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NOMENCLATURE

The bold capital letters are used to denote matrices, e.g.,Q, the (i, j)th element of
matrix isQi,j . For vectors, bold lowercase letters are used, e.g.,α, d, whose elements
are αi, di. The matrices and vectors themselves can be enumerated in different ways,

e.g.,D0, P [ vu ], d1, a[u]. For random variables, capital letters of calligraphic font are

used, e.g., X . Random variables can be enumerated as Bi, Ni,j . For sets of random

variables, bold capital letters of calligraphic font are used, e.g., H = {Bi,Ni,j ,Zi}.
The expectation of a set of random variables is denoted by bold lowercase letters,

e.g., h = {bi, ni,j , zi}. A similar notation follows for lists, for example, the notation

X = (X1,X2, . . . ) stands for a list of random variables, and their realizations are

x = (x1, x2, . . . ). Sets of parameters are denoted by brackets, e.g., (α,D0).

The following, more specific, cases of notation are used:

r.v. – random variable,

r.a.d. – relative absolute difference, for any two numbers x, y is defined as |y−x|
|x| ,

P(...) – probability,

E[...] – expectation,

Q – transition rate matrix of CTMC process,

α – initial state probability vector,

α – stationary state probability vector of CTMC process,

D0 – transition rates which do not generate arrival events,

D1 – transition rates which generate arrival events,

d1 – termination rates for PH distributions,

d – termination rates for TMAP processes,

r – Erlang branch orders,

λ – Erlang branch transition rates,

π – Erlang branch initial probabilities,

Π – Erlang branch switching probabilities,

1 – a column vector of ones of the appropriate size,

ei – a row vector of zeros except for ith element, which is 1.
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Abbreviations, terms:

CTMC – continuous time Markov chain,

DTMC – discrete time Markov chain,

CHMM – continuous time hidden Markov model,

PH – Phase-type distribution,

ER – Erlang distribution,

HErD – hyper-Erlang distribution,

MAP – Markov Arrival Process,

TMAP – Transient Markov Arrival Process,

ER-CHMM – MAP or TMAP process of hyper-Erlang structure,

ML – Maximum likelihood method,

EM – Expectation Maximization method,

GPU – Graphics Processing Unit,

CPU – Central Processing Unit,

llh – log-likelihood.
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INTRODUCTION

Continuous time finite state space Markov process has been used to model sto-

chastic arrival processes for decades. This type of modeling is attractive due to its

analytical tractability. The evolution of Markov process depends only on the current

system state (i.e., it depends on its past only via this state). This property is known

as Markovian property. The holding times of the states are exponentially distributed.

The remaining holding time of exponential distribution does not depend on the elapsed

time and has the same exponential distribution. This is called as memoryless property

of exponential distribution and implies constant rates, i.e., such a distribution is neither

aging nor non-aging. However, real life phenomena exhibit diverse behavior including

the necessity of modeling non-exponential holding times. The accuracy of modeling

non-Markovian arrival processes depends on the accuracy of approximation of the dis-

tribution by mixtures and convolutions of exponential distributions. Such distributions

are said to be of Phase-type (PH).

Any distribution of a positive random variable can be approximated by a Phase-

type distribution. In scientific literature, a lot of effort is being invested in solving PH

representational and parameter searching problems. Canonical forms are significant for

effective parameter fitting and application. However, these forms are known only for

low order PH(n) distributions, i.e., n = 2, 3. For higher orders, the analytical analysis
of general PH distribution structures is complicated. Instead, properties of various PH

sub-classes are investigated and used for parameter fitting. Despite the fact that these

sub-classes are not optimal and might require more phases to approximate a given

distribution, it has been found that these distribution sub-classes are more applicable

for practical use. One of the most limiting Markovian modeling problems is a rapid

state space increase to the point where it becomes intractable. This problem can be

tackled by using denser, preferably canonical structures.

Phase-type distributions are used to model independent inter-arrival times, how-

ever, in practice, certain processes show some kind of dependency. In general, a de-

pendency structure can be very complex, and the model ability to capture it is essen-

tial for obtaining realistic statistical properties. For this purpose, the extension of PH

distributions, i.e., the Markov Arrival Processes (MAPs) are used. Due to even more

complex analytical structural analysis, canonical forms are known only for MAP(n)
of order n = 2. The parameter fitting problem is more complex compared to PH fitting

since autocorrelation also has to be captured.

In the scientific literature, there are few references to the general PH distribution

structures because of the complexity of analytical analysis.We investigate PH(4) struc-
tures by generating all possible structures and eliminating the redundant ones based on

the current results in the field. The obtained generated structure sub-classes are invest-

igated empirically by approximating various benchmark distributions by PH distribu-

tions of these structures.
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For MAPs, a more pressing issue is the fitting effectiveness. More specifically,

in order to capture the autocorrelation structure, long data traces have to be used. There

are no documented parallel algorithms for parallel MAP fitting. In order to fulfill this

gap, we have implemented various parallel algorithms, including their modifications,

and analyzed their execution properties. Some ideas for parallelization have been taken

from the analogous CHMM (Continuous time Hidden Markov Model) fitting proced-

ures.Also, we have derived an algorithm for transient Markov arrival process (TMAP)

fitting by applying the Expectation-maximizationmethod. Finally, for comparison pur-

poses, we have implemented parallel MAP, TMAP parameter fitting algorithms for

GPU computing architecture.

Research Object

Phase-type distributions, Markov arrival processes and transient Markov arrival

processes parameter fitting by using the Expectation-maximization method.

Research Aim

To investigate the general Phase-type distribution fitting with a sufficient number

of transitions, and to develop parallel algorithms for Markov arrival processes and

transient Markov arrival processes fitting.

Research Tasks

1. To develop an algorithm for Phase-type structure generation.

2. To research Phase-type fitting of various structure sub-classes.

3. To develop parallel algorithms for Markov arrival process fitting and to compare

their execution properties.

4. To develop an Expectation-maximization algorithm and its parallel version for

transient Markov arrival process fitting.

5. To implement parallel algorithms forMarkov arrival processes, transientMarkov

arrival processes fitting for execution on GPU device using CUDA library. To

solve numerical issues which arise when huge data sets are fitted.

Methods and software

1. Descriptive statistics has been used to analyze research results.

2. Computations have been performed by programs written in the C++ program-

ming language. Several libraries have been used, i.e., ‘Eigen’ for matrix compu-

tations and ‘Boosts’ for statistical distributions.

3. The research programs have been built by the ‘CMake’ tool in the Linux envir-

onment. For programs to be executed on a GPU device, the CUDA library has

been used.
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Scientific Novelty and Practical Relevance

Canonical forms for PH(n) distributions are known only for orders of n = 2, 3.
By applying a Laplace–Stieltjes transform to the PH distribution density function, it

can be shown that PH(n) distribution can be specified by p = 2n−1 independent para-
meters. However, for practical applicability, the PH representation of the matrix form

is required. It is convenient to characterize the structure of the matrix form representa-

tion by the number of transitionsm (the maximum number of independent parameters

is p = m − 1). The full PH distribution space can be covered by matrix form repres-

entations of structures with m = 2n + ∆mn transitions, where 0 ≤ ∆mn ≤ ∆Mn.

In general, the maximum number of additional transitions∆Mn is not known, except

for ∆M2 = 0 and ∆M3 = 1. We expect that structures withm = 2n transitions (i.e.,

p = 2n−1 parameters) are sufficient for practical fitting purposes.We formulate a hy-

pothesis that a PH distribution which has a matrix form representation with additional

transitions (i.e., 0 < ∆mn ≤ ∆Mn, can be closely approximated by a similar PH dis-

tribution without additional transitions (i.e.,∆mn = 0). An equivalent hypothesis has
not been formulated in scientific literature previously. We validate it empirically, for

case n = 4. In order to achieve that, we have developed a Phase-type distribution mat-
rix form representation structure generation algorithm. The algorithm outputs a set of

structures which are used to approximate nine distributions given in related scientific

literature. Based on fitting, via the EMmethod, the results pertaining to the hypothesis

are validated.

In scientific literature, the use of certain Phase-type distribution matrix form rep-

resentation structure classes for more effective fitting is being investigated. However,

one specific structure class cannot cover the whole parameter space. In order to search

for parameters in the optimal manner, canonical forms have to be used. The canonical

forms via the analytical approach are discovered for Phase-type distributions of order

n ≤ 3.We have proposed an alternative combinatorial approach to generate a structure

set. It cannot be guaranteed that the obtained structure set is minimal, however, it can

be used for further investigation in search for canonical forms.

However, our Phase-type structure generation algorithm is not effective, and it is

hardly applicable for higher orders (n > 4) due to a huge number of initial structures.
Thus we have compared Phase-type fitting using generated structures (n = 4) versus
the randomly generates sparse (m = 2n) structures. Such a comparison in scientific
literature could not have been done before because of absence of an analogous structure

generation algorithm.

In scientific literature, there is no documented investigation of fitting with gen-

eral sparse (with m = 2n transitions) structures versus the full structure. We have

carried out such an investigation and obtained insights which are beneficial from the

practical point point of view. The full strucure is flexible, but, due to a redundant num-

ber of parameters, slow convergence can be reached, which prevents from reaching

the most potentially likely parameters. On the other hand, by fitting a set of sparse

structures, there is a chance that one or more structures will converge faster and will
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reach more likely parameter estimates with a smaller number of iterations. Moreover,

fitting with a set of sparse structures can be parallelized. For further research, one may

raise a question how to determine a suitable structure given the trace data.

Markov arrival processes (MAPs) structure analysis is a complex problem. We

attempt to solve more practical problems for faster fitting. The forward-backward al-

gorithm of the expectation maximization (EM) method is serial by nature, since like-

lihood vectors are evaluated recursively. Parallelism can be achieved by increasing

computational complexity. However, there are no documented attempts to parallel-

ize MAP fitting in scientific literature. When the ER-CHMM structure is used, the

Baum-Welch algorithm (for CHMM fitting) can be adapted. However, there are vari-

ous options to formulate the algorithm. In addition, we suggest our own algorithms as

well. All algorithms have been implemented, and their execution properties have been

compared.

The transient Markov arrival process (TMAP) differs from the Markov arrival

process in a sense that it models finite sequences of inter-arrivals (further on referred to

as runs), while MAPs generate an infinite sequence of inter-arrivals. The EM method

application for TMAP fitting is not present in scientific literature. Thus we have de-

veloped an algorithm to search for maximum likelihood parameter estimates of such a

process. It can be observed that a part of computations for each run can be done inde-

pendently. Therefore, TMAP fitting can be directly parallelized.We have implemented

and compared serial and parallel versions of the algorithm.

The transient Markov arrival processes (TMAPs) fitting algorithm performs a

number of independent computations for each run (finite sequences of inter-arrivals),

and the results are merged. Therefore, TMAP fitting can be easily parallelized, how-

ever, each thread is likely to perform different computational operations at any given

moment, which is a limiting factor in effective parallel hardware usage.

Recently, with advances in GPU (Graphics Processing Unit) hardware develop-

ment and applicability for general computing, temptation has arisen to utilize it for

faster parameter fitting. However, there have been no documented attempts to utilize

GPU for faster MAP, TMAP process fitting in scientific literature. Therefore, we have

implemented the developed algorithms for execution on GPU, which required to find

out how certain numerical issues should be solved.

The practical significance of the research results is the following. In situations

where general Phase-type distributions with a big number of phases has to be fitted,

sparse structures withm = 2n transitions can be used to obtain more likely parameter
estimates faster, especially in those cases when a set of sparse structures is fitted in par-

allel. If a certain real life phenomenon generates a finite sequence of events at random

time instances, the collected inter-arrival data can be used to fit a TMAP process. In

case a non-terminating sequence is observed, aMAPprocess can be fitted.While using

our developed algorithms, such fitting can be done faster, which is of major importance

given that the inter-arrival data is huge.
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Information for Defense

1. The algorithm for generating PH(n) structures.

2. An empirical validation of hypothesis that PH matrix form representation with

m = 2n transitions is sufficient to cover almost the entire PH distribution space.

3. Comparison of Phase-type fitting using sparse (with m = 2n transitions) and

full structures.

4. The developed parallel algorithms for MAP fitting.

5. The derived EM algorithm for TMAP fitting.

6. The parallel MAP, TMAP fitting algorithm implementations for execution on

GPU while using CUDA library.

Approbation of the Research Results

The thesis work has been presented in 2 scientific papers (ISI) and 2 international

conferences as well as a few national conferences. The PH(n) structure generation al-
gorithm along with some fitting research was presented in ISI paper ‘On Structured

Initial Solution Generation for Phase-Type Fitting with EM Method’. The presented

work was extended by adding more thorough research to find out how different sub-

classes of the generated structures perform fitting. The MAP fitting algorithms and

results on fitting performance were presented in ISI paper ‘Parallel algorithms for fit-

ting Markov arrival processes’. The derived EM algorithm for TMAP fitting with a

research of fitting performance was presented at ASMTA16 conference in a confer-

ence proceedings journal, and a paper under the title ‘Efficient implementations of the

EM-algorithm for transient Markov arrival processes’was published. The derived EM

algorithm for TMAP fitting was presented atASMTA16 conference, and a paper under

the title ‘Efficient implementations of the EM-algorithm for transient Markov arrival

processes’was published in the conference proceedings. Finally, a simple finite queue

model was published in IARA2014 conference proceedings under the title ‘Software

reliability Markovian model based on phase type distributions’. We have revisited the

presented work and used it in the thesis as a practical application context for PH fitting.

The Structure and Volume of the Dissertation

This doctoral dissertation consists of an introduction, 4 major sections, conclu-

sions, a list of references and a list of the author’s publications. The total length of the

dissertation is 148 pages. The thesis features 54 figures, 44 tables and a list of 94 cited

sources (10 sources were published in the time period from 2014 to 2018).
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1. LITERATURE REVIEW

1.1. Continuous time Markov chains

Markov chains are named after a prominent Russian mathematician Andrei An-

dreevich Markov (1856–1922). The term was used for the first time in a paper by S. N.

Bernstein in 1926 [1]. Since then, the theory of Markov chains has been extensively

researched, and many of its applications discovered.

Markov process is a stochastic process which satisfies the Markov property. If a

process has this property, its future state depends only on the current state.

We investigate stochastic process {Xt}t≥0 which takes values in a finite set S =
{0, 1, . . . , n}, and index t ∈ R+ is associated with time. We shall briefly denote the

process by {Xt}.

Definition 1.1 [2] Process {Xt} is called a Markov process if it satisfies the simple

Markov property, i.e., for any s, t > 0 and any i, j ∈ S:

P(Xs+t = j | Xs = i,Xu, u ≤ s) = P(Xs+t = j | Xs = i).

The probability of being in state j after time t only depends on current state Xs.

Definition 1.2 [2]Markov process {Xt} is time-homogeneous if transition probability
from state i to state j after time t does not depend on elapsed time s, i.e., for any t, s > 0
and each i, j ∈ S :

P(Xs+t = j | Xs = i) = P(Xt = j | X0 = i).

We consider time-homogeneous Markov processes, for brevity, we call such processes

homogeneous.

Definition 1.3 [2] A homogeneous Markov process {Xt} which takes values in state

space S is called a homogeneous continuous time Markov chain (CTMC).

The time spent in state i before jumping to another state j (which might be the
same) is a r.v.Hi. We define the process {Xt} as right-continuous, i.e., the jump times
are

T1 = inf{t : Xt 6= X0},
Tn = inf{t : t ≥ Tn−1,Xt 6= XTn−1

}.

Proposition 1.1 [3] In the homogeneous CTMC process, the holding time r.v.’sHi are

exponentially distributed.
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The state transition probability is denoted by

P i,j(s, s+ t) = P(Xs+t = j | Xs = i),

since the process is homogeneous, the probability depends only on time difference t

P i,j(s, s+ t) = P i,j(0, t) = P i,j(t).

The transition probability matrix is defined as P (t) = {P i,j(t)}i,j∈S×S .

Proposition 1.2 [3]For the probability transitionmatrixP (t) of homogeneous CTMC

there exists an infinitesimal generator (or simply a generator)Q defined as:

Q = lim
t→0

P (t)− I

t

and
d

dt
P (t) = QP (t) = P (t)Q.

From the definition ofQ, it follows that

P (t) = eQt =

∞∑
i=0

Qiti

i!
.

The infinitesimal generatorQ = {Qi,j}i,j∈S×S is called the rate matrix.

Proposition 1.3 IfQ is the rate matrix of homogeneous CTMC, then:

(i)
∑

j∈S Qi,j = 0 for all i ∈ S,

(ii) −Qi,i is the parameter of exponential distribution associated with state i so-
journ time.

The distribution of staying in state i is exponential, i.e.,P(Hi ≤ t) = 1− e−Qi,it.

The embedded process of state jumps {Yk}k∈N is specified as

Yk = XTk
,

and is a discrete time Markov chain (DTMC). This DTMC process {Yk} is specified
by the transition probability matrix P = {P i,j}i,j∈S×S and the initial probability

vector p(t). Transition probability matrix P can be obtained from rate matrixQ by

P i,j =


−

Qi,j

Qi,i

, for i 6= j,Qi,i 6= 0,

0, for i 6= j,Qi,i = 0,

1, for i = j.
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Definition 1.4 [2] State i, for whichQi,i = 0, is called the absorbing state.

When a process gets into the absorbing state, it stays in it for indefinite time. Also, the

probabilities of transition from absorbing state i to another state j is zero, i.e.,P i,j = 0.

Example 1.1 Let us consider a three state homogeneous CTMC process {Xt} defined
by the rate matrix

Q =

−3 1 2
0 −1 1
1 1 −2

 ,

whose CTMC schema is shown in Figure 1.1.

1

2

3

1

1

2

11

Fig. 1.1. State schema of CTMC given in Example 1.1.

The transition probability matrices for time moments t = 0 and t = 1 are

P (0) =eQ·0 = I,

P (1) =eQ·1 ≈

0.1703 0.4323 0.3974
0.0935 0.5677 0.3389
0.1520 0.4323 0.4157

 .

The stationary distribution α of the process {Xt} is

α =
[
1
8

1
2

3
8

]
.

It can be easily checked that

αP (0) = α, αP (1) = α.

The transition probability matrix of embedded jump process {YTk
} is

P =

0 1
3

2
3

0 0 1
1
2

1
2 0

 .

There is no absorbing state in this homogeneous CTMC. 4
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Definition 1.5 [2] States i, j are said to be communicating if state i is reachable from
state j and state j is reachable from state i.

Definition 1.6 [2] A subset of states C ⊂ S is closed if P i,j = 0 for i ∈ C, j /∈ C.

Definition 1.7 [2] A closed subset C is said to be communicating closed subset C if

all the states in it are communicating.

Definition 1.8 [2] State i is said to be an absorbing state if it is the only state in closed
subset C.

Definition 1.9 [2] State i ∈ S is said to be a transient state if the probability of

returning to it after leaving it is less than one.

Definition 1.10 [2] A homogeneous CTMC is called an absorbing Markov chain if

each of its states is either transient or absorbing.

Definition 1.11 [2] A hitting time is a time it takes for the process to reach the absorb-

ing state.

For absorbing state iwe haveP i,i = 1, i.e., once the process reaches the absorb-
ing state, it remains in it.

1.2. Phase-type distributions

The term Phase-type distributions as such was introduced in [4].

Definition 1.12 [4, 5, 2] The Phase-type distribution is defined as the distribution of

hitting time X it takes for the absorbing continuous time Markov chain process to

reach the absorbing state from the set of transient states.

The Phase-type distribution is represented by the corresponding absorbingMarkov

chain which is specified by rate matrixQ and initial probability vector α.

To make the analysis easier, the states are rearranged in such a way that the

absorbing state is clearly separated from the transient ones, i.e.,

Q =

[
D0 d1

0 0

]
, (1)

and the state space is composed as S = ST ∪ SA, where ST = {1, 2, . . . , n} are the
transient states, and set SA contains absorbing state n+ 1.

MatrixD0 describes transitions between transient states ST , rate vector d1 de-

scribes transitions from transient states to absorbing state n+1. Other elements of rate
matrixQ are zeros, which indicates that there is no transition from the absorbing state.
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Definition 1.13 [4] The transient states in a continuous time Markov chain, which is

interpreted as a Phase-type distribution, are called phases.

Definition 1.14 [6] The order of Phase-type distribution is a number of transient

states (phases).

Example 1.2 A transient CTMC is given by the parameters

Q =


−2 0 1 1
3 −3 0 0
0 1 −1 0
0 0 0 0

 , α =
[
0.5 0.3 0.2 0

]
, 4

specifies a Phase-type distribution whose CTMC is shown in Figure 1.2.

1

2

3

4

0.5

0.3

0.2

3

1

2

1

Fig. 1.2. An example schema of trasient CTMC of Phase-type distribution.

The first, second and third states are transient, whereas the fourth one is absorb-

ing.

Matrix M = (−D0)
−1 is a fundamental matrix of Phase-type distribution as

defined in [7].

The value of {(−D0)
−1}i,j is the expected total time spent in state j before

reaching the absorbing state when the initial state is i.

Based on Proposition 1.3 about rate matrixQ we have

D01+ d1 = 0. (2)

Rate matrixD0 is substochastic since for i ∈ ST holds∑
j∈ST

D0i,j ≤ 0.

Vector α =
[
α1 . . . αn

]
denotes the initial probability of starting in the transient

state i ∈ ST . The case when the process starts (and ends at the same time) in the
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absorbing state is not considered. That does not reduce the practical applicability of

PH distributions but simplifies further investigation.

Definition 1.15 [3] Parameter set (α,D0) fully specifies a Phase-type distribution

and is called the matrix form representation.

Indeed, from (2) it follows that d1 = −D01.

Example 1.3 The Phase-type distribution given in Example 1.2 has the following

parameters (α,D0)

D0 =

−2 0 1
3 −3 0
0 1 −1

 , α =
[
0.5 0.3 0.2

]
. 4

Definition 1.16 [8] Representation (α,D0) is Markovian if for i ∈ ST

αi ≥ 0,α1 = 1,

D0i,j ≥ 0 for j ∈ ST , i 6= j,

D0i,i < 0.

In other words, representation (α,D0) is Markovian if it specifies a valid CTMCwith

rate matrixQ in (1).

Proposition 1.4 [9, 3] Two representations (α(a),D
(a)
0 ) and (α(b),D

(b)
0 ) with distri-

bution functions

F (a)(x) = 1−α(a)eD
(a)
0 x

1 and F (b)(x) = 1−α(b)eD
(b)
0 x
1

are equivalent if there exists a non-singular matrixB (B1 = 1) such that

α(b) = α(a)B and D
(b)
0 = B−1D

(a)
0 B.

In general, for a given representation, we can find infinitely many equivalent rep-

resentations, however, it is not guaranteed that the obtained representation will be

Markovian. To this day, there is no known procedure to explicitly determine whether

transformation matrixB exists for transforming a given representation to another rep-

resentation of any given structure.

Proposition 1.5 [10] The distribution function of Phase-type distribution given by

matrix form representation (α,D0) is

F (x) = 1−αeD0x1, (3)
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and its density function is

f(x) = αeD0xd1, (4)

for x ≥ 0.

Continuous Phase-type distributions are dense in the R≥0 and thus can approx-

imate arbitrarily closely any non-negative distribution [11].

The Laplace–Stieltjes transform of density function is [3]

f∗(s) =

∫ ∞

0
e−sxdF (x) = α(sI −D0)

−1d1. (5)

It is interesting to note that in case representation (α,D0) is such that

d1 = −D01 = λ1 for some λ > 0, then the Phase-type distribution is exponential
with rate λ regardless of the choice of initial probability vector α.

Definition 1.17 Parameter set (α̇, Ḋ0, ḋ1) specifies possible transitions in a con-

tinuous time Markov chain of the Phase-type distribution and is called the structure of

matrix form representation (α,D0).

Such Phase-type distribution structure notation (Definition 1.17) has not been intro-

duced earlier. Themost likely reason is that general Phase-type fitting (of ordersn > 4)
is not effective [12, 13], and that a more effective alternative Hyper-Erlang distribu-

tion fitting has been investigated more. We use this structure notation as a base for

presenting further literature review.

Elements of α̇, Ḋ0, ḋ1 are from set {0, 1}. Structure (α̇, Ḋ0, ḋ1) is character-
ized by the number of transitions

m =

n∑
j=1

α̇j +

n∑
i=1

n∑
j=1

Ḋ0i,j +

n∑
i=1

ḋ1i.

Example 1.4 The structure of the Phase-type distribution matrix form representation

given in Example 1.3 is

(α̇, Ḋ0, ḋ1) =

[1 1 1
]
,

0 0 1
1 0 0
0 1 0

 ,

10
0


and the number of transitions ism = 7. 4

Definition 1.18 A Phase-type distribution is said to have a full structure if all valid

transitions are enabled.
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A full structure has the maximum number of transitionsm = n2 + n [14].

Example 1.5 The full structure of order n = 3 Phase-type distribution is specified by

(α̇, Ḋ0, ḋ1) =

[1 1 1
]
,

0 1 1
1 0 1
1 1 0

 ,

11
1


and is shown in Figure 1.3. The number of transitions ism = n2 + n = 12.

