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Abstract: The fourth digital revolution of industry makes substantive changes to the rate and
methodology of work performance. Machines and robots do the majority of work in robotized and
automated factories, while people only supervise them. After an increase of production efficiency,
quality control became a critical point. Therefore, quality control systems of computer visions are
increasingly installed. The branch of chemical industry requires measurements of quality at as
great a frequency as possible. Consequently, indirect measurements are effectively used at this
point. This research presents the method of indirect particle measurement. Particles are measured
using digital image processing. The algorithm is used for particle measurement to automatically
adjust the measurement results. Numerical intelligence is added to the algorithm to increase the
accuracy of correction results. The research deals with the problem of matching the results of
indirect measurements and the results of the control equipment. For data analysis, fertilizer diameter,
mean diameter, aspect ratio, symmetry, sphericity, convexity and some other parameters are used.
The mismatch of the artificial neural network results with the control equipment results is slightly
higher than 1%.

Keywords: image processing; particle; distribution

1. Introduction

The fourth industrial revolution has already become the present-day reality; the development is
greatly influenced by the concept of the internet of things. As technologies interconnect physical and
digital worlds together, changes are observed in all living spheres of the state. The largest changes
occur in those industries where smart factories are established. Robots, which are replacing employees
in production, do not get tired, which allows them to fulfill larger orders. It is essential to ensure
required qualitative parameters of production together with productivity growth. It is not enough to
provide production in series to quality control anymore. Volumes of quality production increase only
by using continuous control and by checking every product [1].

The branch of chemical industry, fertilizer production, requires performance of quality checks as
frequently as possible because production capacity amounts to hundreds and thousands of tons per
hour. Decreasing utilized agricultural areas and the increase of population determines an increasing
demand for fertilizers. Hence the growth of larger and more qualitative harvest requires balanced
fertilization of plants. The most optimal result of fertilization is facilitated not only by chemical
substances but also their physical parameters—the shape, size, and density of fertilizer granules.
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Therefore, one of the most significant indicators in the process of fertilizer production is distribution of
granules in accordance with their diameter.

Every product, whatever industrial branch it belongs to, is characterized by tens or even hundreds
of parameters. Due to increasing capacity of production equipment, human resources are not enough
for the periodic inspection of production. Parameters of quality are checked by using indirect
measurements, for which measurement errors usually are a typical deviation of the measurement
result from the fair value.

Direct measurements of fertilizer granules, which are still widely used, are not effective due to the
interval of their performance, which is very long. Measurement intervals are reduced by involving
indirect measurements carried out alongside the production line. Different indirect methods are
used for the measurement of granule distribution: laser diffraction [2–4], acoustic spectroscopy [5–7],
infrared spectroscopy [8], dimensional filtering [9,10], radar [11], technique of sedimentation [12],
transmission electron microscopy [13,14], X-rays diffractive spectrum [15], and digital image processing
(one of the modern methods based on multistage entropy [16]). The processing of visual information
provided additional details about particles. It also assesses the roundness of the product; its distribution
is in accordance with its quantity and volume. Not to mention that certain information about the
color [17,18] or porosity [19] of the product is received by applying an appropriate system of lighting.
Systems of computer vision are applied to establish the distribution of participles in liquids [20] by
using microscopes (SEM and TEM) [21,22] applying a three-dimensional technique of measurement
by analyzing the surface of the granule sample [23,24] or approximating the segmented image of
participles [25–27]. The selection of measurement methodology is influenced by the size of an object.
The analysis of digital images is applied to assess participles within the interval of 0.01 to 20 mm.
Quality control systems of computer vision are increasingly installed in factories due to their large
capacity, reliability, mobility, and ability to process additional information. Of course, image processing
results strongly depends on granules roundness. In most cases it is needed to recalculate results.

The results of indirect measurements are strongly influenced by the composition of analyzed
sample. Different measurement methods are used to obtain reliable results in comparison with control
equipment data. Results of the received distribution could be adjusted according to the distribution
average coefficient [28] or compared with several other measurements [29,30]. The light reflection
is used for the evaluation of larger particles [31]. The surface shape of particles is evaluated more
accurately by three-dimensional images obtained with two cameras [32] or the reflection in mirrors [33].
A laser is often used to obtain the optimal result in conjunction with the image system [34,35].

