated using beff 

values estimated according to load distribution width (Fig. 3), STR, EC2 and ACI methods respectively. (Γ) shape 

cross-section beams (beam No. 1 in Figs. 6 and 7), (T) shape cross-section beams (beam No. 3 in Figs. 6 and 7) 

Application of moment of inertia adjustment coef-

ficients also provided relatively high differences in the beam 

deflections when the effective flange widths beff were esti-

mated according to the load distribution method. Beam de-

flections discrepancies varied from -34.2% to +79.7% for 

(Γ) shape cross-section, while the differences in beams de-

flections were observed in the range from -32.9% to +43.7% 

for (T) shape cross-section. Here, “+” symbol indicates that 

deflection of the beams in the model consisting of Bar/Plate 

elements was calculated greater compared to calculation 

model with Solid elements, whereas “-” represents the op-

posite case. Thus, the deflection errors remain high enough 

and they are especially significant when kM,V coefficient is 

applied in cases of fixed support conditions. 

 Significantly smaller discrepancies of beams deflec-

tions were noticed when moment of inertia adjustment co-

efficients were applied and the effective flange widths beff 

were calculated according to any of STR, EC2 or ACI cal-

culation methods. Comparative analysis showed that deflec-

tions discrepancies of (Γ) shape cross-section beams varied 

between -22.0% and +26.7%, while deviations of (T) shape 

cross-section beams were obtained in the range of -32.9% – 

+26.7% when beff values were estimated using calculation 

methods of the discussed design codes. Depending on slab 

configuration, support conditions and option to consider 

shear deformations, some calculation methods provided 

more accurate results than the others. However, the general 

tendency remained – application of moment of inertia ad-

justment coefficients kM ir kM,V, calculated by using beff val-

ues that were estimated according to the design codes dis-

cussed in this paper, lead to more accurate deflection values; 

 The effect of shear deformations was more significant 

in cases of beams with fixed supports because in these cases 

the deflection component caused by bending moment was 

smaller in the total deflection and as a consequence, the de-

flection component caused by shear forces was more notice-

able. Nevertheless, it is appropriate to use kM coefficient in 

most cases of ribbed slab design considering relatively small 

deflection differences and the complexity of kM,V coefficient 

calculation. It should be noted that application of kM instead 

of kM,V coefficient results in beam members having higher 

bending stiffness, which means greater values of estimated 

bending moments in the beams; 

 Although the application of moment of inertia adjust-

ment coefficients kM and kM,V does not provide a perfect 

match of deflections estimated from calculation models con-

sisting of Bar/Plate elements and calculations performed by 

using Solid elements, it makes the calculations more accu-

rate without overcomplicating the design. In addition, the 

application field of the proposed coefficient can be ex-

panded by adding a possibility for the adjustment coefficient 

to consider the effect of cracking and creep of concrete to 

the bending stiffness of RC members. 

Incorrect evaluation of beams (bar members) bend-

ing stiffness in the analysis of ribbed RC slabs leads not only 

to deflection inaccuracies but also it influences errors of the 

obtained internal forces in the beams. Underestimated bend-

ing stiffness of the beams results in lower bending moment 

values in those beams. The stiffness ratios of beams and 

plates have influence on the distribution of internal forces in 

plates as well. Other internal forces (e.g. shear forces) can 

also be redistributed because of inaccurate estimation of 

beams bending stiffness. Also, in addition to the redistribu-

tion of internal forces in ribbed slab, the possibility of inter-

nal forces redistribution arises in other structural elements. 

Differences of bending moments in the analysed 

ribbed slabs caused by the application of moment of inertia 

adjustment coefficients are illustrated in Fig. 10. 

Fig. 10 shows the relative difference of bending 

moments in the beams of ribbed RC slabs when moment of 

inertia adjustment coefficients kM and kM,V are applied con-

sidering beff values obtained according to the calculation 

methods presented in Table 1. 

It is evident from Fig. 9 that for (Γ) shape cross-

section beams with fixed supports the deflection results ob-

tained using kM coefficient were most accurate when beff 

were estimated according to the ACI calculation method. 

Fig. 10 shows that the bending moment values in the sup-

ports were obtained higher by +1.0% – +6.8% when the 

mentioned kM coefficient was used compared to the bending 
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moment values obtained without the consideration of the ad-

justment coefficient. Meanwhile, the application of kM,V co-

efficient, when beff were estimated according to the EC2 

method, increased the bending moment values in the sup-

ports in the range of +0.3% – +2.2% compared to the calcu-

lations without the application of the adjustment coefficient. 

The bending moment values increased in both cases but in 

the latter case, the deviation of kM,V coefficient lead to re-

duced moment of inertia, which consequently slightly in-

creased the value of bending moment. 