1

2

3

4

Fig. 1.3. The CTMC of Phase-type distribution matrix form representation of full structure.

4

Definition 1.19 The matrix form representation parametrization is function vector f
which specifies how transition rates in a corresponding CTMC depend on p paramet-
ers.

In other words, for a given parameter vector p =
[
p1 . . . pp

]
, a given para-

metrization specifies a single matrix form representation

(α,D0) = f (α̇,Ḋ0,ḋ1)
(p).

For each given structure, an undefinite number of parametrizations exists. Only

a few are of particular interest.

Definition 1.20 The full parametrization of structure
(
α̇, Ḋ0, ḋ1

)
has p = m − 1

independent parameters.

The number of independent parameters is one fewer than the number of transitions

because of constraint α1 = 1.
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Example 1.6 Let us consider a structure specified by

(α̇, Ḋ0, ḋ1) =

[1 1 0
]
,

0 0 0
1 0 1
0 0 0

 ,

10
1

 ,

whose two parametrizations are shown in Figure 1.4.

1

2

3

4

1

2

3

4

a) b)

p
1

1-p
1

p
2

p
3

p
4

p
5

p
1

1-p
1

p
2

p
2

p
3

p
3

Fig. 1.4. Two parametrizations of the Phase-type distribution structure given in Example 1.6.

Parametrizations (a), (b) have p = 5 and p = 3 parameters, respectively. How-
ever, parametrization (b) is a full one. 4

Theorem 1.1 [15] A Phase-type distribution of order n is determined by 2n−1 para-
meters at most.

Representation (α,D0) with n2 + n − 1 parameters is highly redundant (based on
Theorem 1.1.). Actually, the same Phase-type distribution can be represented by many

different matrix representations [11], even of different representation orders [16].

Let Pn be a set of all possible parametrizations with p = 2n− 1 parameters.

Definition 1.21 [17] A canonical form of Phase-type distribution matrix form repres-

entation is a finite set Cn of parametrizations with p = 2n− 1 parameters which can
be used to uniquely represent any Phase-type distribution of order n.

Consequently, we have Cn ⊆ Pn. It is useful to express Cn as a union of sets

Cn = C(2n)
n ∪ · · · ∪ CMn

n ,

whereC(m)
n is a set of parametrizations withm transitions;Mn is themaximumnumber

of transitions

Mn = 2n+∆Mn,

where ∆Mn is the maximum number of additional transitions.
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Definition 1.22 [18, 19] If transition rate matrixD0 in representation (α,D0) can be
transformed into an upper triangular matrix, the represented Phase-type distribution

is acyclic (APH).

Every state in the acyclic (α,D0) is visited no more than once. We will overview a

few sub-classes of APH.

The simplest case is a single phase, i.e., an exponential distribution whose dis-

tribution function is

F (x) = 1− e−λx

and density function is

f(x) = λe−λx

for x ≥ 0.

The sum of r random values which are exponentially distributed with the same

rate parameter λ has an Erlang distribution (ER). The Erlang distribution function is

F (x) = 1−
r−1∑
k=0

(λx)k

k!
e−λx

and its density is

f(x) =
λn

(r − 1)!
tr−1e−λx

for x ≥ 0.

The CTMC process of Erlang distribution starts in the first state with probability

1, i.e., the initial probability vector is

α = β(r) =
[
1 0 . . . 0

]
1×r

and rate matrixD0 has the form

D0 = B(r, λ) =


−λ λ . . . 0 0
0 −λ . . . 0 0
...

...
. . .

...
...

0 0 . . . −λ λ
0 0 . . . 0 −λ


r×r

.

The Erlang distribution has the least variance [20], i.e., when r →∞, it approaches a

deterministic distribution.

The Hyper-Erlang (HErD) [21] is a mixture of R Erlang distributions weighted

by π =
[
π1 π2 . . . πR

]
. The ith Erlang distribution is called the Erlang branch

with ri states. Its distribution function is

F (x) = 1−
R∑
i=1

πi

ri−1∑
j=0

(λix)
j

j!
e−λix, x ≥ 0,
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and its density function is

f(x) =

R∑
i=1

πi
(λix)

ri−1

(ri − 1)!
λie

−λix, x ≥ 0,

where λi is the transition rate of i
th Erlang branch. The HErD structure is denoted by

a list of Erlang branch orders r =
[
r1 r2 · · · rR

]
. Also, it is convenient to define

vector s of branch start state indices with elements

si = 1 + r1 + · · ·+ ri−1 for i = 1, . . . , R.

Hyper-Erlang distribution can be represented in thematrix form notation (α,D0)
in the following way

α =
[
π1β(r1) π2β(r2) . . . β(rR)

]
,

D0 =


B(r1,λ1) 0 . . . 0 0

0 B(r2,λ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . B(rR−1,λR−1) 0
0 0 . . . 0 B(rR,λR)

 ,

whereB(ri,λi) is the infinitesimal generator of the i
th Erlang distribution.

Example 1.7 Let us consider a Hyper-Erlang distribution with branch orders of r =[
2 1

]
which is shown in Figure 1.5 and is specified by the following matrix form

representation

α =
[
π1 0 π2

]
,D0 =

−λ1 λ1 0
0 −λ1 0
0 0 −λ2

 .

1 2

3
4

π
λ1 λ1

λ2

1

π2

Fig. 1.5. The CTMC of Hyper-Erlang distribution with branch orders of r = [2 1].
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A Coxian distribution has n phases, the process starts at the first phase with

probability 1 and transitions to the next phase with probability gi or to the absorbing

state with probability (1− gi). Transition rates λi can be different in general.

The matrix form representation of Coxian distribution is

α =
[
1 0 . . . 0

]
1×n

,

D0 =


−λ1 g1 0 . . . 0
0 −λ2 g2λ2 . . . 0
...

. . .
. . .

...

0 . . . 0 −λn−1 λn−1gn−1 0
0 . . . 0 −λn


n×n

.

If λ1 ≥ λ2 ≥ · · · ≥ λn, such Coxian distribution is said to be ordered.

Theorem 1.2 [22]Any acyclic Phase-type distribution has the representation of ordered

Coxian distribution.

In the general Coxian distribution, the process can start in any phase, i.e.,αi ≥ 0
for i = 1, 2, . . . , n.

1.3. Expectation Maximization method for Phase-type fitting

The expectaction-maximization (EM) algorithm for the Phase-type of the general

structure is given in [14].

The observed random variables are interpreted as hitting times

X = (X1,X2, . . . ,XT )

in the corresponding CTMCof Phase-type distribution. The realization ofX is denoted

as

x = (x1, x2, . . . , xT ) .

The task is to find themost likely parameters (α,D0) of Phase-type distribution so that
the distribution of its hitting times is as close to one of the observed random variables

as possible. This can be achieved by maximizing the following likelihood function

L (α,D0 | X ) =

T∏
k=1

f(xk) =

T∏
k=1

αeD0xkd1 (6)

by applying the expectation maximization method [23].

Hitting times x constitute the only available information.Yet, in order to determ-

ine the parameters of CTMC, it is necessary to have full information regarding how
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each xi in x has been generated. Let us assume that random variable Xk is generated

by the continuous time process J (k)
k which is fully characterized by the discrete time

process of the states being visited

I(k)0 , ..., I(k)M(k)−1

and the discrete time process of sojourn times

S(k)0 , ...,S(k)M(k)−1
,

which specify the time spent in a certain state before leaving it. Here,M(k) is a random

number of transitions it takes to reach the absorbing state. Meanwhile, the observed

random variable Xk is interpreted as the total time spent before reaching the absorbing

state, i.e.,

Xk = S(k)0 + ...+ S(k)M(k)−1
.

The full information Y about T observations consists of

y =
(
i
(1)
0 , ..., i

(1)
m(0)−1

, s
(1)
0 , ..., s

(1)
m(0)−1

, ..., i
(T )
0 , ..., i

(T )
m(T )−1

, s
(T )
0 , ..., s

(T )
m(T )−1

)
.

In theory, based on observations, x the most likely parameters could be found

in the following way. With initial parameters (α,D0), a sufficient number of hitting
times is sampled. The process realizations whose hitting times match the observed

values in x are selected. Then the full process realization information of these hitting

times is used to estimate the more likely parameters. The procedure would be repeated

until parameter likelihood stops increasing.

Actually, it is not necessary to have full informationY about process realizations,

it suffices to have its characteristics

H = {Bi,Ni,j ,Zi} ,

where Bi is the number of realizations starting in state i,

Bi =
T∑

k=1

Bi[k], Bi[k] = 1{
I(k)
0 =i

},
Ni,j is the number of transitions from state i to state j

Ni,j =

T∑
k=1

Ni,j [k], Ni,j [k] =

M(k)∑
l=0

1{
I(k)
l =i,I(k)

l+1=j
},

and Zi is the total time spent in state i

Zi =

T∑
k=1

Zi[k], Zi[k] =

M(k)∑
l=0

S(k)l 1{
I(k)
l =i

}.
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The estimate of statistics H for given parameters (αD0) and observations x
with their weights w can be evaluated by the following formulas. The estimate of the

number of realizations starting in state i is

bi = E[Bi | X ] =

T∑
k=1

wkE[Bi[k] | Xk] =

T∑
k=1

wk
αie

ᵀ
i e

D0xkd1

αeD0xkd1
, (7)

the estimate of the number of transitions from state i to state j for i = 1, . . . , n, j =
1, . . . , n, i 6= j is

ni,j =E[Ni,j | X ] =

T∑
k=1

wkE[Ni,j [k] | Xk]

=

T∑
k=1

wk

∫ xk

0 αeD0xkeiD0i,je
ᵀ
j e

D0(xk−u)d1du

αeD0xkd1
,

(8)

the estimate of the number of state i to absorbing state n+ 1 for i = 1, ..., n is

ni,n+1 =E[Ni,n+1 | X ] =

T∑
k=1

wkE[Ni,n+1[k] | Xk]

=

T∑
k=1

wk
αeD0xkeid1i

αeD0xkd1

(9)

and the estimate of the total time spent in state i is

zi =E[Zi | X ] =

T∑
k=1

wkE[Zi[k] | Xk]

=

T∑
k=1

wk

∫ xk

0 αeD0xkeie
ᵀ
j e

D0(xk−u)d1du

αeD0xkd1
.

(10)

The next step is to compute the maximum likelihood parameter estimates based

on h = {bi, ni,j , zi}, which is done according to [24]

αi =
bi∑T

k=1wk

, i = 1, . . . , n

D0i,j =
ni,j

zi
, i, j = 1, . . . , n, i 6= j

d1i =
ni,n+1

zi
, i = 1, . . . , n

D0i,i = − d1i −
n∑

j=1,j 6=i

D0i,j , i = 1, . . . , n.

(11)
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Weights w can be used to perform discretized distribution fitting, otherwise wk = 1
for k = 1, . . . , T .

The application of the maximum expectation method for Phase-type fitting is

summarized in Algorithm 1.

Algorithm 1 Algorithm for Phase-type fitting by EM method.

1: procedure PH-EM-fitting (x, α̇, Ḋ0, ḋ1)

2: initial parameters (α,D0) of structure
(
α̇, Ḋ0, ḋ1

)
are generated by Algorithm 2

3: likelihood of (α,D0) is computed by (6)
4: repeat

5: estimation of sufficient characteristics h by (7), (8), (9), (10)

6: maximum likelihood parameters (α,D0) are found by (11)
7: likelihood of (α,D0) is computed by (6)
8: until likelihood keeps increasing

9: return (α,D0)
10: end procedure

Computation of estimate h of suffcient characteristicsH of the full information

Y is a computationally demanding task. [14] suggested to compute

αeD0x, eD0xd1,

∫ x

0
αeD0ueie

D0(x−u)d1du for i = 1, . . . , n (12)

by numerically solving the following system of differential equations

(
αeD0x

)′
= αeD0xD0(

eD0xd1

)′
= D0e

D0xd1(∫ x

0
αeD0ueie

D0(x−u)d1du

)′
= D0

∫ x

0
αeD0ueie

D0(x−u)d1du+
{
αeD0x

}
i
,

i = 1, . . . , n.
(13)

[14] applies the fourth order Runge-Kuta method to solve (13). While [25] applies a

randomization technique to compute (12), however, we have experienced numerical

issues when dealing with sparse structures.

The initial Phase-type distribution parameters can be generated by Algorithm

2. A sample drawn from uniform distribution with the range from 0 to 1 is denoted
by U [0; 1]. The randomly generated initial parameters are rescaled to match the given
trace data mean E[X ].
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Algorithm 2 Algorithm for generating initial Phase-type distribution parameters.

1: procedure PH-parameter-generation (E[X ], α̇, Ḋ0, ḋ1)

. initial probability vector generation
2: ∀i : αi = α̇iU [0; 1]
3: rescale α so that α1 = 1

. initial rate matrix generation
4: ∀i : d̃1i = ḋ1iU [0; 1]
5: ∀i, j, i 6= j : D̃0i,j = Ḋ0i,jU [0; 1]

6: ∀i : D̃0i,i = −d̃1i −
∑

j,i6=j D̃0i,j

. computation of generated representation mean

7: E[X̃ ] = αD̃0
−1
1

. rate matrix rescaling to match the given mean

8: ∀i : d1i = d̃1i

(
E[X ]/E[X̃ ]

)
9: ∀i, j : D0i,j = D̃0i,j

(
E[X ]/E[X̃ ]

)
10: return (α,D0)
11: end procedure

1.4. Expectation Maximization method for Hyper-Erlang fitting

An algorithm of the EM method can be simplified by imposing certain restric-

tions on the structure. One of good examples is the Hyper-Erlang distributions [21]

which can be used to approximate any positive random variable distribution [26, 13].

Hyper-Erlang distribution is specified by parameters (π,λ), and its structure is spe-
cified by Erlang branch orders r. The EM algorithm for this class of Phase-type dis-

tributions is given in [2].

In this case a continuous time Markov process J (k)
t which generates a random

variable Xk can be fully described by the initial state I(k)0 . That is because I(k)0 is

sufficient to determine the chosen Erlang branch. More specifically, let us say that

i
(k)
0 state was randomly chosen for generating xk. Index i of the Erlang branch can be
looked up (i.e., by i(k) = si), and the states (ri of them) which are to be visited are
determined. However, the sojourn times spent in each branch state are not known, but

that is not a problem given that the exit from each branch state has the same transition

rate λi. Therefore, the sufficient characterization of full process information Y is

H = {Qi[k]} ,

where Qi[k] is an indicator of Xk being generated by Erlang branch i

Qi[k] = 1{
I(k)
0 =si

}.
Estimate h can be found by

qi[k] =E[Qi[k] | Xk]

=P(I(k)0 = si | Xk) =
P(I(k)0 = si,Xk)

P(Xk)
=

πifi(xk)∑R
j=1 πjfj(xk)

,
(14)
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where fi(x) is the density of Erlang branch i

fi(x) =
(λix)

ri−1

(ri − 1)!
λie

−λix.

Next, maximum likelihood parameter estimates for the given observationsxwith
weights w are found as follows:

πi =

∑T
k=1 qi[k]∑T
k=1wk

(15)

λi =
ri
∑T

k=1wkqi[k]∑T
k=1wkqi[k]xk

. (16)

The expression of the likelihood function gets to be

L (π,λ | X ) =

T∏
k=1

R∑
i=1

πifi(xk). (17)

All the steps for Hyper-Erlang fitting by EM method are summarized in Algorithm 3.

Algorithm 3 Algorithm of EM method for the Hyper-Erlang distribution fitting.

1: procedure HErD-EM-fitting (x, r)
2: initial parameter (π,λ) of structure r generation by Algorithm 4

3: likelihood of (π,λ) computation by (17)
4: repeat

5: estimation of h by (14)

6: maximum likelihood estimation of (π,λ) by (15), (16)
7: likelihood of (π,λ) computation by (17)
8: until likelihooh keeps increasing

9: return (π,λ)
10: end procedure

In case of Hyper-Erlang fitting to theoretical distributions, observations xk are
obtained by discretization, and their weights wk can be assigned the probabilities.

The initial parameters can be generated by Algorithm 4. The generated Erlang

branch rates are rescaled to match the given inter-arrival mean E[X ].
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Algorithm 4Algorithm for generating initial parameters of Hyper-Erlang distribution.

1: procedure HErD-parameter-generation (E[X ], r)
. initial Erlang branch rate generation

2: ∀i : π̃i = U [0; 1]
3: ∀i : πi = π̃i/

∑R
k=1 π̃k

. initial Erlang branch rate generation
4: ∀i : λ̃i = U [0; 1]

. computation of generated representation mean
5: E[X̃ ] =

∑R
k=1 πkrk/λ̃k

. Erlang branch rate rescaling to match the given mean

6: ∀i : λi = λ̃i

(
E[X ]/E[X̃ ]

)
7: return (π,λ)
8: end procedure

1.5. Markov arrival processes

Let us consider a certain phenomenon which generates events (i.e., arrivals) at

time instances tk. If the inter-arrivals (xk = tk − tk−1) are independent, Phase-type

distributions could be used for modeling. However, if these inter-arrivals exhibit any

kind of dependency, a more general process should be used to capture it.

More specifically, the distribution of the initial state should depend on how the

current inter-arrival has been generated. This can be achieved by a continuous time

Markov chain which has a number of arrival generating transitions. The ordinary trans-

itions are given by rate matrixD0, and the ones that generate arrivals are given by rate

matrixD1.

Example 1.8 Let us consider a three state continuous time Markov chain specified by

α =
[
0.3 0 0.7

]
,Q =

−2 2 0
2 −6 4
0 1 −1

 ,

which is depicted in Figure 1.6.

1
2

3

2
2

4
1

Fig. 1.6. An example of three state continuous time Markov chain.

Next, the arrival generating transitions are picked and indicated in Figure 1.7.
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1
2

3

1
2

4
1

1

1

Fig. 1.7. Continuous time Markov chain schema with arrival generating transitions indicated

by dashes.

The transition from the first state to itself in Markov chains, we consider, is not valid.

This discrepancy can be resolved by agreeing to transition (by D1) into a duplicated

set of states at the moment of arrival. The set of duplicated states is called a level.

The process within states of a level is said to be the background process governed by

matrix D0. The concept of the levels and the background process for this example is

illustrated in Figure 1.8.

1

2

3

0.3

1

0.7

(1)

(1)

(1)

2 1

1

2

3
1

(2)

(2)

(2)

2 1

1

2

3
1

(3)

(3)

(3)

2 1  

t0 t1 t2
x1 x2 x3

1
1

4

1
1

4

Fig. 1.8. An infinite continuous time Markov chain of MAP process.

The parameters (α,D0,D1) which define CTMC (Figure 1.8) are

α =
[
0.3 0 0.7

]
,D0 =

−3 1 0
2 −6 0
0 1 −1

 ,D1 =

1 1 0
0 0 4
0 0 0

 .

It is clear that the choice distribution of the initial state for the next level depends on

the last visited state in the previous level. 4

Definition 1.23 [27, 28, 2]Markov arrival process specified by parameters (α,D0,D1)
is an irreducible Markov chain in a finite set of statesS with generatorQ = D0+D1,

whereD1 > 0,D1 6= 0,D0i,j ≥ 0 for i 6= j.

State i is chosen with probabilityαi, in which, the process stays for an exponen-
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tially distributed time at a rate

λi =
∑
i 6=j

D0i,j +
∑
j

D1i,j = −D0i,i.

The arrival is generated with the probability
∑

j D1i,j/λi, and the next state j is

chosen with probability (D0i,j + D1i,j)/λi for i 6= j and with probability D1i,j

for i = j.

The stationary Markov arrival process is specified by parameters (D0,D1),
whereas initial stationary probability distribution α is found by solving the system

of equations (18) {
αP = α,

α1 = 1,
(18)

where P = (−D0)
−1D1.

For a valid MAP representation (α,D0,D1), (α,D0) represents a valid PH

distribution. MAP with representation (α,D0,d1α), where d1 = −D01, gener-

ates events whose inter-arrival times have a Phase-type distribution with parameters

(α,D0).

Let us consider a possibly correlated sequence of inter-arrivals

X = (X1,X2, . . . ,XT )

and denote the random inter-arrival time with X . The joint density of inter-arrival

sequence

x = (x1, x2, · · · , xT )

is

f(x) = αeD0x0D1e
D0x1D1 . . . e

D0xTD11, for x1, x2, . . . , xT ≥ 0.

Then, the likelihood of MAP parameters (D0,D1) is

L(D0,D1 | X ) = α

(
T∏

k=1

A[u]

)
1, (19)

whereA[k] = eD0xkD1. The joint moments of k consecutive inter-arrivals with orders
il (l = 1, . . . , k) are given by

E[X i1
1 X

i2
2 . . .X ik

k ] =

∫ ∞

0
· · ·
∫ ∞

0
(x1)

i1 . . . (xk)
ikf(x)dx1 . . . dxk

and can be calculated for a MAP by

E[X i1
1 X

i2
2 . . .X ik

k ] = i1!i2! . . . ik!α(−D0)
−i1P (−D0)

−i2 . . .P (−D0)
−ik1.
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The first order autocorrelation coefficient −1 ≥ ρk ≥ 1 between the first event and
the kth event (i.e., lag-k) is

ρk =
E[X1,X1+k]− E[X ])2

E[X 2]− E2[X ]
=

α(−D0)
−1P k(−D0)

−1
1− (α(−D0)

−1
1)2

2α(−D0)−21− (α(−D0)−11)2
.

For the uncorrelated events, the value of the autocorrelation coefficient is zero. The

sign of the autocorrelation coefficient indicates the positive/negative autocorrelation

between inter-arrivals. Also, we have limk→∞ ρk = 0.

[29] discusses howMAPproperties are derived from the general theory ofMarkov

processes.

The canonical forms are only known for order two MAPs as presented in [30].

Matrix P of MAP(2) has two eigenvalues 1, γ where −1 ≥ γ ≥ 1, and the autocor-
relation can be written as

ρk =
γk

2

E[X1,X1+k]− 2E[X ])2

E[X 2]− E2[X ]
=

2(α(−D0)
−2
1− (α(−D0)

−1
1)2)

2α(−D0)−21− (α(−D0)−11)2
.

The first form of the canonical MAP(2) representation for the case γ > 0 is

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]
, γ = ab (20)

and the second form, for case γ < 0, is

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
0 aλ1

bλ2 (1− b)λ2

]
, γ = −ab, (21)

where 0 < λ1 ≤ λ2, 0 ≥ a ≥ 1 and 0 ≥ a ≥ 1. The additional constraints for the
first form are a, b 6= 1. For the second form, the constraints are b 6= 0 and λ1 6= λ2

if a = 1. Since the canonical form does not impose any restrictions on the initial

probability vector, we shall refer to these canonical forms as cases of the NMAP(2)

process.

Next, we overview the MAP process of the ER-CHMM structure. In this arrival

process, the inter-arrival times have Erlang’s distribution (ER) and are modulated by

a discrete time hidden Markov chain (HMM, hence the name of the structure). An

important qualitative property of this structural restriction is that given the state of the

modulating Markov chain, the inter-arrival time and the next state of the modulating

Markov chain are independent random variables, which is not the case with general

MAPs. Despite this independence, the inter-arrival times generated by the ER-CHMM

structure are still correlated (in general).

The ER-CHMM process is specified by Erlang branch order vector r and the

parameters (π,Π,λ). Matrix Π denotes Erlang branch switching probabilities at the

time instance of arrival.
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Example 1.9 CTMC schema of ER-CHMM process with structure r =
[
2 1

]
is

shown in Figure 1.9.

1 2

3

π
λ1

λ2

1

π2

(1)

(1)

(1)

1 2

3

(2)

(2)

(2)

λ2

λ1Π1,1

λ1

λ1

Π1,2
Π2,1

Π2,2

Fig. 1.9. An infinite continuous time Markov chain of ER-CHMM process.

4

Again, we choose a stationary initial Erlang branch probability distribution π by

solving (22) {
πΠ = π,

π1 = 1.
(22)

The stationary ER-CHMM process can be specified by parameters (Π,λ). Further in
the thesis, by ‘ER-CHMM process’, we shall refer to the stationary version of it.

For the given parameters (Π,λ) and structure r, it is easy to obtain the matrix
form representation (D0,D1) which is expressed by

D0 =

B(r1,λ1)
. . .

B(rR,λR)

 ,

D1 =

 −B(r1,λ1)1Π1,1β(r1) . . . −B(r1,λ1)1Π1,Rβ(rR)
...

. . .
...

−B(rR,λR)1ΠR,1β(r1) . . . −B(rR,λR)1ΠR,Rβ(rR)

 .

(23)

From the computational point of view, the most beneficial feature of the ER-

CHMM structure is that in the computation of matrices A[k], the key element of the
joint density function is significantly simpler with the ER-CHMM structure than in

the case of general MAPs due to the conditional independence of the inter-arrival time

and the next state of the modulating Markov chain, which is provided by the ER-

CHMM structure. As a consequence, the computation of matrices A[k] does not rely
on the computationally heavy matrix-exponential function, but it is simplified to a

scalar product of Πi,j and fi(xk) as it is demonstrated by the relevant elements of
A[k] in the following Example 1.10.