Most methodologies of particle measurement provided in scientific publications make corrections
to the measurement of a specific material alongside different production lines. The results are influenced
by the temperature and humidity of a granule mix, including some other factors as well. Granules
forming equipment is clogged during production. This affects the size and shape of the granules.
Following the changes in the shape of the particles, these processes can be precisely identified, and the
line stopped for equipment washing. Correction parameters of the results are established one time
by carrying out equipment calibration. A significant change in the production process causes a
problem—the noncompliance of measurement results exceeds the allowable errors determined by the
international standards. An automated algorithm for result correction can make improvements by
taking geometric changes in particles and the results of previous measurements into consideration.
The universal algorithm may be applied to a wider spectrum of products. Consequently, the key goal
of the research analyzed in the article is to develop an automated methodology of result correction to
prepare assessment equipment for granule distribution in accordance with their size. The main aim
of this research is to achieve a better correlation results between indirect measurements and control
equipment. The goal is achieved by improving computer vision system.
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2. Materials and Methods

One of the essential features of the fourth industrial revolution is the installation of computer
vision systems for the inspection of industrial production quality parameters. The shape of fertilizer
granules in the chemical industry has more advantages over the powder shape. The transportation
and storage of granules are more convenient, segregation of the product is avoided, and production of
homogenous mixes is more effective, as well as the process of fertilization. The measuring of granules
by using a computer vision system is based on the geometric shape of particles, which, in an ideal
situation, is a sphere.

Digital image processing within an indirect measurement is the primary source of information
input. By using a video camera, morphological operators set the outlines of particles in the captured
images of granule shadows (part of the researchers use image segmentation [36] by solving the problem
of particle overlaying [37]). A precisely accurate result of the measurement is received by using
well-calibrated equipment (hardware). To optimize the work of the system, it is important to optimize
the computer resources for parallel image processing [38]. Optimal exposure duration ensures the
identity of the distinguished granule outline with its real outline. The outlines of particles depend on
the binarization of the images [39].

The outlines of granule shadows are approximated by an ellipse [40] because this geometric form
most precisely assesses roundness of granules. The outline of an ellipse provides certain information
about longitudinal and transverse dimensions of a particle, the ratio of which is the meaning of
roundness. The results of particle distribution in accordance with their quantity correspond to the
results attained by using the control equipment only in the events when the shape of granules is
close to the ideal circle (an interval of roundness of 0.95 to 1.00). That depends on the product type,
e.g., ammonium nitrate or carbamide constitutes solid round granules. However, such a product as
monocalcium phosphate is small, frail and the shape of its particle is distinguished as anisotropic.
Consequently, the image processing algorithm must assess an uneven surface of the granule.

The correlation of the results of the digital image analysis with the results of the control equipment
is obtained by evaluating the volume of particle. The latter distribution corresponds to the mass
distribution. In the production process, the density of the production in the interval of 4–6 hours varies
by 5–7%. However, in the sample for the analysis, this difference is abnormally low (<0.1%), so the
distribution must be calculated on the total volume of all particles.

The quality of physical features of fertilizer granules is evaluated by the following factors;
an average diameter of granules d50, Uniformity Index, SGN (Size Guide Number), and an average
square deviation of the granule size. After the sieve correction factor has been applied for the correction
of d50 index, the diameter of every analyzed particle is divided by the latter factor. A more effective
correction result is obtained by using the advantage of visual particle information, i.e., distribution
of roundness. Then, the sieve correction factor is applied to the particles of an irregular shape only
because the diameter of the latter ones depends on the position of falling particles in respect of the
camera. The diameter of the granules, which is close to the ideal circle, does not require any correction.

By analyzing the visual information of the granules, it was found that the cumulative particle
volume distribution curve accurately reproduces the results of the distribution obtained by the control
equipment. Only the shadow of the granules close to the ideal circle was evaluated (an example of an
image captured by the camera is provided in Figure 1). Such coincidence of the results depends on
the roundness of the analyzed particles (higher rounding index), their mechanical resistance, and the
number of granules.



Symmetry 2019, 11, 838 4 of 16

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 16 

 

granules in the chemical industry has more advantages over the powder shape. The transportation 
and storage of granules are more convenient, segregation of the product is avoided, and production 
of homogenous mixes is more effective, as well as the process of fertilization. The measuring of 
granules by using a computer vision system is based on the geometric shape of particles, which, in 
an ideal situation, is a sphere. 