 
 

Fig. 10 Bending moments in beams of ribbed slabs dependence on moment of inertia adjustment coefficients kM and kM,V 

The analysis of (T) shape cross-section beams with 

pinned supports indicated that deflection values were most 

accurate using kM,V coefficient when beff were estimated ac-

cording to the EC2 calculation method. It can be seen from 

Fig. 10 that when the described kM coefficient was used, the 

bending moment values in the supports were estimated 

higher by +2.9% – +9.8% than without the consideration of 

the adjustment coefficient. Whereas, application of kM coef-

ficient increased the bending moments in the supports in the 

range of +5.0% – +19.5% when beff values were evaluated 

according to the ACI method. The difference of results 

clearly shows that inaccurate determination of beams bend-

ing stiffness has a significant effect on the bending moments 

acting in those beams. Thus, a simpler and a more conserva-

tive solution by the application of kM adjustment coefficients 

influences a slightly higher amount of reinforcement in the 

designed beams. 

When pinned supports were used (Fig. 9), deflec-

tions of (Γ) shape cross-section beams were the most accu-

rate with the application of kM coefficient when beff were es-

timated according to the STR calculation method. Fig. 10 

shows that when kM adjustment coefficient was applied, the 

bending moment in the beam mid-span section varied be-

tween -2.4% and +10.4% compared to the bending moment 

values without an adaptation of the adjustment coefficient. 

Deflections of (T) shape cross-section beams coincided the 

best with the results of 3D calculation model when kM coef-

ficient was calculated using beff values estimated according 

to the calculation method presented in STR. It can be seen 

from Fig. 10 that the application of the mentioned kM coef-

ficient increased the bending moments in the mid-span sec-

tion in the range of +5.9% – +27.2%. These results again 

confirmed the influence of beams bending stiffness on the 

bending moment values in those beams. Whenever plastic 

hinges are not considered, such increase of the bending mo-

ments can lead to the necessity of reinforcement amount re-

calculation or even the need of different cross-section. The 

outcome of underestimation of bending stiffness differences 

due to (+) shape cross-section existence instead of (T) shape 

cross-section might even lead to unsafe design of the struc-

ture. 

Bending stiffness of beams also has an influence 

on the values of shear forces. In the case illustrated in Fig. 7 

the differences of shear forces were not large when the pre-

sented equations were used for the calculation of moment of 

inertia adjustment coefficients kM and kM,V (beff were esti-

mated according to STR, EC2 and ACI methods). The aver-

age difference of shear forces was close to 0% (range of var-

iation from -2.6% to +2.2%). However, in the case illus-

trated in Fig. 6 the bending stiffness of beams had a greater 

effect to the differences of shear forces in the beam mem-

bers. Shear forces varied in the range of -0.1% –  +17.8% in 

(Γ) and (T) shape cross-section beams calculated with the 

adaptation of the adjustment coefficients kM and kM,V that 

were calculated using equations presented in the paper 

(when beff were evaluated according to STR, EC2 and ACI 

calculation methods). Hence, depending on the structural 

scheme of ribbed RC slab, incorrect evaluation of beams 

bending stiffness can result not only insufficient amount of 

longitudinal but also transversal reinforcement. 

Incorrect evaluation of (Γ) and (T) shape cross-sec-

tion beams bending stiffness also changes the values of in-

ternal forces in the slab members. Underestimated bending 

stiffness of the beams determines unreasonably high deflec-

tions, and consequently the bending moment values change 

both – in the supports and in the mid-span section. In the 

results analysis the bending moments of the slab members 

illustrated in Figs. 6 and 7 in their support regions above the 

beam members when kM coefficients were applied (beff as-

sumed according to the EC2 method) were compared with 

the bending moments obtained without using adjustment co-

efficients. Application of kM coefficients increased the bend-

ing moments of the slab members in the support regions 

above the beams by +10% … +40.9% in cases of the ribbed 

RC slabs analysed in this paper. The analysis of ribbed RC 

slabs showed that the bending moments in the supports of 
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the slab members are considerably underestimated when 

moment of inertia adjustment coefficients are not used, 

which consequently might lead to insufficient amount of the 

designed slab reinforcement above the beam members. Be-

sides, the comparison of the bending moment values in mid-

span regions of the slab members in the ribbed RC slabs il-

lustrated in Fig. 6 showed that the application of kM coeffi-

cients (when beff values were determined according to the 

EC2 method) increased the bending moments in the range 

from +1.8% to +10.6%. Whereas, the bending moments re-

duced from -12.8% to -8.3% in the case of the slabs pre-

sented in Fig. 7. 

Concluding the comparative analysis, it is evident 

that bending stiffness of (Γ) and (T) shape cross-section 

beams has a significant impact not only to the deflections 

but also to the internal forces in all members of the ribbed 

slab structure. Therefore, the consideration of moment of in-

ertia adjustment coefficients kM and kM,V proposed in this pa-

per makes the design process of ribbed reinforced concrete 

slabs more accurate without overcomplicating it. The pro-

posed adjustment coefficients can also be used as a simpli-

fication for accurate evaluation of internal forces without 

using “offset” function or other calculation methods, or 

without application of Solid elements. 