Example 1.10 Let us continue Example 1.9. The ER-CHMM process with Erlang

branch orders r =
[
2 1

]
can be specified by the followingmatrix form representation
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(D0,D1)

D0 =

−λ1 λ1 0
0 −λ1 0
0 0 −λ2

 , D1 =

 0 0 0
Π1,1λ1 0 Π1,2λ1

Π2,1λ2 0 Π2,2λ2

 ,

also, matricesA[k] are

A[k] = eD0xkD1 =

Π1,1f1(xk) 0 Π1,2f1(xk)
• 0 •

Π2,1f2(xk) 0 Π2,2f2(xk)

 ,

where • indicates matrix entries which are irrelevant because, after an arrival event,
the phase is either 1 or 3 due to the zero column. This fact allows for dimension reduc-
tion. 4

The dimension reduction, as demonstrated in Example 1.10, can be utilized as

follows: instead of relying on size nmatricesA[k], matrices P [k] of sizeR defined as

P [k] =

Π1,1f1(xk) . . . Π1,Rf1(xk)
...

. . .
...

ΠR,1fR(xk) . . . ΠR,RfR(xk)

 , (24)

where fi(x) is the density function of i
th Erlang branch (distribution)

fi(x) =
(λix)

ri−1

(ri − 1)!
λie

−λix. (25)

Then, the likelihood of parameters (Π,λ) can be computed by

L (Π,λ | X ) = π

(
T∏

k=1

P [k]

)
1. (26)

We observe that, sinceR ≤ N holds, (26) involves smaller matrices and lacks matrix-

exponential functions compared to (19).

1.6. Expectation Maximization method for Markov arrival process fitting (ER-

CHMM)

The expectation maximization method for Markov arrival process fitting is ap-

plied in a similar way to Phase-type distributions.

Let us refer to Xk as a random time (i.e., inter-arrival) spent in kth level. Since
sequence

X = (X1,X2, . . . ,XT )
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can be correlated, individual processesJ (k)
t generating eachXk have to be investigated

as a whole

J (1)
t ,J (2)

t , ...,J (T )
t .

At the time instance of t = X1 + · · · + Xk, process J
(k)
t is switched to J (k+1)

t . This

sequence of processes is fully characterized by discrete state process

I(1)0 , ..., I(1)M(1)−1
, ..., I(k)M(k)−1

, ..., I(T )
M(T )−1

and sojourn time discrete process

S(1)0 , ...,S(1)M(1)−1
, ...,S(k)M(k)−1

, ...,S(T )
M(T )−1

which model the time spent in the visited states. Here,M(k) is a random number of

transitions within the kth level, before the arrival generating transition occurs. Thus full
information Y about the process which generates the observed sequence x1, ..., xT is

y =
(
i
(1)
0 , ..., i

(1)
m(0)−1

, ..., i
(T )
m(T )−1

, s
(1)
0 , ..., s

(1)
m(0)−1

, ..., s
(T )
m(T )−1

)
.

The fitting algorithm can be substantially simplified by using a restricted class of

Markov arrival processes, the ER-CHMM process. Considering the fact that in order

to accurately capture autocorrelation, a long sequence of inter-arrivals has to be used,

it is reasonable to use a stationary distribution of choosing the Erlang branch. Thus the

parameters to be searched for are (Π,λ).

In this case, full information Y can be characterized by

H = {Qi[k],Qi,j [k]} ,

where Qi[k] is the indicator of Xk being generated by Erlang branch i

Qi[k] = 1{
I(k)
0 =si

}
and Qi,j [k] is the indicator of transition to Erlang branch j after an arrival has been
generated by branch i

Qi,j [k] = 1{
I(k)
0 =si,I(k+1)

0 =sj

}.
Estimate h of sufficient characteristicsH is found by

qi[k] =E[Qi[k] | X ] = P(I(k)0 = si | X )

=
P(I(k)0 = si,X )

P(X )
=

ai[k − 1]bi[k]

πb[1]
,

qi,j [k] =E[Qi,j [k] | X ] = P(I(k)0 = si, I(k+1)
0 = sj | X )

=
P(I(k)0 = si, I(k+1)

0 = sj ,X )

P(X )

=
ai[k − 1]fi (xk)Πi,jbj [k + 1]

πb[1]
,

(27)
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where a[k], b[k] are likelihood vectors of choosing the particular Erlang branch

P(I(k)0 = si,X1, ...,Xk) =ai[k],

P(I(k)0 = si,Xk, ...,XT ) = bi[k],

which can be evaluated by the recurrent formulas

ai[k] =

{
πi, k = 0,∑R

j=1 aj [k − 1]fj(xk)Πj,i, 1 ≤ k ≤ T,

bj [k] =

{∑R
i=1 fj(xk)Πj,ibi[k + 1], 1 ≤ k ≤ T,

1, k = T + 1.

(28)

A similar recursion can be defined in case of full MAPs, too, see equations (13) and

(14) in [31].

Example 1.11 Probability of inter-arrival X2 being generated by Erlang branch i,
given X1 is

P(I(2)0 = si | X1,X2) =
P(I(2)0 = si,X1,X2)

P(X1,X2)
=

ai[2]

a[2]1
. 4

Next, the maximum likelihood parameter (Π,λ) estimates are found by

λi =
ri
∑T

k=1 qi[k]∑T
k=1 xkqi[k]

, (29)

Πi,j =

∑T
k=1 qi,j [k]∑T
k=1 qi[k]

. (30)

Stationary initial probability distribution π can be found by solving (22), or, alternat-

ively, by

πi =

∑T
u=1 ai[u− 1]bi[u]

Ta[T ]1
. (31)

The likelihood of (Π,λ) using likelihood vectors can be computed simply as

L (Π,λ | X ) = a[T ]1 = πb[1]. (32)

The steps of ER-CHMM fitting by the EMmethod are summarized inAlgorithm

5.
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Algorithm 5 ER-CHMM process fitting by expectation maximization method.

1: procedure ER-CHMM-EM-fitting (x, r)
2: initial parameter (Π,λ) of structure r generation by Algorithm 6

3: likelihood of (Π,λ) is computated by (32)
4: repeat

5: estimate h is computed by (27)

6: maximum likelihood parameters (Π,λ) are computed by (29), (30)
7: likelihood of (Π,λ) is computed by (32)
8: until likelihood keeps increasing

9: return (Π,λ)
10: end procedure

Some heuristics for choosing Erlang branch orders r is presented in [32].

The initial parameters can be generated by Algorithm 6. After generating initial

Erlang branch switching probabilities, the stationary initial probability vector is com-

puted. Then the inter-arrival mean of the process with generated parameters is com-

puted and used to rescale Erlang branch rates so that to match the given inter-arrival

mean E[X ].

Algorithm 6Algorithm for generating initial parameters of stationary MAP process of

structure ER-CHMM.

1: procedure ER-CHMM-parameter-generation (E[X ], r )

. initial Erlang branch rate generation
2: ∀i : λ̃i = U [0; 1]

. initial Erlang branch switching probability matrix generation
3: ∀i, j : Π̃i,j = U [0; 1]
4: ∀i, j : Πi,j = Π̃i,j/

∑R
k=1 Π̃i,k

. stationary initial probability vector computation

5:

{
πΠ = π

π1 = 1
→ π

. computation of generated representation mean
6: E[X̃ ] =

∑R
k=1 πkrk/λ̃k

. Erlang branch rate rescaling to match the given mean

7: ∀i : λi = λ̃i

(
E[X ]/E[X̃ ]

)
8: return (Π,λ)
9: end procedure

1.7. Transient Markov arrival processes

TransientMarkovian arrival processes (TMAPs) are continuous time terminating

point processes where the inter-arrival times depend on a background Markov chain,

hence they can be dependent.

TMAPs can be characterized by an initial probability vector, α, i.e., α1 = 1,
holding the initial state distribution of the background Markov chain at time 0 and
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two matrices,D0 andD1. MatrixD0 contains the rates of the internal transitions that

are not accompanied by an arrival, whereas matrix D1 consists of the rates of those

transitions that generate an arrival. However, contrary to non-terminating MAPs, the

generator matrix of the background Markov chain of TMAPs, D = D0 + D1, is

transient, that is, D1 6= 0, and the non-negative vector d = −D1 describes the

termination rates of the background Markov chain. For practical considerations, it is

assumed that the termination is an observed event (an arrival), which means that a

TMAP generates at least one arrival. If only the ‘arrival events’ are known, which is

commonly the case in practice, the TMAPs which do not generate any arrival are not

observed.

Matrix P = (−D0)
−1D1 holds the state transition probabilities of a transient

discrete time Markov chain (DTMC) with termination vector p = 1−P1. We should

note that P is a sub-stochastic matrix (it has non-negative elements and P1 ≤ 1),

and (I − P )−1p = 1 holds.

Example 1.12 Let us consider a transient Markov arrival process specified by para-

meters

α =
[
0.3 0 0.7

]
,D0 =

−3 1 0
2 −8 0
0 1 −1

 ,D1 =

1 1 0
0 0 4
0 0 0

 ,

whose continuous time Markov chain is shown in Figure 1.10.
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Fig. 1.10. Continuous timeMarkov chain of transient Markov arrival process given in Example

1.12.

The vector of absorption rates is

d = − (D0 +D1)1 =

02
0

 . 4
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In case of TMAPs, not only the statistical quantities related to the inter-arrival

times are of interest, but also the ones related to the number of generated arrivals attract

interest as well.

The number of arrivals K is characterized by a discrete Phase-type (DPH) dis-

tribution with initial vector α and transition probability matrix P . Hence, the mean

number of arrivals is given by

E[K] =
∞∑
k=1

αkP k−1p = α(I − P )−2p = α(I − P )−1
1. (33)

If the inter-arrival times are denoted by X = (X1,X2, . . . ,XK), then the joint
density function of the inter-arrival times is

f(x) = lim
∆→0

1

∆
P(X1 ∈ (x1, x1 +∆), . . . ,Xk ∈ (xk, xk +∆))

= αeD0x1D1e
D0x2D1 · · · eD0xk(D11+ d).

(34)

If it exists, the nth moment of Xk+1 is

E[X n
k+1|Xk+1 <∞] =

E[X n
k+11{Xk+1<∞}]

P(Xk+1 <∞)
=

n!αP k(−D0)
−n
1

αP k
1

. (35)

The mean of the inter-arrival times E[X ] is not as easy to express as for ordin-
ary MAPs, it is obtained from E [X ] = E

[∑K
k=1Xk

]
/E [K] where the numerator is

derived as

E

[ K∑
k=1

Xk

]
=

∞∑
κ=1

E

[
1{K=κ}

K∑
k=1

Xk

]
=

∞∑
κ=1

κ−1∑
i=0

αP iMP κ−1−ip

=

∞∑
i=0

∞∑
κ=0

αP iMP κp = α(I − P )−1M(I − P )−1p,

(36)

where M = (−D0)
−1, and the denominator is given by (33). As a result, the mean

inter-arrival time is

E [X ] =
E
[∑K

k=1Xk

]
E [K]

=
α(I − P )−1M(I − P )−1p

α(I − P )−2p
=

α(I − P )−1M1

α(I − P )−11
.

(37)

In order to discuss the correlation of the inter-arrival times, we introduce the

notation X̂k = Xk | Xk < ∞. We should note that X̂1 = X1 due to the modeling

assumption of at least one arrival. By this notation from (35), we have

E
[
X̂ n
k+1

]
=

n!αP kMn
1

αP k
1

.
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The expectation of the product of two subsequent inter-arrival times is

E
[
X1X̂k+1

]
=

E
[
X1Xk+11{Xk+1<∞}

]
P(Xk+1 <∞)

=
α(−D0)

−2D1P
k−1(−D0)

−2(D11+ d)

α(−D0)−1D1P
k−1(−D0)−1(D11+ d)

=
αMP kM1

αP k
1

,

(38)

where we state that (−D0)
−1(D11 + d) = 1 due to D01 +D11 + d = 0. Based

on the joint expectation, the correlation is

ρk =
E
[
X1X̂k+1

]
− E [X1]E

[
X̂k+1

]
√
E
[
X 2
1

]
− E2 [X1]

√
E
[
X̂ 2
k+1

]
− E2

[
X̂k+1

] . (39)

Given the inter-arrivalsx =
(
x
(1)
1 , . . . , x

(1)
K1

, . . . , x
(U)
1 , . . . , x

(U)
Ku

)
ofU observed

runs, the likelihood of parameters (α,D0,D1) is

L(α,D0,D1 | X ) =

U∏
u=1

αeD0x
(u)
1 D1 · · · eD0x

(u)
Kud. (40)

As with MAPs, TMAP fitting can be greatly simplified by imposing the ER-

CHMM structure. In this case, the process is specified by parameters (π,Π,λ), where
πi is a probability of choosing the ith Erlang branch, and Πi,j is a probability that

Erlang branch j will be chosen after the arrival by Erlang branch i has been generated.
In addition, the probability p run termination can be derived as

p = 1−Π1 = (I −Π)1.

Example 1.13 Let us consider a transientMarkov arrival process of ER-CHMMstruc-

ture specified by the parameters

π =

[
0.8
0.2

]
, Π =

[
0.75 0.25
0 0.5

]
, λ =

[
4 2

]
,

whose continous time Markov chain is shown in Figure 1.11.
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Fig. 1.11. Continuous Markov chain of the transient Markov arrival process given in Example

1.13.
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Rate vector d̃ of transitions to the absorbing state from Erlang branches is

d̃ =

[
0
1

]
,

which can be recomputed for absorption probability vector

p̃ =

[
0
0.5

]
. 4

1.8. State-of-the-art overview

Phase-type (PH) distributions and Markov arrival processes (MAP) have been

extensively used to create stochastic models for decades due to their analytical tract-

ability. PH distributions are used to incorporate a certain approximated distribution

into the analytical model. To name a few among many, they are used in queueing [33],

modeling failure times [34], or in risk theory [35], in modeling wireless networks [21].

The information about autocorrelation can be incorporated in a model by using MAPs.

These processes are used for modeling correlated workload for traffic, performance

and reliability analysis in several fields [36, 37]. Contrary to MAPS, the transient

Markov arrival processes (TMAPs) generate finite sequences of inter-arrivals. TMAPs

can be used across a wide range of application fields from traffic modeling of com-

puter systems to risk analysis, including population dynamics in biological systems.

For example, TMAPs were applied to model women’s lifespan in several countries in

[38].

There are a lot of open problems for PHs, MAPs and related processes. Canon-

ical forms are known only for low order processes. Various structure sub-classes are

being investigated. Until representation problems have been solved, it is not realistic

to expect to develop optimal fitting procedures. Currently, fitting is performed by sev-

eral methods, including moment matching, MLbased, general optimization and hybrid

ones. However, one has to consider a trade-off of fast fitting with sub-class structures

versus slow fitting using a general structure. Depending on the algorithm, certain nu-

merical issues also have to be solved in case big data traces are being fitted as well.

These processes are related to other mathematical fields, and some extensions

are developed, too. PH distribution relation to positive systems is investigated in [22,

39]. PH distribution generators are being investigated by using polytopes [40]. [41]

discusses the usage of bivariate Phase-type distributions for modeling relapse time

in clinical patients. An extension of PH distributions supporting negative values is

introduced in [42]. [43] presents the properties of acyclic bilateral Phase-type (ABPH)

distributions. The version of PH distribution with a finite support (FSPH) is introduced

in [44].

PH distribution representations have not been fully investigated yet. PH can be

fully specified by 2n−1moments [15]. However, for practical usage, the matrix form
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representation is necessary. The PH(n) canonical matrix form is known only for or-

ders n = 2, 3 [17, 8]. The authors of [8] tried to investigate the canonical forms of
PH(4), but arrived at a conclusion that the problem is too complex to be solved analyt-

ically. Certain PH sub-classes are much better investigated in this regard. For example,

any acyclic Phase-type (APH) distribution can be represented by a Coxian distribution

[45]; in addition, the ability to represent general PH distribution by Coxian distribution

is also investigated in this paper. Two algorithms for constructing bi-diagonal repres-

entations are given in [46]. Another subclass of APH distributions is the Hyper-Erlang

(HErD) distribution, for which, effective fitting algorithms are developed. The HErD

distribution is a mixture of Erlang distributions, which itself turns out to be the least

variable one among PH distributions [20]. A hybrid subclass, constructed as a convo-

lution of Erlang and Coxian distributions (EC), is presented in [47, 48]. As for cyclic

PH subclasses, the unicyclic, Feedback Erlang and Feedback Hypo-Exponential distri-

butions are investigated in [49]. In [11], a conjecture is given that any PH distribution

has a unicyclic representation, however, in [49], a counter example is given to disprove

that.

There are twomain approaches for PH fitting. The first one is to performmoment

matching. PH distributions can be specified by 2n − 1 moments. However, closed

form PH(n) fitting procedures are known only for order n = 2, 3 distributions. These
results are limited due to unknown canonical forms for higher orders. For PH(n) of
orders n > 3, moment matching is a complex optimization problem. To simplify the
problem, researchers investigate PH sub-classes and/or aim to fit a small number of

moments. For example, [50, 18] introduce procedures for APH distribution moment

matching. [47] introduces the Erlang-Coxian (EC) distribution subclass for fitting the

first three moments. The usage of EC for moment matching is further investigated in

[48]. For certain applications (i.e., simple queueing models), it is enough to match a

few moments, but, for more general usage, this approch is limited.

Another, a more general, approach is to use the ML parameter estimation pro-

cedure. The first EM procedure for general PH fitting is presented in [14]. The main

disadvantage of the presented EM procedure is that it requires high computational

effort. The most direct attempt to address the problem is to use the uniformization

(randomization) technique for computing matrix exponentials and the convolution in-

tegral; such a procedure is presented in [25]. However, from our experience, in order

to use the procedure for sparse structure fitting, a numerical issue related to number

representation and scaling has to be addressed. Other similar results are presented in

[51], where the EM method is applied to the discretized data, and it also uses the uni-

formization technique. [52] gives an EM fitting procedure based on uniformization

and MCMC. There are numerous attempts to optimize the EM procedure for specific

subclasses in scientific literature. These results proved to be useful from the practical

point of view, i.e., they enabled PH fitting with many more phases. The effectiveness

of using a smaller subclass for PH fitting is suggested by empirical results in [13]. [53]

presents APH canonical forms and their fitting by using the EM procedure. The EM

algorithms for the Hyper-Exponential distribution fitting are presented in [54, 55, 56].
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The EM algorithm for Hyper-Erlang distribution fitting is presented in [2]. [12] in-

troduced a hybrid algorithm SS&IAGA-EM Hyper-Erlang distribution fitting. The al-

gorithm SS&IAGA-EM uses the expectation maximization (EM) method for the local

search and scatter search algorithm (SS) and the improved adaptive genetic algorithm

(IAGA) for better global parameter space exploration, including a number of branches

and phases. The authors claim that the proposed algorithm is more effective (it explores

the Hyper-Erlang structure space faster and better) compared to G-FIT [13] while pro-

ducing similar fitting results.

There are more specific procedures developed for certain cases. A review of PH,

MAP fitting algorithms is presented in [57]. The collection of nine distributions for

testing and comparing different PH fitting approaches is presented in [58]. Certain

models are sensitive to the fitting quality of heavy tailed distributions. The PH fitting

to heavy tailed distributions is investigated in [59, 60, 55]. Other less traditional ap-

proaches include Hyper-Exponential distribution fitting in the Laplace domain [61].

Also, general optimization algorithms are used, for example, [62] uses Quasi-Newton

and Nelder Mead algorithms to fit a Coxian distribution.

It is important to have canonical matrix forms (i.e., minimal and unique repres-

entations) of MAP(n) for an efficient MAP application. The matrix form representa-

tion with all possible transitions is redundant, and its parameter search with the EM

algorithm is computationally demanding [63]. On the other hand, a simpler EM al-

gorithm can be derived for a certain MAP subclass (for example, ER-CHMM), but it

may not cover the whole MAP(n) space with the same number of phases. A unique

representation makes the whole parameter search process simpler, which results in a

faster convergence to a set of parameters. Also, it is preferable to represent a certain

MAP process with the minimal number of phases ([64] introduces MAP order de-

termination) because redundant phases escalate the so-called state explosion problem.

These representation problems are investigated in [9].

However, canonical matrix forms are known only for MAP(2); they are given in
[30, 65].

Alternatively,MAPcan be represented bymoments and the autocorrelation struc-

ture. For practical purposes, it is necessary to be able to determine whether given mo-

ments define a Markovian process [9] and to construct a corresponding matrix form

representation. [66] presents moment representation of MEPs (matrix exponential pro-

cesses), and [67] investigates non-Markovian representation, i.e., a MEP transforma-

tion to a Markovian one, i.e., MAP. MAP characterization by their moments is presen-

ted in [68]. The usage of KPC (Kronecker product composition) for constructingMAPs

with predefined moments and correlation is presented in [69]. This approach relies on

the explicit construction of MAP(2) given three marginal moments and correlation;
this is discussed in [70, 71, 30, 72]. The construction of the MAP matrix form repres-

entation based on moments is one of the possible ways to perform MAP fitting.

Explicit results for MAPmatching methods exist only for the second-order case
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[30]. For larger models, a combined two-step procedure for the MAP fitting problem

has been developed, e.g., in [73]. In the first step, a PH distribution is created to fit

the marginal distribution, and, in the second step, a lag-k autocorrelation fitting is per-
formed.Another two-step matching approach is proposed in [74], where an acyclic PH

distribution is extended into aMAPby adding correlations based on the lag-1 joint mo-
ments of the inter-arrival times. The first (PH fitting) step can be improved by repres-

entation transformation (see [75, 76]) to make the PH representation more appropriate

for correlation fitting. [77] presents a procedure for building MAP from PH. However,

the common flaw of these two-step algorithms is that they are not able to take long-

range correlations into account and that the underlying optimization problems are not

easy to solve even with the most recent optimization software.

A comparison of many MAP fitting procedures in survey [78] concluded that

EM-based algorithms are more beneficial than the matching ones, including the com-

bined methods, for many reasons. The main reason for this is that the EM method

considers all the information carried by the samples, while the matching methods con-

sider only the statistical parameters which are matched.

However, the full potential of the EM method is not used. One of the reasons

for that is the unsolved representation problem. Due to redundant representation, the

solution can be easily attracted to a local maxima, which increases the overall fit-

ting result dependence on the initial guess. To overcome the problem for a subclass

MMPP (Markov modulated Poison process), a DAEM algorithm is introduced in [79],

which effectively avoids being trapped by the local maxima. Another issue is related

to non-uniqueness of representation [9] which causes the solution to go back and forth

between MAP representations that are almost identical with respect to the underlying

MAP but have very different matrix representations.

In order to partially overcome inefficient fitting due to representation problems

and EM computational complexity, various MAP subclasses are used. Since a canon-

ical matrix form is not known (for n > 2), a certain sub-class may not cover the

MAP space or might be redundant. However, it has been observed that a structurally

restricted subclass is more able to overcome local maxima problems, and a simpler,

thus faster, EM algorithm can be derived for it. An EM procedure to perform MAP

fitting of a general structure is presented in [63]. That procedure requires a massive

computational effort, and, consequently, it is applicable only to fit small data traces

consisting of a few thousand observations. To address the issue, an EM procedure

based on the aggregation of the inter-arrival times is presented in [80]. Similarly, [81]

extends the EM algorithm for fitting MAPs to group data. To reduce the computational

demand of EM-basedMAP fitting algorithms, a special MAP structure is introduced in

[31] called Erlang distributed – continuous time hidden Markov chain (ER-CHMM).

A generalization of the ER-CHMM structure is presented in [32], which has relaxed

some structural restriction of the ER-CHMM structure but increased the number of the

model parameters. While using the generalized ER-CHMM structure, slightly higher

likelihood values can occasionally be achieved at the cost of increased numerical com-
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plexity.

A transient Markov arrival process (TMAP) is a terminating stochastic process

[82]. The TMAP stochastic process generates a finite number of possibly correlated

inter-arrivals. It can be compared to a PH distrubution, which is also a terminating

process but generates only one event. TMAP is related to the MAP process in a sense

that it models the inter-arrival correlation as well. Basic TMAP properties are given in

[83], and moment characterization is presented in [84].

In this context, our work contributes to the field in several ways.

The general tendency is towards the investigation of PH subclasses, and it is reas-

onable given their performance advantages. However, in order to fully solve the fitting

problem, we believe the general PH structures have to be investigated, as well.We rely

more on the combinatorics approach rather than on the analytical one. However, our

insights and developed tools might facilitate further advancement in the field.

As for MAPs, we have not found documented results on the parallelization of

MAP maximum likelihood parameter estimation algorithms. The reason behind this

research gap is unclear, especially considering the fact that huge data sets have to be

fitted to accurately capture autocorrelation.We have considered several parallelization

options and gave recommendations when a particular algorithm could be used.

There is no presented EM algorithm for TMAP fitting. To address that, we have

developed one.