Digital image processing within an indirect measurement is the primary source of information 
input. By using a video camera, morphological operators set the outlines of particles in the captured 
images of granule shadows (part of the researchers use image segmentation [36] by solving the 
problem of particle overlaying [37]). A precisely accurate result of the measurement is received by 
using well-calibrated equipment (hardware). To optimize the work of the system, it is important to 
optimize the computer resources for parallel image processing [38]. Optimal exposure duration 
ensures the identity of the distinguished granule outline with its real outline. The outlines of 
particles depend on the binarization of the images [39]. 

The outlines of granule shadows are approximated by an ellipse [40] because this geometric 
form most precisely assesses roundness of granules. The outline of an ellipse provides certain 
information about longitudinal and transverse dimensions of a particle, the ratio of which is the 
meaning of roundness. The results of particle distribution in accordance with their quantity 
correspond to the results attained by using the control equipment only in the events when the shape 
of granules is close to the ideal circle (an interval of roundness of 0.95 to 1.00). That depends on the 
product type, e.g., ammonium nitrate or carbamide constitutes solid round granules. However, such 
a product as monocalcium phosphate is small, frail and the shape of its particle is distinguished as 
anisotropic. Consequently, the image processing algorithm must assess an uneven surface of the 
granule. 

The correlation of the results of the digital image analysis with the results of the control 
equipment is obtained by evaluating the volume of particle. The latter distribution corresponds to 
the mass distribution. In the production process, the density of the production in the interval of 4–6 
hours varies by 5–7%. However, in the sample for the analysis, this difference is abnormally low 
(<0.1%), so the distribution must be calculated on the total volume of all particles. 

The quality of physical features of fertilizer granules is evaluated by the following factors; an 
average diameter of granules d50, Uniformity Index, SGN (Size Guide Number), and an average 
square deviation of the granule size. After the sieve correction factor has been applied for the 
correction of d50 index, the diameter of every analyzed particle is divided by the latter factor. A 
more effective correction result is obtained by using the advantage of visual particle information, i.e., 
distribution of roundness. Then, the sieve correction factor is applied to the particles of an irregular 
shape only because the diameter of the latter ones depends on the position of falling particles in 
respect of the camera. The diameter of the granules, which is close to the ideal circle, does not 
require any correction. 

By analyzing the visual information of the granules, it was found that the cumulative particle 
volume distribution curve accurately reproduces the results of the distribution obtained by the 
control equipment. Only the shadow of the granules close to the ideal circle was evaluated (an 
example of an image captured by the camera is provided in Figure 1). Such coincidence of the results 
depends on the roundness of the analyzed particles (higher rounding index), their mechanical 
resistance, and the number of granules. 

3000 µm  
Figure 1. Shadows of granules digital images were captured with a linear video camera. Figure 1. Shadows of granules digital images were captured with a linear video camera.

The regression model functions are used for the correction of the cumulative curve shape of
granule distribution. The essence of this new approach is in that the automatic understanding methods
were used to develop new generation system [41]. The establishment of the factors of these functions
uses samples measured by the control equipment. Depending on the scope of production process
variations, the regression model cannot always recalculate the results accurately. That is related to the
changes in distribution of particle roundness. If the roundness average has shifted below the 0.9 ratio
of the minimum and maximum diameters, the quantity of round particles is not enough to establish
accurate results. The assessment of the remaining particles can be carried out by using the results of
previous measurements and the results of the most circular particle distribution of a new sample in
accordance with their volume. After carrying out an analysis of granule images, the results, together
with the data of previous measurements, are used to establish variables of the regressive function.
This operation is performed after the analysis of every sample. The algorithm of the methodology is
submitted in Figure 2. The cumulative curve of particle distribution describes the function

Q(q, c) =

do∫
du

4
3
π · rmax(q, c) · r2

min(q, c) (1)

where rmax is defined in

rmax(q, c) · r2
min(q, c) =

 rmin(q)
rmax(q)