4. Conclusions 

In this paper, derivation and equations for calculating 

moment of inertia adjustment coefficients kM and kM,V are 

presented. Application of coefficient kM includes only the 

consideration of difference between (+) and (T) shape cross-

sections moments of inertia, while kM,V coefficient also al-

lows to evaluate the effect of shear deformations. The equa-

tions presented in this paper allow to evaluate the actual 

bending stiffness of (Γ) and (T) shape beams cross-sections 

simply enough when estimating the internal forces in ribbed 

reinforced concrete slabs. 

Comparative analysis of 4 ribbed slabs with different 

geometrical properties and support conditions modelled us-

ing Bar/Plate elements and Solid elements indicated that it 

is appropriate to use effective flange widths beff calculation 

method presented in STR, EC2 and ACI design codes for 

the evaluation of kM and kM,V adjustment coefficients. Adap-

tation of these calculation methods for the analysis of edge 

beams (Γ) cross-sections proposed kM values in the range 

from 1.335 to 1.865 and kM,V values between 0.994 and 

1.655. Whereas, kM values obtained for intermediate beams 

(T) cross-sections varied from 1.601 to 2.192, while kM,V 

values varied in the range 1.172 – 1.973. When these kM and 

kM,V coefficients were used, deflections of the beam mem-

bers in ribbed RC slab modelled using Bar/Plate elements 

varied from -26.7% to +29.9% depending on the case and 

shape of cross-section compared to deflection values pre-

dicted by analysis of the slabs consisting of Solid elements. 

Application of kM coefficient resulted the difference of 

bending moments from -3.0% to +27.2% and the difference 

of shear forces in the range between -2.6 and +17.8% in (Γ) 

and (T) shape cross-section beams (here “+” indicates the 

increase) compared to the estimated values of bending mo-

ments and shear forces when the adjustment coefficients 

were not used. Whereas, kM,V coefficient changed the bend-

ing moment values in the range of -2.9% – +24.4% and the 

shear forces in the range from -2.4% to -7.9%. Comparative 

analysis of the calculated ribbed slabs also showed that more 

accurate evaluation of (Γ) and (T) shape beams bending 

stiffness changed the values of bending moments in slab 

members in the range between -12.8% and +40.9%. 

The adaptation of the proposed adjustment coeffi-

cients in structural engineering softwares is simple enough 

and it allows to estimate the real geometry of ribbed RC 

slabs modelled with Bar/Plate elements accurately. Consid-

eration of the real slab geometry by analysed method leads 

to more accurate estimation of internal forces in all struc-

tural members, as well as allows to perform further design 

simpler and more accurately. 
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Š. Kelpša, G. Rinkevičius, T. Zingaila, M. Augonis, 

V. Kitovas 

COEFFICIENT OF MOMENT OF INERTIA FOR 

RIBBED RC SLAB BEAMS 

S u m m a r y 

During the design process of monolithic ribbed 

slabs, engineers face a common issue how to correctly eval-

uate stiffness of the beams. When Bar and Plate elements 

are used for analysis of the slabs, the neutral axis of those 

members are in the same level, therefore the stiffness of (T) 

shape cross-section is not considered correctly in the calcu-

lations. In this case the internal forces are obtained incor-

rectly as well as deflections of the beams are overestimated. 

A simple method is discussed in this paper, which allows 

engineers to calculate internal forces and deformations of 

mentioned type slabs more accurately with FEM programs 

by using Bar and Plate elements. The method is based on 

Bar elements moment of inertia adjustment. 

After the comparative analysis of differences be-

tween moment of inertia of (T) and (+) shape cross-sections 

as well as deflection discrepancies, the adjustment coeffi-

cient expression is presented. In order to reflect the actual 

behaviour of ribbed slabs even more accurately the influ-

ence of shear deformations is also considered. In this case 

not only the member geometry but the material properties, 

loading scheme and even supports are taken into account in 

the calculations of the adjustment coefficient. Selection of 

the most appropriate (effective) flange width of (T) shape 

cross-section is also analysed in this paper. Comparative 

calculations were done using different effective flange 

widths beff calculated by EC2 (Eurocode 2), “STR” (Lithua-

nian Construction Technical Regulations) and ACI (Ameri-

can Concrete Institute) methods. In order to assess the reli-

ability of the proposed calculation method and the calcula-

tion results all plates were also analysed using Solid ele-

ments. 

Application of the presented expressions of mo-

ment of inertia coefficient will allow engineers to evaluate 

stiffness of (Γ) and (T) shape cross section beams simply, 

fast and accurately enough for most of structural engineer-

ing calculations. 

Keywords: Ribbed reinforced concrete slabs, stiffness, mo-

ment of inertia, T beams, FEM, structural engineering cal-

culations, design. 
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