To the best of our knowledge, we are the first to develop MAP, TMAP fitting

parallel procedures for parallel execution on GPU devices.
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2. PHASE-TYPE DISTRIBUTION FITTING

Is is a known that EM converges to a local solution which depends on the ini-

tial PH representation parameter set (i.e., solution). It is very likely that, for different

representation structures, the set of local solutions which can be reached by the EM

method starting from them is different. This can be proven very easily, by taking two

different sparse structures. The structures represent different subspaces of PH distri-

butions. Therefore, the EM method might converge to different local solutions. Thus

by starting from the initial solutions of various structures, the chances to find a better

solution might increase.

The general structure of PH distribution representation is over-parameterized. It

can be shown that p = 2n−1 parameters are sufficient to describe any PH distribution

(Theorem 1.1). However, canonical forms of Phase-type distribution representations

are known only for orders n = 2, 3 [17]. Analytical analysis of the representation

structures, even for n = 4, is quite complex [85], partly due to the fact that expli-
cit expression for eigenvalues is unknown. It was observed that the EM method can

be more robust when fitting with a restricted class of PH distributions. For example,

an EM method procedure for Hyper-Exponential distribution fitting is given in [55],

which is extended for Hyper-Erlang distribution fitting in [13]. However, one specific

structure may not cover the whole class of PH distributions [85], even though its usage

is more practical.

In this section, we present Phase-type structure generation algorithms and empir-

ically validate a hypothesis (for case n = 4) about the sufficient number of transitions
in the matrix form representation. Also, we will research Phase-type fitting with ran-

domly generated structures withm = 2n transitions.

2.1. Phase-type structure generation algorithm

We introduce an algorithm to generate the structures of matrix form PH(n) rep-
resentations.

Our generation of Phase-type distribution matrix form representation structures

is based on the canonical forms of PH distributions with two [86] and three [17] states,

non-stationary Markov arrival processes (NMAP) with two states [65] and other ob-

servations.

We use the PH distributionmatrix form representation (α,D0) structure notation
(α̇, Ḋ0, ḋ1) which is explained in Section 1.2.

We presentAlgorithm 7 to generate a set of PH(n) representation structures with
the specified number of transitionsm.
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Algorithm 7 Algorithm for generating a set of Phase-type distribution matrix form

representation structures withm transitions.

1: procedure Structure-generation (n,m)

2: (step 1) Generation of all valid structures withm transitions.

3: (step 2) Removal of redundant trivially equivalent structures.

4: (step 3) * Removal of constrained/not-constrained structures.

5: (step 4) * Removal of cyclic/acyclic structures.

6: (step 5) ** Inclusion of Coxian structure in case ofm = 2n.
7: (step 6) Removal of structures which do not have obviously constrained and non-canonical lower

order PH sub-structures.

8: (step 7) Removal of structures which do not have obviously constrained and non-canonical

NMAP(2) sub-structures.
9: return the resulting set of structures.

10: end procedure

Definition 2.1 The structure of PH distribution (or NMAP process) representation is

said to be obviously constrained if the number of transitionsm is equal or less than the

necessary number of independent parameters to fully specify the distribution/process.

A structure containing a lower order PH or NMAP substructure that is not ob-

viously constrained and is of non-canonical form is not preferred and therefore is not

considered, as such a structure duplicates the other similar structure which has a ca-

nonical form sub-structure.

Generation of all valid structures (step 1)

Basically, from a set of all possible structures, the ones with m transitions are

taken for further investigation. Let ṽ be a set of all possible binary vectors of size n

ṽ =
{
[v̇1 v̇2 . . . v̇n] v̇i ∈ {0, 1} , i = 1, n

}
.

Similarly, let Ã be a set of all possible binary matrices of size n

Ã =


Ȧ1,1 . . . Ȧ1,n

...
. . .

...

Ȧn,1 . . . Ȧn,n

 Ȧi,j ∈ {0, 1} , Ȧi,i = 0

for i 6= j, i, j = 1, n

 .

Then the initial set of all structures withm transitions is(α̇, Ḋ0, ḋ1)

α ∈ ṽ, Ḋ0 ∈ Ã, ḋ1 ∈ ṽ,
n∑

i=1

α̇i − 1 +

n∑
i=1

n∑
j=1

Ḋ0i,j +

n∑
i=1

ḋ1i = m


Definition 2.2 [10] A structure is considered to be valid if the following conditions

are met: a) there exists a path to visit every transient state, b) there exists a path to

reach an absorbing state from every transient state.
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This set contains many structures which do not define a valid CTMC. All such

invalid structures are removed from it. The resulting set still contains many equivalent

structures which are investigated further.

Trivial structure equivalence (step 2)

We are interested in a set of PH distributions that contain all the distributions

which have at least one representation (α,D0) with the structure (α̇, Ḋ0, ḋ1). Such
a set is denoted as PH(α̇,Ḋ0,ḋ1)

.

Two structures (α̇, Ḋ0, ḋ1)
(a) and (α̇, Ḋ0, ḋ1)

(b) are equivalent if

PH(α̇,Ḋ0,ḋ1)(a) ⊆ PH(α̇,Ḋ0,ḋ1)(b)
and PH(α̇,Ḋ0,ḋ1)(b)

⊆ PH(α̇,Ḋ0,ḋ1)(a) .

The structure with reordered states stands for the same set of PH distributions.

This comes from the fact that renumbering the states of a certain representation results

in another representation which represents the same PH distribution. Formally, given a

list of unique new states indices (l1, l2, . . . , ln), the equivalent structure (α̇, Ḋ0, ḋ1)
(b)

is obtained from (α̇, Ḋ0, ḋ1)
(a) by state reordering

α̇
(b)
i =α̇

(a)
li

, Ḋ0
(b)
i,j = Ḋ0

(a)
li,lj ,

ḋ1
(b)
i =ḋ1

(a)
li , i, j = 1, n.

Similarly, the time-reversed structure has the same set of PH distributions as

the time-reversed representation represents the same PH distribution. Formally, given

structure (α̇, Ḋ0, ḋ1)
(a), the equivalent time-reversed structure (α̇, Ḋ0, ḋ1)

(b) is ob-

tained by

α̇
(b)
i =ḋ1

(a)
i , Ḋ0

(b)
i,j = Ḋ0

(a)
j,i ,

ḋ1
(b)
i =α̇

(a)
i , i, j = 1, n.

Definition 2.3 [9] A trivial transformation of a structure or a representation is such a

transformation which involves the state reordering and/or time reversal.

In addition, if a structure or a representation was obtained by the trivial trans-

formation, those are said to be trivially equivalent.

Constrained structures (step 3)

Phase-type distribution can be represented by 2n−1moments if moment r−1 in

[66] is fixed to zero and Phase-type distribution is represented with 2n−2 parameters.
Thus the following proposition for a general structure can be formulated.

Proposition 2.1 If the representation (α,D0) of the structure (α̇, Ḋ0, ḋ1) is such
that there is no immediate exit from the states for which the initial probability is non-
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zero, i.e., for all i = 1, n : αid1i = 0, the represented PH distribution is defined by

2n− 2 parameters at most.

Proof. From (5) we have that

det (sI −D0) f
∗ (s) = α (Γ(s))ᵀ d1 =

[
α1 . . . αn

] Γ1,1 (s) . . . Γn,1 (s)
...

. . .
...

Γ1,n (s) . . . Γn,n (s)


d11

...

d1n

 =

α1 (Γ1,1 (s)d11 + · · ·+ Γn,1 (s)d1n) + · · ·+
αn (Γ1,n (s)d11 + · · ·+ Γn,n (s)d1n) .

From the condition of Proposition 1.1, it follows that adjuncts Γi,i (s) are multiplied
by zero. Since these are the only adjuncts that are polynomials in s of n − 1 degree,
the numerator in (5) does not contain term sn−1, i.e., coefficient cn−1 is equal to zero.

Consequently, the Laplace transform (and the corresponding PH) is defined by 2n− 2
parameters at most. �

The constrained structures have density function property f (0) = 0 and in gen-
eral are not preferred since they are less flexible.

Structures with acyclic generator and Coxian structure (steps 4 and 5)

Definition 2.4 [2] Structure (α̇, Ḋ0, ḋ1)
(a) represents the acyclic PH distribution if it

can be trivially transformed into the structure (α̇, Ḋ0, ḋ1)
(b) with an upper triangular

matrix Ḋ0
(b)
.

Any PH distribution representation with a triangular generator matrix can be

transformed into an ordered Coxian representation structure. The ordered Coxian rep-

resentation structure has the following form

α̇ =
[
1 0 . . . 0

]
, ḋ1 =


1
1
...

1

 ,

Ḋ0 =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 0 0

 .
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The sub-structures (sub-chains)

Let us recall that PH distribution is defined via a CTMC. We choose a few tran-

sient states for analysis. Then we partition the whole original CTMC into two chains.

The first one contains the chosen transient states and is called a sub-chain. The second

one contains all the remaining states and is called a complimentary chain.

A particular sub-chain with r states is given by a list of unique state indices

(l1, . . . , lr). There are the remaining q = n+2− r states in the complimentary chain,
where +2 stands for the starting and for the absorbing states. For the given sub-chain
state index list (l1, . . . , lr), the generator matrix of CTMC can be reordered to the form

Q =

[
C∗ E
X C

]
, (41)

where the lower right block C is a transient generator matrix of the sub-chain. The

inputE and outputX matrices are the upper right and lower left blocks, respectively.

The complimentary chain transient generator C̃ matrix is not investigated further. The

structure of the C, E and X matrices is encoded by the binary element matrices Ċ,

Ė and Ẋ

Ċ =

Ċ1,1 . . . Ċ1,r
...

. . .
...

Ċr,1 . . . Ċr,r

 , Ė =

Ė1,1 . . . Ė1,r
...

. . .
...

Ėq,1 . . . Ėq,r

 ,

Ẋ =

Ẋ1,1 . . . Ẋ1,q
...

. . .
...

Ẋq,1 . . . Ẋq,q

 ,

(42)

where Ċi,j ∈ {0, 1} for i 6= j, i, j = 1, r indicates the transitions between sub-

chain states; Ėi,j ∈ {0, 1} for i = 1, q, j = 1, r indicates the transitions from a

complimentary chain to a sub-chain; Ẋi,j ∈ {0, 1} for i 6= j, i, j = 1, q indicates the
transitions from a sub-chain to a complimentary chain.

Definition 2.5 A Phase-type sub-structure is a sub-chain structure of CTMC and is

specified by
(
Ė, Ċ, Ẋ

)
.

Alternatively, a sub-structure of Phase-type structure
(
α̇, Ḋ0, ḋ1

)
can be spe-

cified by the list of states.

We define the following characteristics based on matrices Ė and Ẋ:

• Ec / Er is the number of states to/from which a sub-chain can be entered,

• Xc / Xr is the number of states to/from which a sub-chain can be left,
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• Erank / Xrank is the maximal possible rank of input/output matrices found by

(43)

Erank = min (Ec, Er) ,

Xrank = min (Xc, Xr) .
(43)

A sub-structure is characterized by the number of transitions

m(c) = Ec +

r∑
i=1

r∑
j=1

Ċi,j +Xc.

Example 2.1 Let us consider a Phase-type distribution representation structure given

in Figure 2.1.

1

2

3

40

Fig. 2.1. An example of a Phase-type distribution structure.

Let us say we are interested in the sub-structure which consists of (2, 3) transient
states. First of all, we reorder the states so that the CTMC generator matrix structure

becomes

Q̇ =

[
Ċ

∗
Ė

Ẋ Ċ

]
=


0 0 1 0 1
0 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 0 0 1 0

 ,

where

Ċ =

[
0 0
1 0

]
, Ė =

0 1
0 0
0 1

 , Ẋ =

[
0 1 1
0 0 0

]
.

From matrices Ė, Ẋ , the following characteristics are found

Er = 2, Ec = 1, Erank = 1,

Xr = 1, Xc = 2, Xrank = 1.
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The sub-structure schema is shown in Figure 2.2.

1

2

3

40

1

Fig. 2.2. A schema of the sub-structure of the Phase-type distribution given in Example 2.1.

4

The given structure (α̇, Ḋ0, ḋ1) is investigated by analyzing the structure of

all of its sub-substructures obtained from the corresponding CTMC (or time-reversed

CTMC) structure.We shall note that the order of states in the sub-chain is not important

because the state renumbering in CTMC does not affect the PH distribution that it

represents.

Identification of non-canonical PH(2) and PH(3) sub-structures (step 6)

The sub-chain of a two-state sub-structure, that is characterized by Er = 1 and
Xr = 1 can be considered as an order n = 2 Phase-type distribution.

Ifm(c) = n+1 = 3, then the sub-chain is a constrained PH(2), and no reasonable
conclusion can be drawn about the original PH structure.

It is known that any PH(2) distribution has a canonical form of the ordered Cox-

ian distribution [45]. Therefore, if m(c) = 2n = 3 and the sub-structure is not trivi-
ally equivalent to the Coxian structure, the original PH structure is not preferred. If

m(c) > 2n = 4, the sub-structure represents a redundant PH(2) distribution, and the
original PH structure is not preferred, either.

If a three-state sub-chain is such that Er = 1 and Xr = 1, it can be considered
as an order n = 3 Phase-type distribution. If the sub-structure is not obviously con-
strained, it is necessary to check if it has the canonical form given in [17].

Ifm(c) < 2n = 6, then the sub-structure is obviously constrained PH(3), and no
reasonable conclusion can be drawn about the original PH structure.

In the case of m(c) = 2n = 6, the original PH structure is not preferred if it
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cannot be trivially transformed into one of the canonical form structures (44):

(
α̇, Ḋ0, ḋ1

)(1)
=

[1 1 1
]
,

0 1 0
0 0 1
0 0 0

 ,

00
1

 ,

(
α̇, Ḋ0, ḋ1

)(2)
=

[1 0 1
]
,

0 1 0
0 0 1
1 0 0

 ,

00
1

 .

(44)

Similarly, if m(c) = 2n + ∆M3 = 7 and the sub-structure is not trivially equi-
valent to the canonical form structure (45), the original PH structure is not preferred:

(
α̇, Ḋ0, ḋ1

)(3)
=

[1 1 1
]
,

0 1 0
0 0 1
1 0 0

 ,

00
1

 . (45)

Finally, in the case ofm(c) > 2n+∆M3 = 7, the whole original structure is not
preferred since such a PH(3) distribution is redundant.

Identification of non-canonical NMAP(2) sub-structures (step 7)

A two-state sub-chain can be considered as a NMAP(2) process if it can be

entered from one complimentary chain state (Er = 1) and exited to two compliment-
ary chain states (Xr = 2).

It is necessary to check if the NMAP(2) structure is not constrained; in order to
do that, the statistic z(c) is defined as

z(c) = zE + zX + zC , (46)

where zE / xX is the number of zeros in the matrix Ė / Ẋ excluding rows/columns

with only zero elements, and zC is the number of zeros in matrix Ċ excluding the

diagonal elements.

If z(c) > 2, such a sub-chain is obviously a constrained NMAP(2) process, and
the original PH structure has to be left as possibly contributing.

Otherwise, if z(c) ≤ 2 and the sub-structure cannot be trivially transformed into
one of the two NMAP(2) canonical form (20), (21) structures(

α̇, Ḋ0, Ḋ1,
)(1)

=

([
1 1

]
,

[
0 1
0 0

]
,

[
1 0
1 1

])
,(

α̇, Ḋ0, Ḋ1,
)(2)

=

([
1 1

]
,

[
0 1
0 0

]
,

[
1 1
0 1

])
,

then the original PH structure is not preferred.
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2.2. Phase-type random structure generation algorithm

We introduce a much simpler random structure generation algorithm. The sub-

class of randomly generated structures is specified by the following properties:

• cyclic/acyclic – specifies whether the Phase-type infinitesimal generator struc-

ture is cyclic or not;

• ZID (zero initial density) – specifies that the structure is constrained (i.e., it is

such that f(0) = 0);

• number of transitions,m.

Let us denote the cyclic/acyclic and ZID properties byΘ. A random structure is

generated by constructing the initial structure with the maximum number of transitions

that has the propertiesΘ, and then randomly chosen transitions are removed until (see

Algorithm 8) the number of transitions ism.

Algorithm 8 Removal of a random transition from structure (α̇, Ḋ0, ḋ1)
(a)

1: procedure Transition-Random-Removal ((α̇, Ḋ0, ḋ1)
(a),Θ)

2: T := ∅ . a set of transitions which can be removed
3: for each transition t in (α̇, Ḋ0, ḋ1)

(a) do

4: obtain structure (α̇, Ḋ0, ḋ1)
(b) by removing t from (α̇, Ḋ0, ḋ1)

(a)

5: if (α̇, Ḋ0, ḋ1)
(b) is valid and has propertiesΘ then

6: insert t into T
7: end if

8: end for each

9: randomly choose transition t from T
10: obtain structure (α̇, Ḋ0, ḋ1)

(b) by removing t from (α̇, Ḋ0, ḋ1)
(a)

11: return (α̇, Ḋ0, ḋ1)
(b)

12: end procedure

2.3. Distribution discretization algorithm

For a given distribution density function f(x), we need to obtain the weighted
observations (xi, wi). This is achieved in two steps. First, we discretize the f(x) func-
tion for a given interval from xstart to xend. After discretization, we have intervals
[zi, zi+1) which do not overlap and cover the interval [xstart, xend). Then the observa-
tions (i.e., the trace data) are compiled by Formula (47)

xi =
zi + zi+1

2
,

wi =

∫ zi+1

zi

f(x)dx ≈
K−1∑
k=0

∆zif(zi + k∆zi),
(47)

where ∆zi =
zi+1 − zi

K
, andK is the number of sampling points.
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In order to reduce the number of intervals [zi, zi+1), we discretize the interval
[xstart, xend) with an adaptive algorithm.

The list of discretization points is denoted by D = (z1, . . . , zk, . . . ); the list of
interval errors is E = (e1, . . . , ek, . . . ).

The error of kth interval is

ei =

∣∣∣∣f (zi + zi+1

2

)
− f(zi) + f(zi+1)

2

∣∣∣∣ (zi+1 − zi), (48)

which is an absolute difference between the density function value in the middle of

interval [zi, zi+1) and the value of the discretized function value multiplied by the

length of the interval.

Initially, we setD := (xstart, xend) and keep inserting new discretization points

(see Algorithm 9) until the total discretization error
∑

i ei is not bigger than a certain
criterion. Also, we specify the minimum number of discretization points to insert at

the beginning. The specific values of these parameters are not important, we choose

them by hand until the obtained discretization is precise enough based on its statistical

properties (mean, standard deviation, skewness).

Algorithm 9 Pseudo-code for inserting a point into discretizationD
1: procedure Insert-Point (D, E)
2: find the interval with the maximum error k = argmaxi(ei)

3: compute new discretization point z∗ =
zi + zi+1

2
4: insert z∗ intoD, so thatD = (. . . , zk, z

∗, zk+1, . . . )
5: compute new errors e∗1, e

∗
2 for intervals [zk, z

∗), [z∗, zk+1) by (48)
6: update error list so that E = (. . . , ek−1, e

∗
1, e

∗
2, ek+1, . . . )

7: returnD, E
8: end procedure

2.4. The benchmark distributions for Phase-type fitting

For comparing Phase-type fitting, we use the benchmark distributions presented

in [58].
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Table 2.1. The benchmark distributions and their density functions.

Distribution Density function

Weibull f(x;λ, k) =

 k
λ

(
x
λ

)k−1
e−

(
x
λ

)k
, if 0 ≤ x,

0, otherwise.

Log-normal f(x;µ, σ) =

 1
xσ

√
2π

e−
(ln(x)−µ)2

2σ2 , if 0 ≤ x,

0, otherwise.

Uniform f(x; a, b) =

 1
b−a , if a ≤ x ≤ b,

0, otherwise.

Shifted

exponential
f(x) =


1
2e

−x, if 0 < x ≤ 1,

1
2 (1 + e) e−x, if 1 < x,

0, otherwise.

Matrix

exponential
f(x) =


(
1 + 1

4π2

)
(1− cos (2πx)) e−x,

if 0 ≤ x,

0, otherwise.

Table 2.2. The parameters of benchmark distributions.

Distribution Code Parameters

Weibull
W1 λ = 1, k = 1.5

W2 λ = 1, k = 0.5

Log-normal
L1 µ = −1.8, σ = 1.8

L2 µ = −0.32, σ = 0.8

L3 µ = −0.02, σ = 0.2

Uniform
U1 a = 0, b = 1

U2 a = 1, b = 2

Shifted exponential SE

Matrix exponential ME

The statistical properties of benchmark distributions are given in Table 2.3.

62



Table 2.3. Statistical properties of benchmark distributions.

Dist. mean std. skewness

W1 9.0275 · 10−1 6.1294 · 10−1 1.0720

W2 2.0000 4.4721 6.6188

L1 8.3527 · 10−1 4.1372 1.3638 · 102

L2 1.0000 9.4683 · 10−1 3.6893

L3 1.0000 2.0202 · 10−1 6.1429 · 10−1

U1 5.0000 · 10−1 2.8868 · 10−1 0.0000

U2 1.5000 2.8868 · 10−1 0.0000

SE 1.5000 1.1180 1.4311

ME 1.0494 9.7623 · 10−1 2.1420

We have discretized the distributions (given in Tables 2.1, 2.2) by an adaptive

algorithm (see Section 2.3). The statistical properties of discretized distributions are

given in Table 2.5. The disretization parameters (Table 2.4) have been chosen by hand

so that at least two digits of the mean and standard deviation of distributions and their

discretizations would match (except for L1). Amore detailed comparison of discretiz-

ation precision is given in Table 2.6.

Table 2.4. Discretization parameters of benchmark distributions.

Dist. range start range end num. of observa-

tions

W1 1.2873 · 10−3 4.2381 69

W2 8.5974 · 10−10 1.1150 · 102 144

L1 2.2782 · 10−4 4.1668 · 101 288

L2 3.0571 · 10−2 1.8497 · 101 97

L3 4.8017 · 10−1 2.0047 76

U1 2.9691 · 10−3 9.9703 · 10−1 12

U2 1.0030 1.9970 12

SE 3.8554 · 10−2 9.6552 78

ME 2.6314 · 10−2 8.5999 78
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Table 2.5. Statistical properties of discretized benchmark distributions.

Dist. mean std. skewness

W1 9.0237 · 10−1 6.1150 · 10−1 1.0537

W2 1.9985 4.4415 6.2417

L1 7.5376 · 10−1 2.2086 8.2388

L2 9.9975 · 10−1 9.4293 · 10−1 3.4937

L3 9.9994 · 10−1 2.0155 · 10−1 5.9995 · 10−1

U1 5.0000 · 10−1 2.8315 · 10−1 9.2254 · 10−8

U2 1.5000 2.8315 · 10−1 −3.8207 · 10−17

SE 1.4992 1.1143 1.3897

ME 1.0483 9.7086 · 10−1 2.0730

Table 2.6. Comparison of discretized benchmark statistical properties. The absolute

relative difference is given in accordance to the benchmark distribution statistics.

Dist. mean std. skewness

W1 4.2089 · 10−4 2.3466 · 10−3 1.7067 · 10−2

W2 7.6788 · 10−4 6.8608 · 10−3 5.6973 · 10−2

L1 9.7583 · 10−2 4.6616 · 10−1 9.3959 · 10−1

L2 2.4544 · 10−4 4.1182 · 10−3 5.3006 · 10−2

L3 6.1045 · 10−5 2.3148 · 10−3 2.3354 · 10−2

U1 1.3242 · 10−8 1.9134 · 10−2 0.0000

U2 1.2418 · 10−9 1.9134 · 10−2 0.0000

SE 5.3461 · 10−4 3.3016 · 10−3 2.8899 · 10−2

ME 1.0585 · 10−3 5.5062 · 10−3 3.2211 · 10−2

2.5. Phase-type fitting research

It is known that the matrix form representation of Phase-type distribution is re-

dundant [15].

Based on the fact that the Phase-type distribution of order n = 3 has a canonical
form [17] which has the maximal number of additional transitions ∆M3 = 1 > 0, it
can be expected that∆Mn ≥ 0 when n > 3. If the analytical dependence of∆Mn on

order n were known, it could be used as an upper bound for the number of transitions

in the generated structures. However, to be on the safe side, we do not assume about

∆Mn and, thus, investigate structures with up tom = n2 + n transitions.

We expect that a set of Phase-type distributions which can be represented by the

matrix form representations of structures with additional transitions (i.e., ∆mn > 0)
is not dense (i.e., of zero measure). Therefore, we formulate the following hypothesis.
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Hypothesis 2.1 For every Phase-type distribution which has a matrix form represent-

ation withm > 2n transitions, it is possible to find another of its representations with

m = 2n transitions or to find a sequence of matrix form representations withm = 2n
transitions whose Phase-type distributions converge to the given one.

We validate Hypothesis 2.1 empirically for the case n = 4. The validation

schema is given in Figure 2.3.

 
Generated PH(4)

structures

HErD structures

Generated
initial

parameters

EM
method

Obtained PH(4)
approximations

Benchmark 
distributions

W1, W2, ..., ME
Discretization

Conclusions

Likelihood 
dependence 

on the number 
of transitions m

Fig. 2.3. Schema of Hypothesis 2.1 empirical validation.