> c : rmax × r2
min

0
(2)

where q—analyzed particle; rmin—the minimum approximation ellipse radius of analyzed particle
[mm]; rmax—the maximum approximation ellipse radius of analyzed particle [mm]; du and do—interval
of used sieves [mm]; and c—particle round index (ratio of minimum and maximum radius).
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An artificial neural network can be used to increase the efficiency of the particle correction
algorithm. In scientific articles about particle measurement using image processing, authors use
the neural network [42] for approximation of individual particles [43]. However, to achieve that,
more resources are needed for calculations. Also, supporting vector machines (SVM) are used for
particle measurement for the characterization of digital image classification [44]. In this research an
artificial neural network is used to correct the cumulative curve. The general formula of the artificial
neural network results in the function of activation:

y = ϕ(
n∑

j=0

w jx j) (3)
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where wj—input weights; xj—inputs; and y—output [45].
The results of particle image analysis together with the control equipment data of the previous

measurement are used for the formation of the regression model function.
Linear video camera was used for particle measurement in the research. Due to their high-speed

these cameras can capture real-time shadows of the particles falling from the conveyor, because a
new image can be captured parallel with sending the image captured before. A frame of practically
unrestricted height is attained. A linear video came typically has smaller geometric distortions; that is
why they are more easily corrected than the ones of a matrix camera, because only one-dimensional
correction of image distortions is necessary. It captures an image of higher resolution and a larger
dynamic range. Moreover, the linear video camera has been selected because of better repeatability of
the results. The equipment of experiment is submitted in Figure 3.
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By using visual information for the establishment of granule distribution, the minimal diameter
of every particle of the sample is assessed. Such classification is an alternative to sieves because it is
accepted that a particle can pass through sieves by its narrow par. When carrying out measurements,
the volume of every particle is added to the volume of the particles with the same diameter. The intervals
of diameters of added particles correspond with sieves. In the end of the analysis, the percentage of
the distribution of all granules is attained.

3. Results

In this section, we used different methods for recalculation of the granules cumulative curve.
The results of image processing were not accurate because of the anisotropic shape of granules.

3.1. Measurements Repeatability

The investigation of the indirect measurement equipment was completed by repeatedly obtaining
the same results to evaluate the reliability of the experimental measurements. The roundness of
the particles is related to their mechanical strength, which was also included into considered of the
repeatability of the results. In the research, two different material (monocalcium phosphate and
ammonium nitrate) samples were used. Each sample was measured three times (Figure 4).
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Figure 4. Repeatability of indirect measurement results (particle distribution is estimated by volume).

Additionally, the use of impurities in the production of ammonium nitrate gives better mechanical
strength of particles, and therefore they have a better repeatability. Monocalcium phosphate particles
crystals are irregular and brittle. This causes the sample deviation after each measurement. A correction
of the results is necessary due to the different composition of the particles measurements.

3.2. Cumulative Curve Correction

The coefficient of sieve correction affects the indicator d50 of the average of particle diameter.
The diameters of particles are magnified or reduced by moving the cumulative curve. The coefficient
of the correction does not affect the shape of cumulative curve. The results of measurement corrections
are provided in Figure 5. The latter method is not reliable, especially with small diameter (<1 mm)
particle measurements.
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Figure 5. The cumulative curve of particle distribution is changed by applying a sieve
correction coefficient.

Two samples were analyzed to evaluate of correlation between indirect measurement results and
the control equipment results. Ammonium nitrate material was used for the analysis (two samples of
200 g). The results of the analysis showed that, when evaluating only the roundness of the particles,
the received values correlate with the standard particle distribution. However, the amount of analyzed
particles also affects the result (see Tables 1 and 2 of the results of measurements and Figure 6).

Table 1. Circularity evaluation results (sample no. 1).

Sample No. 1
Sieve Size

0.0–1.0 1.0–2.0 2.0–2.8 2.8–3.15 3.15–4.0 4.0–20.0

Actual weight (g) 0.4 9.0 49.2 59.6 66.8 15
Reference distribution (%) 0.2 4.5 24.6 29.8 33.4 7.5

Cumulative curve 0.2 4.7 29.3 59.1 92.5 100

Particles diagonal ratio (min/max) Indirect measurement (distribution by volume)

0–100% 0.03 7.01 30.03 25.72 32.24 4.97
90–100% 0.29 5.92 26.94 30.15 32.78 3.92
95–100% 0.14 4.72 25.10 29.60 33.80 6.64
98–100% 0.23 5.43 27.03 31.20 30.94 5.17

Circularity distribution

Intervals (%) 0–92 92–94 94–96 96–98 98–100
Quantity (%) 38.25 23.16 15.38 10.79 12.42
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Table 2. Circularity evaluation results (sample no. 2).