In case Hypothesis 2.1 has validity, we would expect to find out that the fitting

results using structures withm = 2n transitions are not worse than the ones obtained

with m > 2n transitions. Of course, given the nature of empirical computations (i.e.,

limited number of bits for the floating point number representation, etc.), we do not

expect exact accuracy. Instead, we look for the general tendency. We will look for the

cases which violate Hypothesis 2.1, as well. It is of interest how strong these cases

might be, if any.

PH(4) fitting with all generated structures

First of all, we have generated all the PH(4) structures by using our algorithm,
as well as the HErD structures with 4 states. The number of the generated structures is

summarized in Table 2.7.
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Table 2.7. The number of generated PH(4) structures for cyclic and acyclic subclasses.

Tran.

count,m
number of struc-

tures

Tran.

count,m
number of struc-

tures

cyclic acyclic

6 1 6 2

7 22 7 21

8 118 8 50

9 526 9 93

10 1241 10 109

11 1778 11 63

12 1874 12 26

13 1429 13 7

14 829 14 1

15 362 acyclic-zid

16 132 5 1

17 37 6 8

18 10 7 6

19 2 8 7

20 1 9 10

cyclic-zid 10 1

6 6 Hyper-Erlang

7 39 5 1

8 178 6 2

9 386 7 1

10 494 8 1

11 443

12 275

13 116

14 35

15 7

16 2

We have performed PH fitting while using the generated strucures (and Coxian

structures) for all the benchmark distributions. One initial random parameter guess

was generated for each structure, and the EM algorithm was performed for a number

of iterations until the relative log-likelihood value change was smaller than 10−8, or

the whole computation time exceeded the limit of one minute.

The resulting best log-likehood values from each subclass are presented in the

following Tables 2.8, 2.9, 2.10, 2.11.
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Table 2.8. Log-likelihood values of W1, W2, L1, L2, L3 distribution fitting results

using PH(4) cyclic structures.

Tran.

count

W1 W2 L1 L2 L3

cyclic

6 −0.8971830 −1.2577138 −0.2475088 −0.9997446 −0.9997466
7 −0.7902727 −1.1631224 −0.2026385 −0.8774560 −0.3062347
8 −0.7859343 −1.1358007 −0.1981078 −0.8770357 −0.3062347
9 −0.7859344 −1.1358237 −0.1981076 −0.8770351 −0.3062347
10 −0.7859344 −1.1358015 −0.1981076 −0.8770349 −0.3062347
11 −0.7859344 −1.1358058 −0.1981076 −0.8770287 −0.3062347
12 −0.7859344 −1.1357553 −0.1981076 −0.8770355 −0.3062347
13 −0.7859355 −1.1358057 −0.1981076 −0.8770365 −0.3062347
14 −0.7859362 −1.1357656 −0.1981076 −0.8770370 −0.3062347
15 −0.7859436 −1.1358563 −0.1981076 −0.8770370 −0.3062347
16 −0.7859473 −1.1358629 −0.1981078 −0.8770378 −0.3062347
17 −0.7859485 −1.1359817 −0.1981078 −0.8770383 −0.3062347
18 −0.7859549 −1.1361987 −0.1981082 −0.8770407 −0.3062347
19 −0.7859539 −1.1363224 −0.1981083 −0.8770382 −0.3062347
20 −0.7859680 −1.1610044 −0.1981084 −0.8770394 −0.3062347

cyclic-zid

6 −0.7903425 −1.3872123 −0.2484174 −0.8774870 −0.3062347
7 −0.7865590 −1.2837918 −0.2010889 −0.8770366 −0.3062347
8 −0.7865145 −1.2662096 −0.2009460 −0.8770272 −0.3062347
9 −0.7865143 −1.2076030 −0.2008525 −0.8770279 −0.3062347
10 −0.7865143 −1.2136351 −0.2008440 −0.8770348 −0.3062347
11 −0.7865150 −1.2412106 −0.2008045 −0.8770288 −0.3062347
12 −0.7865152 −1.2334210 −0.2008152 −0.8770378 −0.3062347
13 −0.7865157 −1.2550141 −0.2008091 −0.8770378 −0.3062347
14 −0.7865147 −1.2132378 −0.2008160 −0.8770379 −0.3062347
15 −0.7865162 −1.2650951 −0.2009652 −0.8770380 −0.3062347
16 −0.7865178 −1.3226232 −0.2443496 −0.8770437 −0.3062347
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Table 2.9. Log-likelihood values of W1, W2, L1, L2, L3 distribution fitting results

using PH(4) acyclic structures.

Tran.

count

W1 W2 L1 L2 L3

coxian

8 −0.7859480 −1.1363519 −0.1981083 −0.8774869 −0.3062347
herd

5 −0.9892055 −6.4768990 −4.5291807 −1.2050052 −0.3062347
6 −0.7917803 −1.3585821 −0.3052479 −0.8902568 −0.4370118
7 −0.7902732 −1.1768731 −0.2064813 −0.8959456 −0.6334429
8 −0.8971745 −1.1347523 −0.1981082 −0.9997346 −0.9997390

acyclic

6 −0.7903581 −1.2560894 −0.2466669 −0.8802333 −0.3062347
7 −0.7859344 −1.1631206 −0.2026402 −0.8774862 −0.3062347
8 −0.7859357 −1.1359613 −0.1981078 −0.8774858 −0.3062347
9 −0.7859345 −1.1359405 −0.1981077 −0.8774858 −0.3062347
10 −0.7859377 −1.1359596 −0.1981077 −0.8774859 −0.3062347
11 −0.7859446 −1.1359523 −0.1981076 −0.8774865 −0.3062347
12 −0.7859464 −1.1359454 −0.1981076 −0.8774859 −0.3062347
13 −0.7859506 −1.1360484 −0.1981081 −0.8774866 −0.3062347
14 −0.7859519 −1.1375892 −0.1981082 −0.8774867 −0.3062347

acyclic-zid

5 −0.7928659 −2.2690005 −0.7650856 −0.8856195 −0.3062347
6 −0.7865645 −1.3875362 −0.2481796 −0.8774858 −0.3062347
7 −0.7865196 −1.2610474 −0.2010922 −0.8774869 −0.3062347
8 −0.7865151 −1.2707656 −0.2011749 −0.8774916 −0.3062347
9 −0.7865211 −1.2778164 −0.2011195 −0.8774868 −0.3062347
10 −0.7865150 −1.2852793 −0.2046147 −0.8774868 −0.3062347
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Table 2.10. Log-likelihood values of U1, U2, SE,ME distribution fitting results using

PH(4) cyclic structures.

Tran.

count

U1 U2 SE ME

cyclic

6 −0.3068655 −1.4054855 −1.4048301 −1.0470473
7 −0.1257613 −0.7073650 −1.3234295 −0.9110613
8 −0.1257613 −0.7073650 −1.3234294 −0.9110613
9 −0.1257613 −0.7073650 −1.3234296 −0.9110613
10 −0.1257614 −0.7073650 −1.3234295 −0.9110613
11 −0.1257614 −0.7073650 −1.3234295 −0.9110613
12 −0.1257614 −0.7073650 −1.3234295 −0.9110613
13 −0.1257614 −0.7073650 −1.3234296 −0.9110613
14 −0.1257615 −0.7073650 −1.3234296 −0.9110613
15 −0.1257618 −0.7073650 −1.3234295 −0.9110613
16 −0.1257618 −0.7073650 −1.3234296 −0.9110613
17 −0.1257618 −0.7073650 −1.3234296 −0.9110613
18 −0.1257618 −0.7073650 −1.3234298 −0.9110621
19 −0.1257632 −0.7073650 −1.3234300 −0.9110621
20 −0.1257624 −0.7073650 −1.3234303 −0.9110621

cyclic-zid

6 −0.1914623 −0.7073650 −1.3458414 −0.9110613
7 −0.1488286 −0.7073650 −1.3245217 −0.9110613
8 −0.1488286 −0.7073650 −1.3245217 −0.9110613
9 −0.1488286 −0.7073650 −1.3245217 −0.9110613
10 −0.1488235 −0.7073650 −1.3245217 −0.9110613
11 −0.1488283 −0.7073650 −1.3245217 −0.9110613
12 −0.1488262 −0.7073650 −1.3245217 −0.9110615
13 −0.1488286 −0.7073650 −1.3245218 −0.9110617
14 −0.1488287 −0.7073650 −1.3245221 −0.9110619
15 −0.1488366 −0.7073650 −1.3245218 −0.9110621
16 −0.1488801 −0.7073650 −1.3245328 −0.9110621
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Table 2.11. Log-likelihood values of U1, U2, SE,ME distribution fitting results using

PH(4) acyclic structures.

Tran.

count

U1 U1 SE ME

coxian

8 −0.1257633 −0.7073650 −1.3250964 −0.9509505
herd

5 −0.4285273 −0.7073650 −1.7991042 −1.3507712
6 −0.1448826 −0.8396534 −1.3303970 −0.9519297
7 −0.1928429 −1.0376088 −1.3516318 −0.9787622
8 −0.3068523 −1.4054629 −1.4048118 −1.0470389

acyclic

6 −0.1257613 −0.7073650 −1.3290435 −0.9360609
7 −0.1257618 −0.7073650 −1.3250949 −0.9184889
8 −0.1257618 −0.7073650 −1.3245220 −0.9184888
9 −0.1257613 −0.7073650 −1.3245218 −0.9184889
10 −0.1257618 −0.7073650 −1.3245220 −0.9184889
11 −0.1257618 −0.7073650 −1.3250784 −0.9184888
12 −0.1257618 −0.7073650 −1.3250797 −0.9184889
13 −0.1257618 −0.7073650 −1.3250804 −0.9184892
14 −0.1257652 −0.7073650 −1.3250805 −0.9184892

acyclic-zid

5 −0.2124731 −0.7073650 −1.3994257 −0.9360611
6 −0.1488287 −0.7073650 −1.3245217 −0.9184889
7 −0.1488287 −0.7073650 −1.3245213 −0.9360618
8 −0.1488286 −0.7073650 −1.3245217 −0.9436604
9 −0.1488287 −0.7073650 −1.3245217 −0.9184889
10 −0.1488287 −0.7073650 −1.3245330 −0.9184892
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Table 2.12. The PH(4) structure classes which obtained the highest log-likelihood.

Compiled from Tables 2.8, 2.9, 2.10, 2.11.

Dist. structure class log-likelihood

W1 cyclic(8) −0.7859343
W2 herd(8) −1.1347523
L1 cyclic(9) −0.1981076
L2 cyclic-zid(8) −0.8770272
L3 cyclic(8) −0.3062347
U1 cyclic(7) −0.1257613
U2 cyclic(7) −0.7073650
SE cyclic(8) −1.3234294
ME cyclic(7) −0.9110613

The first thing we look for when analyzing the fitting results given in Tables

2.8, 2.9, 2.10, 2.11, 2.12 is the biggest contradictions to Hypothesis 2.1. These are the

cases when it was not enough to have m = 8 (i.e., m = 2n) transitions to obtain
the best fitting result (among the rest of the cases). We have found only one such

case. For L1 distribution, the higher log-likelihood value of−0.1981076was obtained
by using a structure with m = 9 transitions, while fitting with a structure of m =
8 transitions gave −0.1981078. The absolute log-likelihood difference is 0.0000002,
which we think is negligible. For other distributions, the best log-likelihood values

have been obtained while using structures with m ≤ 8 transitions. Therefore, based
on these empirical results, we state that Hypothesis 2.1 is valid. However, we would

be interested to see if anybody were able to find a counter example.

Next, it is interesting to look into the classes of structures of the highest log-

likelihood values. In all the cases but two, the best structurewas cyclic (not constrained,

i.e., non-ZID). In the case ofW2, the best parameters (log-likelihood of −1.1347523)
were found by fitting the Hyper-Erlang distribution with m = 8 transitions. We can

raise a question why fitting the Coxian distribution gave a smaller log-likelihood value

of −1.1363519 (absolute difference of 0.0016). One would expect the Coxian distri-
bution to be as good as (or better than) any other acyclic Phase-type distribution [19].

However, when fitting with the EMmethod, an acyclic (without Coxian) PH can yield

better results than the Coxian distribution, as pointed out by [14]. In the case of com-

paring our results of Coxian, Hyper-Erlang and acyclic-PH fitting, we also observe

that tendency. In another case of L2 distribution fitting, the maximum log-likelihood

value of −0.8770272 was obtained with a constrained cyclic (i.e., cyclic-zid) struc-
ture. Meanwhile, the log-likelihood value of a cyclic structure withm = 8 transitions
is −0.8770357, which is smaller by 0.0000085. The reason behind this can be related
to the numerical computational nature or/and the fact that the density function of L2

is close to zero at zero (i.e., f(0) ≈ 0).
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In Table 2.13 the fitting results are compared from the perspective of cyclic struc-

tures with m = 8 transitions. The results here are more accurate in the sense that the
digits which are not shown are used in the computation of the relative absolute error.

Based on these results, there are three cases when Hyper-Erlang distribution yielded

better results withm ≤ 8 transitions. In theory, one would not expect such an outcome
since cyclic structures are more dense. In our case, such a twist could be an influence

of the fact that Hyper-Erlang fitting is much faster (and simpler, in the sense of the

number of parameters), which might be significant given that for each fitting instance,

only one minute of time is allocated.

Other minor details can be inspected by investigating the obtained results shown

in Figures 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12.
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Fig. 2.8. Fitting L3 distribution by PH(4).
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Fig. 2.10. Fitting U2 distribution by PH(4).

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1.400

−1.380

−1.360

−1.340

−1.320

number of transitions

lo
g
-l
ik
el
ih
o
o
d

acyclic-zid

acyclic

herd

coxian

cyclic-zid

cyclic

6 8 10 12 14 16 18 20
−1.326

−1.325

−1.324

−1.323

number of transitions

Fig. 2.11. Fitting SE distribution by PH(4).

74



5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1.000

−0.980

−0.960

−0.940

−0.920

−0.900

number of transitions

lo
g
-l
ik
el
ih
o
o
d

acyclic-zid

acyclic

herd

coxian

cyclic-zid

cyclic

6 8 10 12 14 16 18 20
−0.920

−0.918

−0.916

−0.914

−0.912

−0.910

number of transitions

Fig. 2.12. FittingME distribution by PH(4).

Table 2.13. Comparison of fitted PH(4) cyclic(8) structures to the best ones.

Dist. structure mean std. skewness llh

W1 cyclic(8) 9.0237 · 10−1 6.1272 · 10−1 1.0964 −7.859343 · 10−1

best: cyclic(8) 9.0237 · 10−1 6.1272 · 10−1 1.0964 −7.859343 · 10−1

r.a.d. 0.0000 0.0000 0.0000 0.0000

W2 cyclic(8) 1.9953 4.1002 4.3393 −1.1358007

best: herd(8) 1.9985 4.0133 4.0646 −1.1347523

r.a.d. 1.6073 · 10−3 2.1649 · 10−2 6.7568 · 10−2 9.2397 · 10−4

L1 cyclic(8) 7.5376 · 10−1 2.1846 8.3085 −1.981078 · 10−1

best: cyclic(11) 7.5376 · 10−1 2.1844 8.3042 −1.981076 · 10−1

r.a.d. 1.6561·10−10 1.2297 · 10−4 5.1381 · 10−4 6.7195 · 10−7

L2 cyclic(8) 9.9975 · 10−1 9.3464 · 10−1 3.1925 −8.770357 · 10−1

best: cyclic-zid(8) 9.9975 · 10−1 9.3451 · 10−1 3.1881 −8.770272 · 10−1

r.a.d. 3.6460 · 10−1 1.3849 · 10−4 1.3681 · 10−3 9.6676 · 10−6

L3 cyclic(8) 9.9994 · 10−1 4.9997 · 10−1 1.0000 −3.062347 · 10−1

best: herd(5) 9.9994 · 10−1 4.9997 · 10−1 1.0000 −3.062347 · 10−1

r.a.d. 1.3895 · 10−7 1.6275 · 10−7 7.1418 · 10−8 5.2074 · 10−8

U1 cyclic(8) 5.0000 · 10−1 3.1887 · 10−1 7.9719 · 10−1 −1.257613 · 10−1

best: cyclic(7) 5.0000 · 10−1 3.1887 · 10−1 7.9719 · 10−1 −1.257613 · 10−1

r.a.d. 1.2847·10−11 8.3788 · 10−7 4.1990 · 10−6 3.1468 · 10−9

U2 cyclic(8) 1.5000 7.5000 · 10−1 1.0000 −7.073650 · 10−1

best: herd(5) 1.5000 7.5000 · 10−1 1.0000 −7.073650 · 10−1

r.a.d. 2.3680 · 10−7 2.5942 · 10−7 6.7844 · 10−8 2.1940 · 10−8

SE cyclic(8) 1.4992 1.1108 1.2897 −1.3234294

best: cyclic(8) 1.4992 1.1108 1.2897 −1.3234294

r.a.d. 0.0000 0.0000 0.0000 0.0000

ME cyclic(8) 1.0483 1.0112 2.2941 −9.110613 · 10−1

best: cyclic(10) 1.0483 1.0112 2.2941 −9.110613 · 10−1

r.a.d. 3.7925 · 10−8 1.9893 · 10−8 1.2801 · 10−9 4.2002 · 10−9
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2.6. Phase-type fitting with randomly generated structures

In the previous section, we investigated how the fitting quality depends on the

number of transitions. After empirically validating Hypothesis 2.1, it is of interest to

investigate the fitting with m = 2n transitions further. Considering the fact that our

structure generation algorithm is hardly applicable for casesn > 4, we have introduced
a simple random structure generation algorithm in Section 2.2.

Before starting numerical experiments, let us conduct a brief discussion.Wemay

ask ourselves what advantages we expect from using m = 2n transitions instead of

m = n2 + n. We expect a faster convergence due to a smaller number of parameters.

Yet to find the most suitable structure, one would need to check a number of them.

Also, it can be expected that the initial parameters of various structures would better

explore the parameter space without being trapped in local maximums. To continue

reasoning, one could consider fitting several structures in parallel, while combining

that with a faster convergence would look like an attractive approach.

Contrary to that, although full structure fitting might be slower (from the com-

putational and convergence points of view), it is universal and flexible.

Let us consider the number of iterations it takes for a likelihood to converge. A

more practical scenario involving runtime is presented in Section 5.

The fitting procedure is stopped when the relative likelihood increase (compared

with the likelihood value before iteration) is less than 10−8. We generate 1180 initial

parameter sets for fitting the full structure (FULL), the generated cyclic and acyclic

structures (GEN), as well as randomly generated cyclic and acyclic structures (RND).

We make sure that the structures are not constrained, either. Then we perform fitting

until convergence is reached.

Table 2.14. Log-likelihood of approximatedW1 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.43274 −7.85934 · 10−1 −7.91078 · 10−1 2.34399 · 10−2

num. of iters. 127 22331 4574.24 4527.32

GEN:acyc-2n −7.92710 · 10−1 −7.85934 · 10−1 −7.87564 · 10−1 1.53709 · 10−3

num. of iters. 76 12714 1889.29 2151.44

RND:cyc-2n −9.03057 · 10−1 −7.85934 · 10−1 −7.99615 · 10−1 3.27831 · 10−2

num. of iters. 121 24470 4773.32 4573.64

RND:acyc-2n −8.97176 · 10−1 −7.85934 · 10−1 −7.88485 · 10−1 6.52271 · 10−3

num. of iters. 10 9780 1132.02 1476.19

FULL −7.87448 · 10−1 −7.85950 · 10−1 −7.86003 · 10−1 2.45251 · 10−4

num. of iters. 727 18536 5827.76 3051.21
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Table 2.15. Log-likelihood of approximatedW2 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −5.97261 · 101 −1.13581 −1.39815 2.85502

num. of iters. 99 10852 2476.16 2010.84

GEN:acyc-2n −1.29736 · 101 −1.13589 −1.41205 1.36130

num. of iters. 24 9347 1338.43 1649.04

RND:cyc-2n −5.70556 · 101 −1.13582 −1.37338 2.21655

num. of iters. 13 11941 2789.83 2502.87

RND:acyc-2n −5.94120 · 101 −1.13588 −1.54531 2.86070

num. of iters. 23 8134 963.13 1253.20

FULL −3.69040 −1.13597 −1.46150 3.43201 · 10−1

num. of iters. 88 936 324.94 114.82

Table 2.16. Log-likelihood of approximated L1 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.55279 −1.98108 · 10−1 −2.14636 · 10−1 8.02157 · 10−2

num. of iters. 69 13193 1513.17 1697.82

GEN:acyc-2n −4.00517 −1.98108 · 10−1 −2.21754 · 10−1 2.32945 · 10−1

num. of iters. 58 8785 1146.12 1437.99

RND:cyc-2n −4.01233 −1.98108 · 10−1 −2.21805 · 10−1 1.44771 · 10−1

num. of iters. 46 12134 1728.60 2013.43

RND:acyc-2n −1.55603 −1.98108 · 10−1 −2.08444 · 10−1 7.68505 · 10−2

num. of iters. 63 8278 887.03 1124.68

FULL −2.03026 · 10−1 −1.98108 · 10−1 −1.98358 · 10−1 1.07832 · 10−3

num. of iters. 84 3558 756.21 432.08

Table 2.17. Log-likelihood of approximated L2 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.53534 −8.77034 · 10−1 −8.88775 · 10−1 2.92762 · 10−2

num. of iters. 130 20813 2528.37 3084.88

GEN:acyc-2n −9.99735 · 10−1 −8.77486 · 10−1 −8.85208 · 10−1 9.46271 · 10−3

num. of iters. 122 4646 1087.40 727.63

RND:cyc-2n −1.92702 −8.77034 · 10−1 −8.98453 · 10−1 4.90460 · 10−2

num. of iters. 142 25019 2982.72 3580.39

RND:acyc-2n −9.99736 · 10−1 −8.77486 · 10−1 −8.87166 · 10−1 1.03743 · 10−2

num. of iters. 42 3882 839.45 590.90

FULL −8.89936 · 10−1 −8.77037 · 10−1 −8.77191 · 10−1 9.80945 · 10−4

num. of iters. 1732 14815 6898.62 2542.72
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Table 2.18. Log-likelihood of approximated L3 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.53525 −3.06235 · 10−1 −4.42611 · 10−1 1.41878 · 10−1

num. of iters. 23 24003 847.70 2358.76

GEN:acyc-2n −6.33443 · 10−1 −3.06235 · 10−1 −4.16492 · 10−1 1.08100 · 10−1

num. of iters. 20 711 73.80 47.33

RND:cyc-2n −1.00662 −3.06235 · 10−1 −5.06302 · 10−1 2.00977 · 10−1

num. of iters. 26 20366 1672.40 3260.66

RND:acyc-2n −9.99739 · 10−1 −3.06235 · 10−1 −4.77754 · 10−1 1.13840 · 10−1

num. of iters. 4 773 63.50 38.93

FULL −4.37012 · 10−1 −3.06235 · 10−1 −3.06346 · 10−1 3.80545 · 10−3

num. of iters. 76 347 122.93 29.73

Table 2.19. Log-likelihood of approximated U1 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −8.42470 · 10−1 −1.25761 · 10−1 −1.54397 · 10−1 3.69528 · 10−2

num. of iters. 58 37047 2167.33 5333.83

GEN:acyc-2n −1.92843 · 10−1 −1.25762 · 10−1 −1.47388 · 10−1 2.11722 · 10−2

num. of iters. 35 5200 524.91 375.17

RND:cyc-2n −3.10585 · 10−1 −1.25761 · 10−1 −1.70302 · 10−1 5.12941 · 10−2

num. of iters. 60 38289 3157.04 6188.91

RND:acyc-2n −3.06852 · 10−1 −1.25762 · 10−1 −1.59073 · 10−1 2.44619 · 10−2

num. of iters. 7 4368 405.36 381.18

FULL −1.25766 · 10−1 −1.25762 · 10−1 −1.25764 · 10−1 1.09720 · 10−6

num. of iters. 588 1633 689.68 109.15

Table 2.20. Log-likelihood of approximated U2 distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.94108 −7.07365 · 10−1 −8.44990 · 10−1 1.43075 · 10−1

num. of iters. 23 31374 893.87 2757.28

GEN:acyc-2n −1.03761 −7.07365 · 10−1 −8.18787 · 10−1 1.09130 · 10−1

num. of iters. 19 689 73.13 46.63

RND:cyc-2n −1.41234 −7.07365 · 10−1 −9.09390 · 10−1 2.02371 · 10−1

num. of iters. 25 27636 1760.61 3737.77

RND:acyc-2n −1.40546 −7.07365 · 10−1 −8.80638 · 10−1 1.14815 · 10−1

num. of iters. 4 765 63.07 38.60

FULL −7.07365 · 10−1 −7.07365 · 10−1 −7.07365 · 10−1 3.70587 · 10−9

num. of iters. 88 342 121.71 29.75
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Table 2.21. Log-likelihood of approximated SE distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.94038 −1.32343 −1.33500 2.25813 · 10−2

num. of iters. 100 28843 2014.33 2675.55

GEN:acyc-2n −1.39747 −1.32452 −1.33192 9.08830 · 10−3

num. of iters. 81 9568 1302.69 834.39

RND:cyc-2n −1.40868 −1.32343 −1.34286 2.46830 · 10−2

num. of iters. 96 28635 2918.37 3802.25

RND:acyc-2n −1.40481 −1.32452 −1.33644 1.13667 · 10−2

num. of iters. 12 5437 903.70 685.24

FULL −1.33113 −1.32343 −1.32353 8.76791 · 10−4

num. of iters. 999 4370 1948.51 397.25

Table 2.22. Log-likelihood of approximatedME distribution by PH(4) distributions.

min. max. mean std.

GEN:cyc-2n −1.58259 −9.11061 · 10−1 −9.36605 · 10−1 2.95785 · 10−2

num. of iters. 179 17239 1561.01 1964.33

GEN:acyc-2n −9.53523 · 10−1 −9.18489 · 10−1 −9.42556 · 10−1 1.40954 · 10−2

num. of iters. 120 7227 981.47 990.98

RND:cyc-2n −1.05212 −9.11061 · 10−1 −9.48006 · 10−1 3.70084 · 10−1

num. of iters. 127 19610 1990.67 2776.28

RND:acyc-2n −1.04704 −9.18489 · 10−1 −9.47486 · 10−1 1.34718 · 10−2

num. of iters. 36 6443 838.13 973.18

FULL −9.50924 · 10−1 −9.11061 · 10−1 −9.15131 · 10−1 1.19459 · 10−2

num. of iters. 1107 8796 1938.76 821.81

The very first observation (see Tables 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20,

2.21, 2.22) is that the standard deviation of log-likelihood obtained by the full structure

fitting is smaller in all cases. To add, the mean of log-likelihood obtained by the full

structure fitting is the biggest (except for caseW2).All of that is due to the full structure

flexibility.

Regarding sparse structures, the minimum number of iterations to reach a con-

vergence is smaller compared to the full structure. Yet, the maximum number of iter-

ations to reach convergence can be substantially higher for some structures. This kind

of behavior is expected. In case a suitable structure is used, one would expect a fast

convergence; on the other hand, if a structure is quite different from the optimal one,

the convergence could be slow; that should be checked.

We may wonder whether fitting with sparse structures helps to find more likely

parameter estimates. We selected the cases when the biggest log-likelihood value was

79



obtained and computed, and the absolute difference was compared to the one obtained

by the full structure. A summary is presented in Table 2.23.

Table 2.23. The difference of the highest log-likelihood values of the sparse structures

and the ones of the full structure.

Distribution best subclass log-likelihood

difference

W1 GEN:acyc-2n 1.57728 · 10−5

W2 GEN:cyc-2n 1.59915 · 10−4

L1 RND:acyc-2n 3.82625 · 10−8

L2 RND:cyc-2n 3.12390 · 10−6

L3 RND:cyc-2n 1.21557 · 10−8

U1 GEN:cyc-2n 4.75536 · 10−7

U2 GEN:acyc-2n 1.24849 · 10−8

SE GEN:cyc-2n 5.96125 · 10−8

ME RND:cyc-2n 2.58314 · 10−7

The results summary in Table 2.23 reveals that the highest log-likelihood values

have been obtained by sparse structures. However, in most cases, the difference com-

pared to the highest log-likelihood of the full structure is small. The likely reason for

this is that the fitting of the full structure is stopped when a zone of slow convergence

has been reached.

It is interesting to see how log-likelihood values relate to the number of itera-

tions. We may wonder whether our assumption that a near optimal structure converges

faster is correct. To check that, we have plotted log-likelihooh dependency on a num-

ber of iterations graphs (see Figures 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21).

The black dots represent cyclic structures (GEN:cyc-2n), the red dots denote acyclic

structures (GEN:acyc-2n), and the blue dots represent the full structure.

Fig. 2.13. FittingW1 distribution by PH(4) using generated structures and the full structure.
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Fig. 2.14. FittingW2 distribution by PH(4) using generated structures and the full structure.

Fig. 2.15. Fitting L1 distribution by PH(4) using generated structures and the full structure.

Fig. 2.16. Fitting L2 distribution by PH(4) using generated structures and the full structure.
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Fig. 2.17. Fitting L3 distribution by PH(4) using generated structures and the full structure.

Fig. 2.18. Fitting U1 distribution by PH(4) using generated structures and the full structure.

Fig. 2.19. Fitting U2 distribution by PH(4) using generated structures and the full structure.
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Fig. 2.20. Fitting SE distribution by PH(4) using generated structures and the full structure.

Fig. 2.21. FittingME distribution by PH(4) using generated structures and the full structure.

The very first observation is that log-likelihood values form distinctive clusters.

Also, the results obtained by fitting with the full structure tend to be in the highest log-

likelihood cluster. Meanwhile, fitting sparse structures results in a number of other

clusters, as well. Thus it seems that even though sparse structures do better explore the

parameter space, it does not result in distinctivelymore likely parameter estimates. But,

in most cases, a properly selected sparse structure finds the best parameter estimates

quicker. On the other hand, the selection of a not-so-suitable structure can result in

slow convergence and/or convergence to less likely parameter estimates.

We can raise an interesting research question. Given the trace data, how do we

find the optimal (or a set of near optimal) sparse structure? If such a structure could

be efficiently determined (with negligible computational effort), the fitting time could

be reduced due to the faster convergence and smaller computational effort. We will

explore in this direction in Section 5.
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2.7. Conclusions

An algorithm for generating a Phase-type distribution representing matrix form

structure has been developed. However, it is not guaranteed that the obtained structure

set (of a specified number of transitions m) is not minimal. The algorithm initially

generates all the possible structures and then eliminates the redundant ones based on

various insights. Due to this fact, for higher order (n > 4) structures, the initial number
of structures increases exponentially, which is not effective. Despite these drawbacks,

the generated structure set was successfully used in the empirical validation of the

following hypothesis.

The hypothesis of a sufficient number of transitions (m = 2n) in a Phase-type
distribution structure has been formulated and empirically validated for case n = 4.
The expectation maximization method has been used to perform Phase-type fitting of

nine benchmark distributions given in scientific literature while using the set of the

generated structures. Based on the likelihood dependence on the number of transitions

m, it was concluded that the stated hypothesis is valid. The only contradiction against

the hypothesis statement was obtained for L1 distribution, for which, slightly more

likely parameter estimates have been obtained while using a structure with one addi-

tional transition (i.e.,m = 2n+1 = 9). However, the log-likelihood is only 0.0000002
higher compared to the one obtained usingm = 2n = 8 transitions, which can be con-
sidered to be negligible, especially considering the nature of numerical computations.

In addition, our results compiled for hypothesis validation also revealed other

tendencies. In scientific literature, it has been observed that acyclic structure fitting

via the EM method can yield more likely parameter estimates than with the Coxian

structure even despite the fact that the latter covers the whole Phase-type distribution

representations with acyclic structure. This is justified simply by stating that for the

EMmethod, the Coxian structure is not necessarily optimal. Our results go along these

lines, too.Another observation is regarding the constrained structure specifying Phase-

type distributionswith p = 2n−2 parameters at most. These structures are less flexible,
and this fact shows up consistently in most of our results.

Next, the hypothesis regarding the sufficient number of transitions has been ap-

plied for the Phase-type fitting. Phase-type fitting with sparse (i.e.,m = 2n transitions)
structures versus the full structure has been compared for case n = 4. In addition to our
structure generation algorithm, a more robust random structure generation algorithm

has been used. The following key observations have been outlined:

1. Due to the full structure flexibility, the likelihood of the obtained parameter es-

timates depends less on the initial parameters. With a sparse structure, the op-

posite tendency has been observed.

2. A full structure, due to a redundant number of parameters, converges slower, and

can be terminated too early.

3. The fitting characteristics using a sparse structure depend much more on the
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specific structure and trace data. If a proper structure is chosen, it can converge

much faster compared to the full structure. In case of a not-so-optimal structure,

the convergence can be even slower.

Sparse structure fitting may potentially have an advantage over the full structure

in case it is necessary to find more likely parameter estimates with a smaller number of

iterations. However, the result reliability depends on the number of sparse structures

checked, which can be done in parallel. To better utilize the faster sparse structure

convergence, it is necessary to develop a reliable method for the sparse structure iden-

tification.
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3. MARKOVARRIVAL PROCESS OF ER-CHMM STRUCTURE FITTING

The work in this section is mainly based on the results presented in the paper

‘Parallel algorithms for fitting Markov Arrival Processes’.

The fitting of Markov arrival processes (MAPs) with the expectation-maximiza-

tion (EM) algorithm is a computationally demanding task. There are attempts in the lit-

erature to reduce the computational complexity by introducing special MAP structures

instead of the general representation. Another possibility to improve the efficiency of

MAP fitting is to reformulate the inherently serial classical EM algorithm to exploit

massively parallel hardware architectures. In this section, we present three different

EM-based fitting procedures that can take advantage of the parallel hardware (such as

Graphics Processing Units, GPUs) and apply a special MAP structure, the Erlang dis-

tributed continuous-time hiddenMarkov chain (ER-CHMM) structure for reducing the

computational complexity. Both [31] and [32] arrived at the interesting conclusion that

the structurally restricted ER-CHMM-based EM algorithm, while being significantly

faster than the EM algorithm operating on the full (dense) MAP class, often achieves

significantly higher likelihood values.

There are a few EM algorithms published in the literature for hidden Markov

model (HMM) fitting that are also based on dependent samples [87, 88, 89]. In all

these papers, similar to our work, formalizing the problem with matrices was the key

idea enabling the parallel implementation. [87, eq. (30)] provides an important relation

for the iterative parallel computation of the performance indices for the HMM prob-

lem with continuous observations, but this idea has not been put forward to an efficient

parallel implementation in [87]. [88] and [89] proposed parallel solutions without us-

ing [87, eq. (30)] for a simpler HMM setting with discrete observations. These HMM

models differ from the MAP fitting problem in the meaning of model parameters, but

their computational approaches are similar to ours. Our contribution is that we adapt

the principal relation [87, eq. (30)] for the MAP fitting problem, based on which, we

develop parallel algorithms organized similarly to the ones in [88, 89]. By mixing the

elements of these algorithms in different ways, we arrive to three different algorithm

variants, which covers the practically relevant spectrum of the computation time –

memory requirement trade-off. Having these algorithms defined and implemented in

a unified manner enabled us to compare their performance fairly.

3.1. The serial algorithm

The standard, naive implementation of the EM algorithm is serial. Computing

and saving likelihood vectors a[u] and b[u] for u = 1, . . . , T based on (28) implies

2T vector-matrix multiplication operations of size R and saving 2T vectors of size R
in the memory.

Having likelihood vectors a[u] and b[u] for u = 1, . . . , T , the λi, Πi,j , πi es-

timates (R2+2R parameters) can be computed based on (29), (30) and (31) that needs
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O(T ) scalar multiplications for all parameters.

There are some straightforward, albeit limited, possibilities to make this essen-

tially serial computation parallel. Vectors a[u], for u = 1, . . . , T , and vectors b[u], for
u = T, . . . , 1, can be obtained simultaneously, by two execution threads. The recurs-
ive definition of these vectors does not allow a higher level of parallelism. Updating

the estimates in the M-step, i.e., computing (29), (30) and (31), can also benefit from

parallel hardware, λi and πi can be computed simultaneously for i = 1, . . . , R by 2R
execution threads, andΠi,j for i, j = 1, . . . , R by R2 execution threads.

In the subsequent sections, several options are considered to transform this al-

gorithm to a massively parallel one with a different number of passes through the data

set.

3.2. The parallel algorithm with one pass

We start by reformulating the basic forward-backward algorithm with the matrix

notation, which is an important step towards making the algorithm massively parallel.

By defining matrix P [ vu ] for 1 ≤ u ≤ v ≤ T as

P [ vu ] = P [u]P [u+ 1] . . .P [v] =

v∏
z=u

 f1(xz)Π1,1 . . . f1(xz)Π1,R
...

. . .
...

fR(xz)ΠR,1 . . . fR(xz)ΠR,R

 , (49)

and for u > v as P [ vu ] = I , the forward and backward likelihood vectors can be
expressed by

a[u] = πP [ u1 ], and b[u] = P [ Tu ]1. (50)

We divide the T inter-arrival times into L partitions: inter-arrival times x1, . . . , xK are

assigned to partition 1, xK+1, . . . , x2K to partition 2, and so on, where the number
of inter-arrival times in the first L − 1 partitions is K = dT/Le, and the size of the
last partition is T − (L− 1)K (which can be smaller than K). If u belongs to the `th
partition, that is, (`− 1)K + 1 ≤ u ≤ `K, then we have

a[u] = π

(
`−1∏
z=1

P [ zK
(z−1)K+1 ]

)
P [

u
(`−1)K+1 ], (51)

b[u] = P [ `Ku ]

(
L−1∏

z=`+1

P [ zK
(z−1)K+1 ]

)
P [ T

(L−1)K+1 ]1. (52)

The main observation that enables the parallel implementation is that matrices

P [ zK
(z−1)K+1 ] can be calculated simultaneously for ` = 1, . . . , L. To simplify the nota-

tion, we introduce the likelihood matrix corresponding to partition ` as

U [`] = P [ `K
(`−1)K+1 ], for ` = 1, . . . , L− 1, and U [L] = P [ T

(L−1)K+1 ].
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The likelihood vectors corresponding to the inter-arrival times up to partition `
and from partition ` on can be expressed from the likelihood matrices by

π` = a[`K] = πP [ `K1 ] = π

(∏̀
u=1

U [u]

)
,

1
` = b[`K + 1] = P [ T

`K+1 ]1 =

(
L∏

u=`+1

U [u]

)
1,

respectively. By this notation, for (`− 1)K +1 ≤ u ≤ `K, likelihood vectors corres-

ponding to each inter-arrival time simplify to

a[u] = π`−1P [
u

(`−1)K+1 ], and b[u] = P [ `Ku ]1`+1, (53)

where P [
u

(`−1)K+1 ] and P [ `Ku ] are likelihood matrices within partition `.

To compute λi,Πi,j and πi in parallel, we rewrite (29), (30) and (31) as

λi =

∑T
u=1 riai[u−1]bi[u]∑T
u=1 xuai[u−1]bi[u]

=
riS

(1)
i

S
(2)
i

, (54)

Πi,j =

∑T−1
u=1 ai[u−1]fi(xu)Πi,jbj [u+1]∑T−1

u=1 ai[u−1]bi[u]
=

S
(3)
i,j

S
(3)
i

, (55)

πi =

∑T
u=1 ai[u−1]bi[u]

Ta[T ]1
=

1

Ta[T ]1
S
(1)
i , (56)

where S
(1)
i and S

(3)
i differs only in a single element

S
(1)
i = S

(3)
i + ai[T−1]bi[T ], (57)

and S
(3)
i can be obtained from S

(3)
i,j as

S
(3)
i =

R∑
j=1

S
(3)
i,j , (58)

by which we focus only on S
(2)
i and S

(3)
i,j .

To simplify further notation, we define the number of inter-arrivals before the `th

partition as

ι` = (`− 1)K.
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To make the parallel computation of S
(2)
i possible, we separate these sums into parts

corresponding to the partitions as

S
(2)
i =

L−1∑
`=1

K∑
u=1

ai[ι` + u− 1]xι`+ubi[ι` + u] (59)

+

T−(L−1)K∑
u=1

ai[ιL + u− 1]xιL+ubi[ιL + u]

=

L−1∑
`=1

π`−1
K∑

u=1

P [ ι`+u−1
ι`+1 ]eᵀi xι`+ueiP [ `K

ι`+u ]︸ ︷︷ ︸
Ω̄

(2)

i [`,K]=Ω
(2)
i [`]

1
`+1

+ πL−1

T−(L−1)K∑
u=1

P [ ιL+u−1
ιL+1 ]eᵀi xιL+ueiP [ T

ιL+u ]︸ ︷︷ ︸
Ω̄

(2)

i [L,T−(L−1)K]=Ω
(2)
i [L]

1,

where

Ω̄
(2)
i [`, z] =

z∑
u=1

P [ ι`+u−1
ι`+1 ]eᵀi xι`+ueiP [ ι`+z

ι`+u ]

and we make use of (53). The first (double) summation corresponds to partitions

1, . . . , L − 1, and the second one to the last (Lth) partition having potentially fewer

than K elements. Matrices Ω̄
(2)
i [`, z] represent the sum in partition ` up to term z,

while we introduce the shorthand notation Ω
(2)
i [`] to denote the sum over all terms of

partition `. The main observation is that Ω
(2)
i [`] can be computed simultaneously for

each partition.

Similarly, for S
(3)
i,j , we have
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S
(3)
i,j =

L−1∑
`=1

K∑
u=1

ai[ι` + u− 1]P i,j [ι` + u]bj [ι` + u+ 1] (60)

+

T−(L−1)K−1∑
u=1

ai[ιL + u− 1]P i,j [ιL + u]bj [ιL + u+ 1]

=

L−1∑
`=1

π`−1
K∑

u=1

P [ ι`+u−1
ι`+1 ]eᵀi eiP [ι` + u]eᵀjejP [ `K

ι`+u+1 ]︸ ︷︷ ︸
Ω̄

(3)

i,j [`,K]=Ω
(3)
i,j [`]

1
`+1

+ πL−1

T−(L−1)K−1∑
u=1

P [ ιL+u−1
ιL+1 ]eᵀi eiP [ιL + u]eᵀjejP [ T

ιL+u+1 ]︸ ︷︷ ︸
Ω̄

(3)

i,j [L,T−(L−1)K−1]=Ω
(3)
i,j [L]

1,

where

Ω̄
(3)
i,j [`, z] =

z∑
u=1

P [ ι`+u−1
ι`+1 ]eᵀi eiP [ι` + u]eᵀjejP [ ι`+z

ι`+u+1 ].

The next theorem provides an efficient way to compute matrices Ω
(2)
i [`] and Ω

(3)
i,j [`]

by forward-only recursions. Similar recursive computation of cumulated measures is

used in [87] for hidden Markov chain fitting.

Theorem 3.1 For 0 < z ≤ K and ` < L, as well as for 0 < z ≤ T − (L− 1)K and

` = L, matrices Ω̄
(2)
i [`, z] and Ω̄

(3)
i,j [`, z] satisfy the recursive relations

Ω̄
(2)
i [`, z] = Ω̄

(2)
i [`, z − 1]P [ι` + z] + P [ (`−1)K+z−1

ι`+1
]eᵀi xzeiP [ι` + z]

and

Ω̄
(3)
i,j [`, z] = Ω̄

(3)
i,j [`, z − 1]P [ι` + z] + P [ ι`+z−1

ι`+1 ]eᵀi eiP [ι` + z]eᵀjej

with the initial value Ω̄
(2)
i [`, 0] = 0 and Ω̄

(3)
i,j [`, 0] = 0.

Proof. Starting with the definition of matrix Ω̄
(2)
i [`, z] and separating the last term of
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the sum as

Ω̄
(2)
i [`, z] =

z∑
u=1

P [ ι`+u−1
ι`+1 ]eᵀi xι`+ueiP [ ι`+z

ι`+u ]

=

z−1∑
u=1

P [ ι`+u−1
ι`+1 ]eᵀi xι`+ueiP [ ι`+z−1

ι`+u ]

+ P [ ι`+z−1
ι`+1 ]eᵀi xι`+zeiP [ι` + z]

= Ω̄
(2)
i [`, z − 1]P [ι` + z] + P [ ι`+z−1

ι`+1 ]eᵀi xzeiP [ι` + z]

proves the recursive relation for matrices Ω̄
(2)
i [`, z]. The relation for matrices

Ω̄
(3)
i,j [`, z] can be proven similarly. �

With these notations, the algorithm that takes a single pass through the data set

consists of the following two phases:

1. The parallel computation of matricesU [`],Ω
(2)
i [`] andΩ

(3)
i,j [`] for ` = 1, . . . , L

is such that each partition is computed by a different parallel thread.

Algorithm 10 Pseudo-code for partition ` (` < L) in the one-pass algorithm.

1: procedure Compute-Density-And-Omega-Matrices-for ` (xu, u = (`− 1)K +1, . . . , `K, r,λ,Π)

2: U = I
3: ∀i:Ω(2)

i = 0

4: ∀i, j:Ω(3)
i,j = 0

5: for z = 1 toK do

6: M = P [(`− 1)K + z]

7: ∀i:Ω(2)
i = Ω

(2)
i M +Ux(`−1)K+ze

ᵀ
ieiM

8: ∀i, j:Ω(3)
i,j = Ω

(3)
i,jM +Ueᵀ

ieiMeᵀ
jej

9: U = Normalize(UM)
10: end for

11: return U ,Ω
(2)
i ,Ω

(3)
i,j

12: end procedure

Algorithm 10 provides the formal description of the steps for ` < L. For parti-
tion L, the procedure differs only by the range of the for loop (z goes from 1 to

T − (L − 1)K) and by the fact that Ω
(3)
i,j is summed only up to T − 1. Opera-

tion Normalize() in line 9 applies a special scaling on the matrix to improve the
numerical behavior, as detailed in Section 3.5.

2. The serial computation of the forward and backward likelihood vectors π` and
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1
`, for ` = 1, . . . , L, recursively according to

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

π`−1U [`], if ` ≥ 1,

(61)

and the sums S
(2)
i and S

(3)
i,j for i, j = 1, . . . , R according to

S
(2)
i =

L∑
`=1

π`−1Ω
(2)
i [`]1`+1, S

(3)
i,j =

L∑
`=1

π`−1Ω
(3)
i,j [`]1

`+1, (62)

from which λi,Πi,j and πi, are obtained by (54), (55) and (56).

For emphasizing the special step due to the fact that Ω
(3)
i,j is summed only up to

T − 1, we note that in order to compute S
(1)
i from S

(3)
i , it is necessary to compute

vectors a[T−1] and b[T ] that can be obtained from πL−1 and 1L with negligible extra

cost.

The computational bottleneck of the procedure is that matrices Ω
(3)
i,j must be

computed for all partitions, which means that the memory complexity isO(LR4), and
the computational complexity isO(KR5) in each thread due to the matrix-matrix mul-
tiplications in line 8 of Algorithm 10. Amore detailed complexity analysis is provided

below in Section 3.6. This algorithm, described formally in Algorithm 11, will be re-

ferred to as P-1 in the sequel.

Algorithm 11 Pseudo-code of algorithm P-1.
1: procedure EM-fitting-by P-1 (xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess

3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do

5: Compute matrices U [`],Ω
(2)
i [`] andΩ

(3)
i,j [`] by Algorithm 10

6: end parallel for

7: for ` = 1 to L do

8: Compute vectors π` and 1` for ` = 1, . . . , L based on (61)

9: end for

10: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (62), (57) and (58)

11: λ,Π = new estimates based on (29), (30) and (31)

12: Compute the log-likelihood

13: end while

14: return λ,Π
15: end procedure

3.3. The parallel algorithm with two passes

The single pass algorithm in Section 3.2 goes through the inter-arrival times only

once in each iteration. If traversing the input twice does not result in an overwhelming
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extra cost, it is possible to develop a variant of the algorithmwith different performance

characteristics.

Themain drawback of the single-pass algorithm is that the computation ofmatrices

Ω
(2)
i and Ω

(3)
i,j requires matrix-matrix multiplications, and a significant amount of

memory is required to store them for every partition. The main improvement of the

two-pass algorithm is that these matrices are replaced by vectors during the second

pass of the computation.

Asingle EM-iteration of the two-pass algorithm consists of the following phases:

1. The parallel computation of matrices U [`], for ` = 1, . . . , L, is based on

U [`] =

K∏
u=1

P [(`− 1)K + u],

such that each partition is computed by a different thread simultaneously. More

precisely, U [`] is computed according to Algorithm 12.

Algorithm 12 Pseudo-code for computing U [`] (` < L) in the two-pass algorithm.

1: procedure Compute-Density-Matrix-for ` (xu, u = (`− 1)K + 1, . . . , `K, r,λ,Π)

2: U = I
3: for z = 1 toK do

4: U = Normalize(UP [(`− 1)K + z])
5: end for

6: return U
7: end procedure

2. The serial computation of the forward and backward likelihood vectors π` and

1
` for partitions ` = 1, . . . , L recursively according to

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

U [`]1`+1, if ` ≤ L.

(63)

3. The parallel computation of vectorsω
(2)
i [`] = π`Ω

(2)
i [`] andω

(3)
i,j [`] = π`Ω

(3)
i,j [`]

for ` = 1, . . . , L is such that each partition is computed by a different thread.

The details are provided in Algorithm 13.
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Algorithm 13 Pseudo-code for computing ω
(2)
i [`] and ω

(3)
i,j [`] (` < L) in the two-pass

algorithm.

1: procedure Compute-Omega-Vectors-for ` (xu, u = (`− 1)K + 1, . . . , `K,π`−1, r,λ,Π)

2: u = π`−1

3: ∀i: ω(2)
i = 0

4: ∀i, j: ω(3)
i,j = 0

5: for z = 1 toK do

6: M = P [(`− 1)K + z] (based on the stored or recomputed fi(x(`−1)K+z) values)

7: ∀i: ω(2)
i = ω

(2)
i M + uxze

ᵀ
ieiM

8: ∀i, j: ω(3)
i,j = ω

(3)
i,jM + ueᵀ

ieiMeᵀ
jej

9: u = Normalize(uM)
10: end for

11: return ω
(2)
i , ω

(3)
i,j .