Sample No. 2
Sieve Size

0.0–1.0 1.0–2.0 2.0–2.8 2.8–3.15 3.15–4.0 4.0–20.0

Actual weight (g) 1.0 11.8 57.6 60.6 57.4 11.6
Reference distribution (%) 0.5 5.9 28.8 30.3 28.7 5.8

Cumulative curve 0.5 6.4 35.2 65.5 94.2 100

Particles diagonal ratio (min/max) Indirect measurement (distribution by volume)

0–100% 0.68 5.72 23.17 24.06 39.70 6.67
90–100% 0.74 6.14 23.64 26.30 34.50 8.68
95–100% 0.86 5.90 29.06 29.57 29.09 5.52
98–100% 0.79 6.52 30.21 26.14 30.16 6.18

Circularity distribution

Intervals (%) 0–92 92–94 94–96 96–98 98–100
Quantity (%) 35.59 21.62 10.84 17.22 14.73
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Figure 6. Comparison of indirect measurement results by evaluating only roundness particles.

For the analysis of spherical granules, it is enough to evaluate only part of the granules. If at
least 75% of the granules fall within the 0.9 to 1.0 range according to the roundness distribution, it is
enough to measure the volume of the granules in the interval 0.95 to 1.00 by roundness. This interval
includes approximately 30% of all granules. That is directly related to volume calculation. By analyzing
a two-dimensional image the smallest and the largest diameters of granules differ by at least 10%;
therefore, it may be assumed that the third diameter (oriented towards the depth of an image) will
also be different not more than by 10%. However, this tendency is noticed only with round granules.
The more particles of an irregular shape there are in the sample, the worse correspondence to the
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results is attained by the control equipment. The relative error of the first sample cumulative curve
between the control equipment and 5% of round particles is

δ1 = 0.58% (4)

The relative error of the second sample between cumulative curves:

δ2 = 0.57% (5)

The first sample (measurement results is provided in Table 1) is consisted of 29322 granules,
of which the circular ones were ranked in the interval 0.95 to 1.00 according to the ratio of the smallest
and the largest diameters. The number of particles used to find the distribution:

Quantity1 = 29322×
12.42 + 10.79 + 10.16

100
= 9784 (6)

The second sample (measurement results is provided in Table 2) is consisted of 30054 particles.
The roundest particles from this sample were used to find the distribution by volume:

Quantity2 = 30054×
14.73 + 17.22 + 3.19

100
= 10560 (7)

The unplanned changes in production conditions determined problems in the measurement.
At that time, it is not possible to rely only on the results of the distribution of a part of the most rounded
particles, because the average of the circularity falls below the 0.9 limit. In this case, a correction
of results is necessary. One of the most widely used methods is the use of a linear or nonlinear
regression model.

The choice of the regression functions used to correct the particle measurement results is influenced
by the accuracy which is related to the particle circularity. The experiment determined that the best
results are achieved with the linear regression polynomial function (calculation results are presented in
Table 3). The test was performed using two samples of monoammonium phosphate, for which four
different functions in the MATLAB software environment was adapted.

Table 3. Regression analysis (2 samples).

Sieves

Measurements Cumulative Curve Recalculation

Sample Weight Indirect
Measurements Polynomial (5th) Exponential

(Half-Life) Power Curve
Michaelis-Menten

(Rectangular
Hyperbola)

No. 1 No. 2 No. 1 No. 2 No. 1 No. 2 No. 1 No. 2 No. 1 No. 2 No. 1 No. 2

0.0–1.0 0.2 0.3 0.05 0.18 0.19 0.33 −0.14 −0.12 0.00 0.00 0.04 0.16
1.0–2.0 4.7 6.3 5.01 7.03 4.72 6.35 4.30 6.14 3.82 5.69 4.43 6.34
2.0–2.8 29.3 34.2 34.28 38.85 29.38 34.29 31.49 36.28 31.10 35.99 31.45 36.23
2.8–3.15 59.1 64.4 60.07 64.57 59.22 64.35 57.04 62.03 57.33 62.24 56.97 61.93
3.15–4.0 92.5 93.9 93.43 95.36 92.52 94.51 92.64 94.70 92.79 94.77 92.64 94.70
4.0–5.0 98.8 99.1 99.32 99.62 99.01 99.37 99.26 99.39 99.18 99.35 99.28 99.42
5.0–20.0 100 100 100 100 100 100 100 100 100 100 100 100

Goodness measure

SSE 26.99 24.60 0.063 0.147 9.547 10.87 7.416 9.151 9.508 10.99
RMSE 5.196 4.959 0.251 0.383 3.089 3.297 2.723 3.025 3.083 3.315

The degree of polynomial function was evaluated in the research with the MATLAB software
tools. Depending on the amount of sieve used, the best results were recorded using the 5-grade
polynomial function (data of experiment is provided in Table 4). The radical of polynomial is found in
the evaluation of round particles and all particles distributions.
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Table 4. The calculation of polynomial degree (2nd sample).

Sample No. 2
Sieve Size

0.0–1.0 1.0–2.0 2.0–2.8 2.8–3.15 3.15–4.0 4.0–20.0

Actual weight (g) 1.0 11.8 57.6 60.6 57.4 11.6
Reference distribution (%) 0.5 5.9 28.8 30.3 28.7 5.8

Cumulative curve 0.5 6.4 35.2 65.5 94.2 100

Particles diagonal ratio (min/max) Indirect measurement (distribution by volume)
cumulative curve

95–100% 0.86 6.76 35.82 65.39 94.48 100

Conversion of results with 3rd degree polynomial

Recalculated cumulative curve 0.28 7.39 36.50 64.70 96.70 100
SSE 1 6.6351

Conversion of results with 4th degree polynomial

Recalculated cumulative curve 1.08 6.41 36.10 65.20 94.60 100
SSE 1 0.2919

Conversion of results with 5th degree polynomial

Recalculated cumulative curve 0.86 6.75 35.80 65.30 94.30 100
SSE 1 1.739 × 10−27

1 SSE—sum of squared errors of predictions.

Recalculated results of all sample particles and the results of control equipment correlate well.
The relative error between these measurements is

δ = 0.53% (8)

The 5-degree polynomial function results and those of the control equipment correlate well.
The changes in the production can lead to a change of results, but not the precise mismatch of it (there
may be significant differences between the results and results of the control equipment).

Changed conditions of the production highlight the shortages of the polynomial function.
When the standard deviation of individual measurement results changes more than 5% together with
the decrease in the average of roundness, the results recalculated in accordance with the polynomial
function do not correspond to the standard measurement results. Interconnecting measurements of
the particles having the largest roundness with the remaining ones, it is possible to carry out the
recalculation of polynomial function radical after every analysis (algorithm is shown in Figure 2 and
measurement results are presented in Table 5).

Table 5. The results according to the proposed algorithm.

Sieves
(mm)

Sample Measurements Result Indirect Measurement

Weight
(g)

Distribution
(%)

Cumulative
Curve

Last 3 Results from DB Cumulative
Curve

Last Meas.
Cumulative

Curve

10% of most
Circular

Granules

Polynomial
Recalc.

No. 1 No. 2 No. 3 AVG

0.0–1.0 8 4 4 3.19 3.47 4.06 3.57 1.48 2.41 3.52
1.0–2.0 14 7 11 10.52 12.27 11.45 11.41 2.53 9.88 11.47
2.0–2.8 32 16 27 29.74 27.82 27.94 28.50 18.44 25.95 28.54

2.8–3.15 44 22 49 51.20 50.77 51.08 51.02 47.29 48.18 50.85
3.15–4.0 52 26 73 73.63 73.19 74.26 73.69 70.97 74.46 72.69
4.0–5.0 32 16 91 93.32 93.15 92.45 92.97 92.68 92.17 90.36

5.0–20.0 18 9 100 100 100 100 100 100 100 99.63

In the experiment an average of distribution results of last three measurements was used.
According to the current measurement data, distribution of the particles with the largest roundness is
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assessed. When carrying out the experiment, 10% of the granules with the largest roundness were
assessed. Distribution of the last measurement of all granules is used to establish polynomial radicals
together with an average of the measurements from the database. The recalculated result is compared
with the distribution of the granules having the largest roundness and with the database average.
The distribution of the best result is obtained with the lowest relative error:

δrecalc = 1.22% (9)

δ10%_circ = 2.73% (10)

After calculating the estimated errors, the selected particle distribution is recalculated with the
polynomial function (calculation results are presented in Table 5 and Figure 7). The received results
and the results of control equipment correlate well (distribution by weight).
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3.3. Neural Network Simulation