12: end procedure

Again, for partition L, the procedure differs by the range of the for loop and by

the fact that ω
(3)
i,j is summed only up to T − 1.

4. The serial computation of sums S
(2)
i and S

(3)
i,j for i, j = 1, . . . , R according to

S
(2)
i =

L∑
`=1

ω
(2)
i [`]1`+1, S

(3)
i,j =

L∑
`=1

ω
(3)
i,j [`]1

`+1, (64)

from which λi,Πi,j and πi is obtained by (54), (55) and (56).

With this method, a computational bottleneck of the single-pass algorithm has

been eliminated. Instead of matrices, only vectors ω
(3)
i,j are stored and used during

the second parallel pass of the computations (i.e., in phase 3), which means that the

memory complexity is nowO(LR3), and the computational complexity in each thread
isO(KR4) due to the vector-matrix multiplications in line 8 of Algorithm 13. Amore

detailed complexity analysis is provided below in Section 3.6. This algorithm is re-

ferred to as P-2 in the sequel; the corresponding pseudo-code is provided byAlgorithm
14.
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Algorithm 14 Pseudo-code of algorithm P-2.
1: procedure EM-fitting-by P-2 (xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess

3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do

5: Compute matrices U [`] by Algorithm 12

6: end parallel for

7: for ` = 1 to L do

8: Compute vectors π` and 1` for ` = 1, . . . , L based on (63)

9: end for

10: parallel for ` = 1 to L do

11: Compute vectors ω
(2)
i [`], ω

(3)
i,j [`] for i, j = 1, . . . , R by Algorithm 13

12: end parallel for

13: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (64), (57) and (58)

14: λ,Π = new estimates based on (29), (30) and (31)

15: Compute the log-likelihood

16: end while

17: return λ,Π
18: end procedure

The single-pass algorithm evaluates the branch densities fi(xu) (see (25)) only
once for each inter-arrival time (when creating matrix P in line 6 of Algorithm 10),

while the two-pass algorithm needs these densities twice. In the first pass (phase 1),

these densities are needed to obtain likelihood matrices U [`], and in the second pass
(phase 3), they are needed for the calculation of theω vectors. Hence, to save computa-

tional effort, it makes sense to compute the branch densities only once and store them in

an auxiliary vector, which comes at the expense of the increased memory requirement

of storing TR floating point numbers. The variant of the algorithm which computes

the branch densities only once and stores them is referred to as P-2-D hereafter.

3.4. The parallel algorithm with three passes

The single pass and the two-pass algorithms are similar in spirit to each other

in the sense that they recursively compute partition-based cumulated measures (mat-

rixΩ
(2)
i [`] andΩ

(3)
i,j [`] in the one-pass algorithm, and vector ω

(2)
i [`] and ω

(3)
i,j [`] in the

two-pass algorithm). The algorithm introduced in this section differs significantly. In

fact, this algorithm is rather similar to the naive sequential method (Section 3.1) which

does not apply recursively computed partition-based cumulated measures but com-

putes S
(2)
i [`] and S

(3)
i,j [`] directly from the forward and backward likelihood vectors.

The phases of the algorithm are as follows:

1. The parallel computation of matrices U [`], for ` = 1, . . . , L is based on

U [`] =

K∏
u=1

P [(`− 1)K + u],
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such that each partition is computed by a different thread simultaneously. This

phase is the same as the first phase in the two-pass method.

2. The serial computation of the forward and backward likelihood vectors π` and

1
` for the partitions ` = 1, . . . , L proceeds according to recursions

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

U [`]1`+1, if ` ≤ L.

(65)

3. The parallel computation of the individual likelihood vectors a[u] and b[u] be-
longing to partition ` for ` = 1, . . . , L is based on

a[u] = π`P [
u

(`−1)K+1 ], and b[u] = P [ `Ku ]1`+1, (66)

such that each partition is computed by a different thread. Again, for the last

partition L, the procedure differs slightly by the number of samples. More pre-

cisely, a[u] for u = (`− 1)K +1, . . . , `K is computed as in Algorithm 15, and

b[u] is computed in a similar manner with backward iteration.

Algorithm 15 Pseudo-code for computing a[u] (` < L, u = (` − 1)K + 1, . . . , `K)

in the three-pass algorithm.

1: procedure Compute-Forward-Likelihood-Vectors-for ` (xu, u = (` − 1)K +
1, . . . , `K,π`−1, r,λ,Π)

2: a[0] = π`−1

3: for z = 1 toK do

4: a[z] = Normalize(a[z − 1]P [(` − 1)K + z]) (based on the stored or recomputed

fi(x(`−1)K+z) values)
5: end for

6: return a.
7: end procedure

4. The parallel computation of the partition related partial sums S
(2)
i [`] and S

(3)
i,j [`]

proceeds according to

S
(2)
i [`] =

K∑
u=1

ai[(`− 1)K + u− 1]x(`−1)K+ubi[(`− 1)K + u],

S
(3)
i,j [`] =

K∑
u=1

ai[(`− 1)K + u− 1]P i,j [(`− 1)K + u]bj [(`− 1)K + u+ 1],

(67)

using the stored a[u], b[u] values.
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5. The serial computation of the sums S
(2)
i and S

(3)
i,j proceeds according to

S
(2)
i =

L∑
`=1

S
(2)
i [`], and S

(3)
i,j =

L∑
`=1

S
(3)
i,j [`], (68)

from which λi,Πi,j and πi are obtained by (54), (55), and (56).

The computational bottleneck of this procedure is phase 1 which consists of

matrix-matrix multiplications of size R leading to O(KR3) for each parallel thread.
However, the memory consumption increases significantly compared to the previously

described P-1 and P-2 algorithms. Vectors a[u] and b[u] need to be stored for each
inter-arrival time that gives 2TR floating point numbers. We should note that the

memory consumption of neither P-1 nor P-2 is proportional to T in a direct way;

they are proportional only to the number of partitions L.

Algorithm 16 Pseudo-code of algorithm P-3.
1: procedure EM-fitting-by P-3 (xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess

3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do

5: Compute matrices U [`] by Algorithm 12

6: end parallel for

7: for ` = 1 to L do

8: Compute vectors π` and 1` for ` = 1, . . . , L based on (65)

9: end for

10: parallel for ` = 1 to L do

11: Compute vectors a[u] and b[u] for u = (`− 1)K + 1, . . . , `K, by Algorithm 15

12: end parallel for

13: parallel for ` = 1 to L do

14: Compute partition sums S
(2)
i [`] and S

(3)
i,j [`] according to (67)

15: end parallel for

16: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (64), (57) and (58)

17: λ,Π = new estimates based on (29), (30) and (31)

18: Compute the log-likelihood

19: end while

20: return λ,Π
21: end procedure

This procedure consists of three parallel phases through the data set (phase 1,

phase 3 and phase 4 are parallel), hence we refer to it as the three-pass algorithm,

denoted as P-3, and describe it inAlgorithm 16. In this procedure, the branch densities

need to be evaluated three times (in phases 1, 3 and 4), thus the execution time can

benefit from computing the branch densities once and storing them similarly to the

two-pass algorithm. This variant of the algorithm called P-3-D has an even higher

memory requirement.
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3.5. Numerical techniques

We overview two techniques to address numerical issues which occur especially

when less precise number representations are used (i.e., single precision fixed point

number, or a ‘float’ in C++ programming language), and/or when long sequences of

multiplication and/or addition operations are performed.

The first technique is used to overcome numerical issues when likelihood vec-

tors/matrices are computed (for MAP, TMAP fitting). We note that all entries of these

matrices are non-negative, and their elements are only multiplied and added during

the computation. In order to avoid underflow and overflow problems of floating point

numbers, we represent each matrix of size n×m by nm+ 1 values in the form of

A = Å · 2ȧ =
{
Åi,j

}
· 2ȧ,

and we say that the representation is normalized when 0.5 < maxi,j Åi,j ≤ 1 holds.

The multiplication with such a matrix representation is straightforward since the

element (i, j) of matrixAB is computed as

{AB}i,j =
∑
k

Åi,kB̊k,j · 2ȧ+ḃ = C̊i,j · 2ċ.

If the representations of matrices A and B are normalized, then the result-

ing C̊i,j =
∑

k Åi,kB̊k,j , ċ = ȧ + ḃ representation does not necessarily satisfy

0.5 < maxi,j

(
C̊i,j

)
≤ 1, i.e., the results are not necessarily normalized.

The same applies for matrix summation. For computing matrix A + B, let

ĉ = max
(
ȧ, ḃ
)
be the biggest of the two exponents.

Then, element (i, j) of matrixA+B is computed as

{A+B}i,j =
(
Åi,j · 2ȧ−ĉ + B̊i,j · 2ḃ−ĉ

)
· 2ĉ = C̊i,j · 2ċ.

Similar to the result of matrix multiplication, the obtained representation is not neces-

sarily normalized.

To obtain a normalized representation from any
{
C̊i,j

}
· 2ċ representation, let

cn =
⌊
log2

(
maxi,j

(
C̊i,j

))⌋
, then the normalized representation is

C̊i,j ← C̊i,j2
−1−cn and ċ← ċ+ 1 + cn. (69)
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We refer to this computational step as Normalize() in the description of the al-
gorithms. Since n andm in the matrix dimension can be equal to one, the same scaling

technique applies for vectors as well.

There is another numerical pitfall in the algorithms related to floating point sum-

mations involving terms with different orders of magnitudes. The issue occurs when

the sum becomes too large and does not change when further small values are added

one-by-one, even if the sum of these small values is non-negligible. The root of the

problem is that when two numbers x = x̊ · 2ẋ and y = ẙ · 2ẏ having different orders
of magnitudes are added together, some precision is lost. If x > y, the exponent of the
sum z = x+ y = z̊ · 2ż will be ż = ẋ, and the mantissa will be z̊ = x̊+ ẙ · 2−(̊x−ẙ).

Since the number of bits available to represent mantissa z̊ is fixed, ẋ− ẏ precious bits
will be lost from ẙ.

To improve the accuracy of such numerically sensitive summations, we apply

the following simple solution. When a new number y is to be added to the sum x,
the loss of precision is calculated as φ = | log2 x/y|. When φ is greater than a pre-

defined threshold, y is not added to x. Instead, a new accumulator variable is created

(initialized to zero), and the further terms (including y) are added to the newly created
accumulator variable as long as the precision loss φ is below the threshold. In the end,

all the accumulator variables are summed up.

3.6. Detailed comparison of algorithm complexities

Table 3.1. The memory consumption of algorithms measured in floating point values

to store.

Data SERIAL P-1 P-2 P-3
parametersΠ, r, λ, π R2 + 3R R2 + 3R R2 + 3R R2 + 3R

inter-arrival times xu T T T T

sums S
(3)
i,j , S

(n)
i , n=1, 2, 3 R2 + 3R R2 + 3R R2 + 3R R2 + 3R

vectors π`, 1` 2LR(+2L) 2LR(+2L) 2LR(+2L)

matrices U [`] LR2(+L) LR2(+L) LR2(+L)

partial sums Ω
(2)
i [`]: LR3(+L) ω

(2)
i [`]: LR2(+L) S

(2)
i [`]: LR(+L)

partial sums Ω
(3)
i,j [`]: LR

4(+L) ω
(3)
i,j [`]: LR

3(+L) S
(3)
i,j [`]: LR

2(+L)

vectors a[u], b[u] 2TR(+2T ) 2TR(+2T )

branch densities fi(x) TR P-2-D only: TR P-3-D only: TR
overall complexity O (TR) O

(
T + LR4

)
O
(
T + LR3

)
O
(
TR+ LR2

)

Table 3.1 depicts the memory consumption of the algorithms presented in Sec-

tions 3.1 - 3.4. In case of the serial forward-backward (SERIAL) method (Section

3.1), the branch density vectors and the likelihood vectors occupy the majority of the

memory space. The+2T term in the parentheses corresponds to the scaling exponents

(ȧ) introduced in Section 3.5. Similarly, the memory requirement of the scaling expo-
nents is given in parentheses in the consecutive columns.
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In case of the single-pass method (Section 3.2), on the one hand, storing matrices

Ω
(2)
i [`] and Ω

(3)
i,j [`] for each partition can be very memory consuming when R and L

are large; on the other hand, the only component that directly depends on T is the space

occupied by the inter-arrival times. Interestingly, as R << L << T typically holds,

P-1 algorithm needs much less memory than the SERIAL algorithm (and, at the same

time, as shown later, it provides much better execution speed).

Compared to the P-1 algorithm, the memory requirement of the P-2 algorithm

(Section 3.3) is identical in all the components except the partial sums whose memory

consumption reduces by a factor ofR. The memory consumption of the P-2-D variant,
which is expected to improve on the running times by caching the branch densities, is

still better than the one of the SERIAL algorithm (in case of the typical setting: R <<
L << T ).

Methods P-3 and P-3-D (introduced in Section 3.4) are the most memory in-

tensive ones among the parallel algorithms due to the storage of the likelihood vectors,

a[u] and b[u] for u = 1, . . . , T . In the P-3-D variant, the branch densities increase the
memory consumption even further.

The comparison of the computational complexities is more difficult because the

algorithms are composed of multiple parallel and serial computation steps. For a reas-

onable comparison, we divide the parallel executed computation steps by the number

of parallel threads. This approach might be inaccurate in some specific computational

environments, e.g., with a high overhead of parallel execution, but, without focusing

on a particular computational infrastructure, we resort to the assumption that parallel

execution with L threads is exactly L times faster than the serial one.

The orders of the complexity of the algorithms are summarized in Table 3.2,
where the rightmost column refers to serial (S) and parallel execution in pass one (P1),

two (P2) and three (P3). The table displays only the order of the highest order terms.

Table 3.2. The order of computational complexity of algorithms measured in floating
point multiplications.

Data to compute SERIAL P-1 P-2-D P-3-D
branch densities fi(x) RT RT/L RT/L RT/L

P1matrices U [`] R3T/L R3T/L R3T/L

partial sums Ω
(3)
i,j [`]: R

5T/L

vectors π`, 1` R2L R2L R2L S

branch densities fi(x) P-2 only: RT/L P-3 only: RT/L

P2partial sums ω
(3)
i,j [`]: R

4T/L

a[u], b[u] R2T R2T/L

branch densities fi(x) P-3 only: RT/L
P3

partial sums S
(3)
i,j [`]: R

2T/L

Π, λ, π R2T R4L R3L S

overall complexity O
(
R2T

)
O
(
R5T/L

)
O
(
R4T/L

)
O
(
R3T/L

)
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Similar to the memory consumption, the relation of the three characterizing para-

meters R, L, and T determines the relation of the computational complexity of the al-

gorithms. One can draw general conclusions based on the tables of memory consump-

tion and execution time. E.g., when a sufficiently large memory is available, then the

P-3-D method gives the lowest computation time order, but already this basic state-

ment needs to be handled with care. For example, when R is small (e.g., R = 2), the
difference betweenR2 andR4 might be negligible with respect to other constant terms

of the execution time which remain hidden in the table of computational complexity

orders.

However, there is an even more dominant factor of the computation time, i.e.,

the hardware and software implementation of the algorithms. One of the most decisive

elements with this respect is the memory access times of different computing units,

which is known to affect the running time significantly. The next section summarizes

our numerical experiments, which essentially follows the main trends presented in this

section but shows particular differences in some cases.

3.7. Numerical experiments

It is widely known that computing the likelihood for a long sequence of obser-

vations is often affected by numerical issues. The common ‘trick’ to overcome these

issues is to compute the logarithm of the likelihood instead.As long as the observations

are independent, the log-likelihood can be easily obtained by simple summation, as it

was done in many EM algorithms for PH distributions including [14] and [13].

Unfortunately, in case of MAPs, the likelihood function is obtained through mat-

rix multiplications (see (19) and (26)) whose logarithm cannot be obtained by a simple

summation, and we need to cope with the arising numerical issues. Namely, due to the

finite resolution of the machine representation of the floating point numbers, the large

number of matrix multiplications can cause underflow or overflow.

The EMalgorithm forMAPfitting is a special case of this numerical phenomenon;

due to the definition of the forward and backward likelihood vectors (28), exponen-

tial functions are multiplied a large number of times (T ), which makes the occurrence
of underflow or overflow almost certain. A common way to overcome this numerical

issue is to adopt an appropriate scaling technique (see Section 3.5).

We have implemented the algorithms in the C++ language. All the developed

procedures use single precision floating point numbers for storing real values (i.e.,

the type of ‘float’ in C++). The SERIAL procedure is executed on the CPU (i5-4690,

3.5GHz), and the parallel procedures, in addition, utilize a GeForce GTX 1070 graph-

ics processing unit (GPU) having L∗ = 1920 parallel processing elements clocked at
1.5GHz and 8GB of RAM.

The GPU architecture facilitates several levels of memory having different ca-

pacities and latencies. The global memory has the largest capacity (in our case, it can
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store up to 8GB of data).We use it for storing all the inter-arrival times copied from the

host environment. Reading/writing the global memory is executed for 128 bytes per

transaction, and these operations are cached; there are both L2 and L1 caches avail-

able. To improve the memory latency, we have implemented coalesced access where it

was possible. We did not find a use for shared memory, and, since technically it is the

same memory as used for L1 cache, we configured the GPU device to dedicate more

memory to L1 cache instead. The fastest type of memory is the register. To utilize it,

we have statically allocated arrays in the register file by using C++ parametrized tem-

plates. Our GPU device supports up to 255 registers per thread. Luckily, we have not
exceeded this per-thread register usage limitation up toR = 10. ForR > 10, however,
register spilling might occur, which would result in the usage of the local memory; this

has negative consequences for the preformance. Furthermore, to store the parameters

of the ER-CHMM structure, we have used the constant memory which is cached, too.

Also, to exploit instruction level parallelism (ILP), we have statically unrolled all the

loops for R.

We do not provide more specific GPU related implementation details here; we

just note that we did our best to optimize the algorithms for as fast execution as possible

and made the source code available at https://github.com/minbraz/parmap.

For testing and demonstration purposes, we used a data set of T = 50 000 000
inter-arrival time samples, which we obtained by simulating a MAP. The samples were

generated by an ER-CHMM with parameters

r =
[
3 3 2 1 1

]
,λ =

[
1 3 2 1 3

]
,Π =

1

10


1 2 1 4 2
3 1 2 1 3
2 3 1 1 3
4 1 2 2 1
2 2 1 3 2

 .

To point out how high this T parameter is, we note that one of the first papers on

the topic ([63]) reported that the EM-based MAP fitting procedure is limited to a few

thousand of samples due to the high computation effort.

Acritical parameter of the procedures isL, the number of parallel threads used by
the implementation. The parallel computing ability is not fully utilized when L < L∗,
and, according to Section 3.6, the memory requirement increases with L, suggest-
ing that L = L∗ is the optimal choice. However, when the amount of the available
memory is not a bottleneck, there might be cases when a higher level of parallelism de-

creases the computation time. It is due to the pipeline executions of the parallel threads

which might benefit from utilizing the computational resources while other threads are

blocked. This feature is closely related to the particular HW/SW implementation, and

we do not consider it in detail; we only conclude that L = L∗ is an almost optimal
choice, and in the case of large memory resources, one can choose L = nL∗, where n
is a small integer number.
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In the rest of the section, we provide the memory consumption and the compu-

tation time for 100 iterations of all the presented algorithms for L = L∗ = 1920,
L = 2L∗ = 3840, and L = 4L∗ = 7680. In all of the numerical experiments, starting
from the same initial guess and using the same samples, the resulted MAP produced

by the different versions of the algorithm were the same up to the first 6 digits. In

Tables 3.3, 3.4, 3.5, we present the highest log-likelihood values of the structures with

a certain number of branches R. The log-likelihood differences across different al-

gorithm implementations are negligible. The execution times are presented in Tables

3.6, 3.7, 3.8 and graphically depicted in Figures 3.1, 3.3, 3.5. The total memory usage

is depicted in Figures 3.2, 3.4, 3.6.
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Fig. 3.1. The runtimes of MAP fitting proced-

ures for L = L∗.
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Fig. 3.2. The memory consumption of MAP

fitting procedures for L = L∗.

Table 3.3. The best log-likelihood values of MAP fitting procedures for L = L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 −64505468 −64505468 −64505468 −64505468 −64505468 −64505468

3 −64432232 −64432240 −64432240 −64432240 −64432212 −64432212

4 −64409492 −64409472 −64409472 −64409472 −64409500 −64409500

5 −64397848 −64397824 −64397828 −64397828 −64397852 −64397852

6 −64412172 −64412168 −64412168 −64412168 −64412168 −64412168

7 −64431896 −64431876 −64431872 −64431872 −64431892 −64431892

8 −64446364 −64446368 −64446368 −64446368 −64446368 −64446368

9 −64462516 −64462516 −64462516 −64462516 −64462516 −64462516

10 −64513032 −64530836 −64537680 −64537680 −64521580 −64521580
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Table 3.4. The best log-likelihoods values of MAP fitting procedures for L = 2L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 −64505468 −64505472 −64505468 −64505468 −64505472 −64505472

3 −64432232 −64432236 −64432236 −64432236 −64432224 −64432224

4 −64409492 −64409484 −64409488 −64409488 −64409496 −64409496

5 −64397848 −64397840 −64397840 −64397840 −64397848 −64397848

6 −64412172 −64412168 −64412168 −64412168 −64412168 −64412168

7 −64431896 −64431888 −64431888 −64431888 −64431896 −64431896

8 −64446364 −64446368 −64446368 −64446368 −64446368 −64446368

9 −64462516 −64462516 −64462516 −64462516 −64462516 −64462516

10 −64513032 −64528404 −64530128 −64530128 −64522040 −64522040

Table 3.5. The best log-likelihood values of MAP fitting procedures for L = 4L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 −64505468 −64505468 −64505468 −64505468 −64505464 −64505464

3 −64432232 −64432232 −64432236 −64432236 −64432228 −64432228

4 −64409492 −64409492 −64409492 −64409492 −64409492 −64409492

5 −64397848 −64397848 −64397848 −64397848 −64397848 −64397848

6 −64412172 −64412168 −64412172 −64412172 −64412168 −64412168

7 −64431896 −64431892 −64431892 −64431892 −64431896 −64431896

8 −64446364 −64446368 −64446368 −64446368 −64446368 −64446368

9 −64462516 −64462516 −64462516 −64462516 −64462520 −64462520

10 −64513032 −64520404 −64527300 −64527300 −64525644 −64525644

Table 3.6. The runtimes (in seconds) of MAP fitting procedures for L = L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 1111.521 11.178 7.379 6.682 12.292 8.281

3 1395.008 36.419 12.694 10.589 19.174 9.646

4 1605.503 137.304 20.621 17.977 25.496 14.476

5 1923.365 301.676 38.271 29.512 35.601 17.421

6 2276.253 575.146 63.607 58.477 67.553 21.042

7 2671.527 991.859 114.546 111.423 89.302 25.715

8 3122.541 1572.324 156.444 154.105 111.893 29.312

9 3803.840 2437.085 209.106 209.086 136.840 36.206

10 4278.771 3518.714 273.834 284.140 165.523 42.861
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Table 3.7. The runtimes (in seconds) of MAP fitting procedures for L = 2L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 1111.521 6.297 3.870 3.644 6.557 4.775

3 1395.008 26.018 6.539 5.611 10.033 5.607

4 1605.503 91.137 10.267 9.399 13.206 8.195

5 1923.365 201.369 48.999 38.758 18.121 10.181

6 2276.253 380.215 63.872 64.392 33.734 12.336

7 2671.527 657.038 97.559 98.059 44.649 14.734

8 3122.541 1063.828 138.394 140.038 55.413 17.078

9 3803.840 1650.562 189.625 192.288 68.378 20.859

10 4278.771 2469.702 255.107 260.547 82.898 24.186

Table 3.8. The runtimes (in seconds) of MAP fitting procedures for L = 4L∗.

R SERIAL P-1 P-2 P-2-D P-3 P-3-D
2 1111.521 3.715 2.061 2.017 3.797 3.243

3 1395.008 29.077 4.062 3.785 5.676 4.157

4 1605.503 82.138 12.769 7.789 7.675 5.616

5 1923.365 243.007 37.551 38.056 10.319 6.979

6 2276.253 439.618 62.213 62.809 18.224 8.397

7 2671.527 778.323 100.350 95.212 40.851 9.973

8 3122.541 1230.419 144.994 139.035 54.492 12.376

9 3803.840 1665.161 191.378 196.341 66.897 14.785

10 4278.771 2489.385 255.603 268.444 81.033 20.436
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Fig. 3.3. The runtimes of procedures for L =
2L∗.
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Fig. 3.4. The memory consumption of MAP

fitting procedures for L = 2L∗.
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Fig. 3.5. The runtimes of procedures for L =
4L∗.
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Fig. 3.6. The memory consumption of MAP

fitting procedures for L = 4L∗.

The figures indicate the following conclusions. The speed improvement over the

serial algorithm is essential (up to two orders of magnitude), the presented algorithms

do benefit from the parallel hardware indeed. In line with our analysis in Section 3.6,

method P-1 slows down the fastest as R increases. Switching to vector-based oper-

ations (P-2 and P-2-D) leads to better running times, especially when R is large. In

our implementation and hardware environment, it turned out that storing the branch

densities (method P-2-D) does not lead to further improvement. When R is large, the

fastest procedures are the 3-pass methods (P-3 and P-3-D). In this case, storing the
branch densities leads to a significant improvement.