The Artificial intelligent method was applied to the development of intelligent system [46].
A simulation of the artificial neuron network has been performed using the software MATLAB
(structure is provided in Figure 8). The two-layer feed-forward network with sigmoid hidden neurons
and linear output neurons was used in the research. The ANN was trained with Levenberg–Marquardt
backpropagation algorithm. The results of optical measurement have been recalculated using the
samples analyzed by the control equipment in advance. The first sample provided in the table is an
average of the last three measurements from the database, which is acknowledged as the standard.
In accordance to these measurements, polynomial radicals are calculated and the neuronal network is
trained (measurement results are provided in Table 6). Other two measurements use the algorithm
provided in Table 5. Distribution of the granules with the largest roundness is presented to the neuron
network as well as to the polynomial function. After significant noncompliance has been established
between the curves, the cumulative curve of distribution of all particles is presented to the artificial
neuron network. The attained results correlate with the mass distribution of the sample.Symmetry 2019, 11, x FOR PEER REVIEW 13 of 16 
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Table 6. Artificial neural network comparison with polynomial.

Sieves

Measurements Cumulative Curve Recalculation

Weight
Indirect Measurement Polynomial (6th) Neural Network

No. 1 (avg) No. 2 No. 3 No. 2 No. 3 No. 2 No. 3

0.0–1.0 0.2 0.05 0.18 0.14 0.27 0.32 0.14 0.12
1.0–2.0 4.7 5.01 6.17 7.12 6.12 7.32 4.70 4.82
2.0–2.8 29.3 38.37 38.21 39.56 29.08 29.69 29.17 29.26

2.8–3.15 59.1 64.16 63.97 65.61 57.85 60.58 59.22 59.83
3.15–4.0 92.5 93.43 95.08 95.29 89.31 89.45 95.74 96.12
4.0–5.0 98.8 99.32 99.54 99.68 93.83 94.05 98.03 98.07

5.0–20.0 100 100 100 100 94.56 94.55 99.94 99.97

Goodness measure

SSE 109.1 112.5 162.1 68.1 70.8 11.13 14.19
RMSE 10.45 10.61 12.73 8.25 8.41 3.34 3.77

Shortages of the linear regression model show up by analyzing more samples of the composition,
which changes during the production (longer measurement intervals). An artificial neuron network is
distinguished for more accurate results of distribution in this situation (results in Table 6). The identity
of ANN results with mass distribution of the sample is determined by the quantity of data for
network training.

4. Conclusions

In this paper, the method of correction of optical measurement results of fertilizer particles
(indirect method) is presented. The results obtained by the digital image processing method depend
on the geometric and mechanical properties of the particles. Better repeatability of data is achieved by
analyzing mechanically stronger particles, which also have rounder geometric shapes.

The equalization of the obtained results and the control equipment results is converted using a
linear regression model. This method identifies the changes in production, but not the size of it. As a
result, the obtained results may vary by more than 8% depending on the production conditions and
the composition of the material.

The main disadvantage of this method is the dependence of reliability on the sphericity of particles.
The best results are obtained when at least 75% of the fertilizer amount falls within the range of 0.9 to
1.0 of distribution by roundness. However, the algorithm can be applied not only to fertilizers, but also
to the measurement of other round particles.

While analyzing the production, in which the granules are characterized by large scale roundness,
it is enough to assess granules with the largest roundness because the noncompliance reaches up to
0.6%. To increase the effectiveness of the results when the shape of the particle surface varies, it is
appropriate to extend the model of linear regression, which is based on the previous results from the
database. To achieve result correction the latter algorithm uses not only the results of the distribution of
the granules having the largest roundness but also distributions of the previous samples. The attained
results precisely correlate with the results obtained by the control equipment even when production
conditions significantly change. The noncompliance of the cumulative curve of particles recalculated in
the experiment was 1.22%, while the 10% noncompliance of the cumulative curve of the particles with
the largest roundness, in comparison with the mass distribution attained by the control equipment,
which was 2.73%.

The system was installed in a factory in real production line. It brings real benefits to the operators
managing the production process. Also, the fertilizer manufacturer gets more information about their
production. One of the most important advantages of the system is that measurements are made very
often, which is every 5–7 min.
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The most accurate results of indirect measurements for work with many sieves are attained for
correction by using an artificial neuron network. The accuracy of the latter results depends on the
quantity of the data accumulated for training. Carrying out more accurate measurements requires an
assessment of more variables of the production process. In the further investigation, the involvement
of humidity and temperature measurements in the artificial neuron network is planned.
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