According to Section 3.6, methods P-2-D and P-3-D need extra memory to store
the branch densities, while P-3 and P-3-D need a large amount of memory to store the
forward and backward likelihood vectors for every sample of the trace. Our numer-

ical experiments confirm these considerations and demonstrate that P-1 and P-2 have
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the lowest memory demand, in fact, one order of magnitude lower than the SERIAL
algorithm.

All the parallel procedures did profit from the higher number of partitions (L),
especially whenR is small.At the same time, thememory consumption for thememory

efficient procedures P-1 and P-2 increased linearly with L in accordance with theor-

etical evaluations (see Table 3.1).

Let us inspect algorthm P-2 and P-3-D runtimes more closely for case L =
4L∗. These algorithms have computational complexities (Table 3.2) O

(
R4T/L

)
and

O
(
R3T/L

)
, respectively. The runtimes given in Table 3.8 can be compared with the-

oretical complexities by fitting functions

f (P−2) = a(P−2)R4 + b(P−2),

f (P−3−D) = a(P−3−D)R3 + b(P−3−D).
(70)

The coefficients have been found using the least square method and approximately are

a(P−2) ≈ 0.0256, b(P−2) ≈ 17.9668,

a(P−3−D) ≈ 0.0159, b(P−3−D) ≈ 4.2191.

The algorthm P-2, P-3-D runtimes and the fitted functions f (P−2), f (P−3−D) are shown

in Figures 3.7, 3.8.
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Fig. 3.7. Comparison of P-2 algorithm
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Fig. 3.8. Comparison of P-3-D algorithm

runtimes with its theoretical complexity for

L = 4L∗.

In both cases, as shown in Figures 3.7, 3.8, algorithm P-2, P-3-D runtimes con-
verge to their theoretical complexities. However, in the case of algorithm P-2 for a

lower number of branchesR = 2, 3, 4, runtimes are significantly lower than expected.
That reveals yet another advantage of algorithm P-2 lower memory usage. It is pos-

sible to allocate frequently used variables (for example,ω
(3)
i,j [`]) in the register memory,

which is much faster.
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In general, algorithms with higher memory consumption are faster, but if T is

large, the memory limitation of the hardware can be reached easily. In case the memory

size poses a limitation, the more memory efficient procedures need to be applied.

Our primary forcus is on the parallel implementation of EM-based MAP fitting,

but thanks to the efficient parallel implementation, we have run several fitting exper-

iments for a reasonably large data set, and we have drawn some conclusions on the

fitting properties of the EM method. These properties are very much aligned with the

related properties of other EM fitting methods (e.g., EM-based Phase-type distribu-

tion fitting [14]). When the initial guess of the EM method was identical with the ER-

CHMM which was used to generate the samples, the obtained likelihood value was

−6.4384612 · 107, and the elements of the fitted λ andΠ were identical with the ini-

tial ER-CHMM in the first 4 digits. Apart from this artificial experiment, we have also

executed fitting experiments with a general initial guess for all ER-CHMM structures

with 10 states, i.e., where r is such that
∑R

i=1 ri = 10 for R ≥ 2. The initial guess in
these experiments was generated by drawing Π randomly and then setting λi = λ∗

i

for i = 1, . . . , R, where λ∗
i is chosen to fit the sample mean. With this general ini-

tial guess, the best likelihood is obtained by the r =
[
4 3 1 1 1

]
ER-CHMM

structure, and it was−6.4397824 ·107; the second best likelihood was obtained by the
r =

[
4 2 2 1 1

]
ER-CHMM structure (−6.4406064 · 107), and the third best

one by the r =
[
3 3 2 1 1

]
structure (−6.4406496 · 107). In spite of the close

likelihood values, the parameters of this best fitting r =
[
3 3 2 1 1

]
structure

were rather different from the ones used for generating the samples:

λ(fit) =
[
1.007464 0.963276 1.791007 1.301413 1.59442

]
,

Π(fit) =


0.032330 0.139179 0.395032 0.203579 0.229877
0.073530 0.017319 0.192946 0.401569 0.314634
0.121469 0.245083 0.043730 0.441435 0.148281
0.001723 0.068507 0.326094 0.381525 0.222148
0.272118 0.218650 0.108775 0.246126 0.154328

 .

This observation refers to an optimization problem with a flat surface and several local

minima, which was also reported in previous EM fitting experiments.

For completeness, we have applied our P-2 and P-3-D algorithms for fitting

the Bellcore Aug89 data trace [90, 91] whose measurement is described in [91] and

consists of 1000000 samples. This trace is used to investigate the MAP fitting quality

using various approches in [92, 64, 93]. Since we are only interested in the fitting

runtime, we do not investigate the fitting quality. The randomly generated initial MAP

of ER-CHMM structure r =
[
3 3 2 1 1

]
is updated for 100 iterations.
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Table 3.9. The runtimes of Bellcore Aug89 trace fitting by algorithms SERIAL, P-2,
P-3-D in seconds.

Algorithm number of

partitions,

L

runtime expected

runtime

SERIAL 1 44.041 38.467

P-2 1920 0.831 0.765

3840 1.112 0.98

7680 1.457 0.751

P-3-D 1920 0.381 0.348

3840 0.268 0.204

7680 0.276 0.14

The expected runtime is obtained by dividing the respective runtimes from Tables 3.6,

3.7, 3.8 by 50. The speed up for algorithm P-2 is about 50 times, and for algorithm
P-3-D, it is about 164 times. In all the cases, the log-likelihood of the obtained para-
meter estimates is 4974352.5.

3.8. Conclusions

We have presented three parallel algorithm variants for EM-based MAP fitting

and provided a primary performance evaluation of them. The first two (P-1 and P-2)
algorithms are developed based on the Baum-Welch algorithmwhich is used for search-

ing hidden Markov model parameter estimates. Algorithm P-1 performs matrix com-
putations while P-2 operates with vectors. Therefore, the computational complex-

ity of algorithm P-2 is one order less, i.e., O
(
R5T/L

)
, compared to one of P-1,

which is O
(
R4T/L

)
. The third algorithm P-3 computes parameter estimates dir-

ectly from likelihood vectors, and its computational complexity is the lowest, i.e.,

O
(
TR+ LR2

)
.

The algorithms have been compared from the perspective of memory usage as

well. The algorithm P-1 memory usage complexity is O
(
T + LR4

)
. Algorithm P-2

requires less memory since vectors are used instead of matrices, and its complexity

equalsO
(
T + LR3

)
. Algorithm P-3 has the highest memory usage, its complexity is

O
(
TR+ LR2

)
.

Algorithm performance depends a lot on the specific hardware platform. Al-

gorithm P-1 traverses trace data only once per iteration, which can be an advantage

over other algorithms in case trace data is kept in slow access storage. Otherwise,

one might consider P-2 and P-3 algorithms. Based on the complexity analysis, the

strength of algorithm P-2 is its low demand for memory, and it can be fast for fitting

ER-CHMM process structures with a low number of Erlang branches. Contrary, al-

gorithm P-3 demand for memory is high; it is the fastest one for an arbitrary number
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of Erlang branches. One might choose the most appropriate algorithm given hardware

constraints.

In order to compare the algorithms from the practical point of view, they have

been implemented for execution on GPU. For SERIAL algorithm, the summation tech-
nique (see Section 3.5) was applied. For all algorithm implementations, in order to

avoid numerical overflow/underlow, the scaling technique (see Section 3.5) was ap-

plied. Twomodifications P-2-D and P-3-D have been introduced. These modifications
use an additional amount of memory for storing precalculated Erlang branch densities.

The data trace of 50 000 000 inter-arrivals has been generated and used to evaluate al-
gorithm performance. The following conclusions have been drawn from the obtained

results. Algorithm P-2-D uses more memory compared to P-2, but its performance is
quite similar. Meanwhile, Erlang branch density caching in algorithm P-3-D provided
a significant speed up compared to P-3.
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4. TRANSIENTMARKOVARRIVALPROCESSOFER-CHMMSTRUCTURE

FITTING

The thesis in this section is based on the work presented in the conference pa-

per ‘Efficient Implementations of the EM-Algorithm for Transient Markovian Arrival

Processes’.

The EM method has been successfully used for parameter estimation of several

models with background Markov chains, e.g., for PH distributions [14], for PH dis-

tributions with structural restriction [13], for MAPs [63], for MAPs with structural

restrictions [31, 32]. The experiences from these previous research results indicate

that the inherent redundancy of the stochastic models with background Markov chains

makes the parameter estimation of the general models inefficient. In this work, we

avoid the implementation of the EM based estimation of general TMAPs and immedi-

ately apply a similar structural restriction as the one which turned out to be efficient in

the case of PH distributions [13] and MAPs [31, 32]. The formulas of the EM method

for TMAP fitting show similarities with the ones for MAP fitting in [32], but there are

intricate details associated with the handling of the background process termination

which require a non-trivial reconsideration of the expectation and the maximization

steps of the method.

Apart from the algorithmic description of the EM method for TMAP fitting, we

pay attention to efficient implementation for both traditional computing devices (CPU)

and the graphics processing unit (GPU). Both platforms required various implementa-

tion optimizations for efficient computing of the steps of the fitting method. Together

with the fitting results and the related computation times, we present the applied im-

plementation optimization methods and the related considerations.

4.1. Expectation Maximization algorithm

Let us consider a process which terminates after generating a sequence of random

values which might be correlated. The length of the generated sequence is of random

length as well. We can interpret these values as inter-arrivals of a transient Markov

arrival process. However, a single case of observed process realization is not sufficient

to determine the parameters since it has partial information about only one (among

many possible) evolution of the TMAP process. Thus a number of (say, U ) sequences
have to be considered

X =
(
X (1)
1 ,X (1)

2 , ...,X (1)
K1

, . . . , X (U)
1 ,X (U)

2 , . . . ,X (U)
KU

)
,

where Ki is a random number of arrivals in the ith sequence before reaching the ab-
sorbing state. Since the sequence may be short, the influence of initial probability dis-

tribution π is significant. Therefore, we investigate a non-stationary process (contrary

to the MAP fitting) here, which is denoted by parameters (α,D0,D1).

111



We begin by assuming that X is generated by the sequence of continuous time

Markov processes

J (1,1)
t , ...,J (1,K1)

t , ..., J (U,1)
t , ...,J (U,KU )

t , (71)

where, at the time instance t = X (1)
1 + ... + X (u)

k , an arrival occurs, which results in

switching from processJ (u,k)
t toJ (u,k+1)

t . Similarly, in the case of absorption, process

J (u,Ku)
t is switched to J (u+1,1)

t process. To simplify further investigation, let us look

at (71) as two discrete time processes embedded at the transition time instances. The

first such discrete time process denotes the visited state indices

I(1,1)0 , ..., I(1,1)M(1,1)−1
, ..., I(u,k)m , ..., I(U,KU )

M(U,KU )−1
(72)

and the discrete time process of sojourn times spent in every state visited is

S(1,1)0 , ...,S(1,1)M(1,1)−1
, ...,S(u,k)m , ...,S(U,KU )

M(U,KU )−1
, (73)

whereM(u,k) is a random number of transitions in the background process before an

arrival event (i.e., transition according to rate matrixD1) occurs.

Thus full informationY about how inter-arrivalsx =
(
x
(1)
1 , ..., x

(U)
KU

)
have been

generated is

y =

i
(1,1)
0 , ..., i

(1,1)
m(1,1)−1

, ..., i(u,k)m , ..., i
(U,KU )

m(U,KU )−1
,

s
(1,1)
0 , ..., s

(1,1)
m(1,1)−1

, ..., s(u,k)m , ..., s
(U,KU )

m(U,KU )−1

 .

The sufficient characteristics of full information Y for parameter fitting would be the

number of transitions from state i to state j, the number of visits in each state, etc.,
similarly as in case of Phase-type fitting (see Section 1.3).

However, to simplify further derivation, we apply the ER-CHMM [32, 13, 31]

structural restriction.

In addition, from process (72), we derive a discrete process

G(1)1 , . . . ,G(1)K1
, . . . ,G(u)k , . . . ,G(U)

KU
,

where G(u)k is the index of an Erlang branch which generates inter-arrival X (u)k.

If g =
(
g
(1)
1 , g

(1)
2 , ..., g

(U)
KU

)
were known for the specific inter-arrivals realization

x =
(
x
(1)
1 , x

(1)
2 , . . . , x

(U)
KU

)
, the likelihood function of parameters (π,Π,λ) could be

expressed as

L (π,Π,λ | X ,G) =
U∏

u=1

Ku∏
k=1

fg(u)
k

(
x
(u)
k

)
,
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and the maximum likelihood parameter estimates could be found by [94]

λi =

∑U
u=1

∑Ku

k=1 ri1{g(u)
k =i}∑U

u=1

∑Ku

k=1 x
(u)
k 1{g(u)

k =i}

,

Πi,j =

∑U
u=1

∑Ku−1
k=1 1{g(u)

k =i,g
(u)
k+1=j}∑U

u=1

∑Ku

k=1 1{g(u)
k =i}

,

πi =
1

U

U∑
u=1

1{g(u)
1 =i}.

However, given only observations x, the information about the chosen Erlang

branches g =
(
g
(1)
1 , . . . , g

(u)
k , . . . , g

(U)
KU

)
is unknown. Yet, we can estimate the distri-

bution of the index values of each G(u)k , which suggests the sufficient characteristics

H =
{
Q(u)

i [k],Q(u)
i,j [k]

}
,

where Q(u)
i [k] is an indicator of X (u)

k being generated by Erlang branch i

Q(u)
i [k] = 1{

I(u,k)
0 =si

},
Q(u)

i,j [k] is an indicator of choosing Erlang branch j given X
(u)
k is generated by Erlang

branch i
Q(u)

i,j [k] = 1{
I(u,k)
0 =si, I(u,k+1)

0 =sj

}.
Before giving the formulas for computing expectation h of sufficient character-

istics H, we introduce likelihood vectors. After an arrival (or initially), only the first

states of each Erlang branch can be entered. Therefore, we only need to consider the

likelihood of states s = (s1, . . . , sR) being chosen. The forward a
(u)[k] and backward

b(u)[k] vectors can be expressed as

a(u)[k] = πP (u)[ k1 ], b(u)[k] = P (u)[Ku

k
]d, (74)

whereP (u)[ sl ] is a density matrix of the inter-arrival sequence x
(u)
l , ..., x

(u)
s defined as

P (u)[ sl ] =

s∏
k=l

P (u)[k],
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where P (u)[k] is a density matrix associated with the observed inter-arrival x
(u)
k and

is

P (u)[k] =


f1

(
x
(u)
k

)
Π1,1 . . . f1

(
x
(u)
k

)
Π1,R

...
. . .

...

fR

(
x
(u)
k

)
ΠR,1 . . . fR

(
x
(u)
k

)
ΠR,R

 .

Then the likelihood of parameters (π,Π,λ) can be written simply as

L (π,Π,λ | X ) =

U∏
u=1

π

(
Ku∏
k=1

P (u)[k]

)
d. (75)

The expectation of H (i.e., the E-step in the EM method) can be computed by

the following formulas

q
(u)
i [k] =E[Q(u)

i [k] | X ]

=P(I(u,k)0 = si | X ) =
P(I(u,k)0 = si,X )

P(X )

=

(
a
(u)
i [k − 1]b

(u)
i [k]

)∏
v 6=u πb

(v)[1]∏U
v=1 πb

(v)[1]

=
a
(u)
i [k − 1]b

(u)
i [k]

πb(u)[1]
,

q
(u)
i,j [k] =E[Q(u)

i,j [k] | X ]

=P(I(u,k)0 = si, I(u,k+1)
0 = sj | X )

=
P(I(u,k)0 = si, I(u,k+1)

0 = sj ,X )

P(X )

=
a
(u)
i [k − 1]fi (xk)Πi,jb

(u)
j [k + 1]

πb(u)[1]
.

(76)

Now, given expectations h =
{
q
(u)
i [k], q

(u)
i,j [k]

}
, which is sufficient to charac-

terize full (unobserved) information y, the maximum likelihood parameter estimates
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(i.e., the M-step in the EM method) can be found by

λi =
ri
∑U

u=1

∑Ku

k=1 q
(u)
i [k]∑U

u=1

∑Ku

k=1 x
(u)
k q

(u)
i [k]

, (77)

Πi,j =

∑U
u=1

∑Ku−1
k=1 q

(u)
i,j [k]∑U

u=1

∑Ku−1
k=1 q

(u)
i [k]

, (78)

πi =
1

U

U∑
u=1

q
(u)
i [1]. (79)

The transient Markov arrival process parameter estimation while using the EM

method is summarized in Algorithm 17.

Algorithm 17 Transient Markov arrival process with ER-CHMM structure parameter

estimation by EM method.

1: procedure TMAP-EM-fitting (x, r)
2: initial parameter (π,Π,λ) of structure r generation by Algorithm 18

3: computation of parameters (π,Π,λ) likelihood by (75)
4: repeat

5: computation of expectation of sufficient characteristics h by (76)

6: maximum likelihood estimate parameter (π,Π,λ) computation by (77), (78), (79)
7: computation of parameters (π,Π,λ) likelihood by (75)
8: until likelihood keeps increasing

9: return (π,Π,λ)
10: end procedure

In this case, we simply set (by Algorithm 18) the initial parameters so that the

process mean inter-arrival and mean sequence length match the given ones E [X ] and
E [K], respectively.

Algorithm 18 Algorithm for generating initial parameters of non-stationary transient

MAP process of ER-CHMM structure.

1: procedure Transient-ErChmm-parameter-generation (r, E[X ], E[K])
. computation of probability of generating next inter-arrival in sequence

2: p = 1
R

(
1− 1

E[K]

)
. initial Erlang branch rates

3: ∀i : λi = ri/E [X ]
. initial Erlang branch probabilities

4: ∀i : πi = 1/R
. initial Erlang branch switching probability matrix

5: ∀i, j : Πi,j = p
6: return (π,Π,λ)
7: end procedure
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4.2. The parallel algorithm

The serial algorithm can be directly parallelized, i.e., without significantly in-

creasing computational complexity. It can be observed that forward and backward

vectors can be computed independently on separate sequences by formulas (74). Also,

summations in parameter estimation formulas (77), (78), (79) can be easily parallel-

ized by computing partial sums in separate threads which are summed to obtain new

parameter estimates.

The parallel algorithm needs an additional sequences data pre-processing step, in

which, each thread is assigned a list of sequences. It is preferred to balance the thread

load by assigning sequences in such a way that each thread would have roughly the

same number of inter-arrivals to process.

Let us assume that there are L threads available. For each thread `, a list of
sequences is assigned

Φ(`) = (u1, u2, . . . ),

where uk is an index of certain sequences, 1 ≤ uk ≤ U . Then, partial sums can be
defined as

S
(1)
i [`] =

∑
u∈Φ(`)

Ku∑
k=1

q
(u)
i [k], S

(2)
i [`] =

∑
u∈Φ(`)

Ku∑
k=1

x
(u)
k q

(u)
i [k],

S
(3)
i,j [`] =

∑
u∈Φ(`)

Ku−1∑
k=1

q
(u)
i,j [k], S

(3)
i [`] =

∑
u∈Φ(`)

Ku−1∑
k=1

q
(u)
i [k],

(80)

and used for maximum likelihood parameter estimate computation by

λi =
ri
∑L

`=1 S
(1)
i [`]

ri
∑L

`=1 S
(2)
i [`]

, Πi,j =

∑L
`=1 S

(3)
i,j [`]∑L

`=1 S
(3)
i [`]

. (81)

The complete parallel procedure is given in Algorithm 19.
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Algorithm19An algorithm for computing transientMarkov arrival process parameters

by EM method in parallel.

1: procedure TMAP-EM-parallel-fitting (x, r)
2: initial parameter (π,Π,λ) of structure r generation

3: parameter (π,Π,λ) likelihood computation by (75)
4: repeat

5: parallel for ` = 1 to L do

6: estimation of sufficient characteristics h for runsΦ(`) by (76)

7: end parallel for

8: parallel for ` = 1 to L do

9: computation of parial sums by (80)

10: end parallel for

11: computation of parametersΠ, λ estimates by (81), and π by (79)

12: parameter (π,Π,λ) likelihood computation by (75)
13: until likelihood keeps increasing

14: return (π,Π,λ)
15: end procedure

4.3. Analysis of algorithm complexities

Table 4.1. The memory consumption of algorithms measured in floating point values

to store.

Data serial parallel

parameters r, λ, π,Π R2 + 3R R2 + 3R

inter-arrival times x T T

sequences sizes L L

sequences start indices L L

forward, backward vectors 2TR(+2T ) 2TR(+2T )

branch densities fi

(
x
(u)
k

)
RT RT

partial sums L(R2 + 2R)

There is not much memory usage (Table 4.1) overhead for using a parallel al-

gorithm, only additional storage for L(R2 + 2R) partial sums to store is necessary.
The overall memory complexity of both algorithms (serial and parallel) is O(TR).
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Table 4.2.The computational complexity of algorithmsmeasured in floating point mul-

tiplications.

Data serial parallel

Erlang branch densities fi

(
x
(u)
k

)
RT RT/L

forward, backward vectors TR2 TR2/L

parameter λ, π,Π estimation TR2

partial sums L(R2 + 2R)

parameter λ, π,Π estimation using partial sums LR2

The serial algorithm execution complexity (Table 4.2) is O(TR2) and the com-
plexity per thread of a parallel algorithm is smaller by the factor of the number of

threads L, i.e., O(TR2/L). It has to be noted that, depending on a particular paral-
lel execution architecture, an additional memory/execution overhead is likely to be

present.

4.4. Numerical experiments

We have implemented serial and parallel versions of the algorithm for compar-

ison. The first implementation is serial and uses single precision floating point numbers

(i.e., float in the C++ programming language). It follows the presented Algorithm 17;

in addition, to cope with the numerical issues, the scaling technique for forward/back-

ward vectors and the summation technique for evaluating (77), (78), (79) are used (see

Section 3.5).

The second implementation is parallel according toAlgorithm 19, and it uses the

CUDA library. It also implements the scaling technique for forward/backward vectors

(see Section 3.5). However, in this implementation, the summation technique is not that

relevant since the partial summation results are computed separately in each thread.

This helps to avoid inaccuracies of summing up values to some extent.

The same hardware settings were used as in the experiments presented in Section

3.7. Also, we repeat the experiments for L = kL∗, k = 1, 2, 4 threads as we did in
the experimental computations with MAP fitting in Section 3.7. We do not investigate

the optimal choice number of threads for executing on our hardware because it would

depend on the number of branches R and other complex intrinsic details, for example,

how a NVidia compiler handles registers.

In the measurement of runtime, we do not include the time to allocate/deallocate

memory because these operations are done once and become insignificant with the

increasing number of iterations.

The run data distribution among threads is done in advance, thus it is not included

in the runtime.
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We have generated all the ER-CHMM structures (with R ≥ 2) of all possible
Erlang branch configurations with 10 states.

For testing and demonstration purposes, we have generated sequences data by

simulating the TMAP process of the ER-CHMM structure with parameters

r =
[
3 3 2 1 1

]
,λ =

[
1 3 2 1 3

]
,Π =

1

10


1 2 1 3 2
3 1 2 1 2
2 2 1 1 3
3 1 2 2 1
2 2 1 2 2

 .

The generated data consists of 4 996 632 sequences and 50 000 000 inter-arrivals.
The mean sequences size is 1.0, and the mean of inter-arrivals is about 1.308. The log-
likelihood value of the ER-CHMMwhichwas used to generate the data is−7.9212363·
107.

The fitting procedures have been executed for 100 iterations. The log-likelihood
values are given in Table 4.3. Clearly, 100 iterations have not been enough to reach the
maximal log-likelihood, but, most importantly, we see a log-likelihood value consist-

ency across serial and parallel implementations.

The procedure runtimes are given in Table 4.4 and are graphically depicted in

Figure 4.1. The achieved speed-up is small compared to the number of threads. To

obtain the optimal performance, GPU threads within the same warp (i.e., a thread

group) have to perform the same operation (with different data) at every moment, and

the global memory access has to be coalesced in order to the hide memory operation

latency. However, in our case, every thread is assigned sequences of different sizes,

which makes the fulfillment of these optimization requirements very hard if possible

at all.

Table 4.3. The log-likelihood values of the best solutions obtained by TMAP fitting

procedures.

R serial
parallel,

L = L∗
parallel,

L = 2L∗
parallel,

L = 4L∗

2 −79611116 −79611134 −79611136 −79611134
3 −79452224 −79452257 −79452234 −79452230
4 −79425934 −79425984 −79425953 −79425941
5 −79410651 −79410690 −79410670 −79410664
6 −79443226 −79443274 −79443258 −79443239
7 −79476124 −79476131 −79476120 −79476133
8 −79516724 −79516726 −79516734 −79516719
9 −79516761 −79516762 −79516747 −79516750
10 −79683891 −79683290 −79683406 −79683404
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Table 4.4. The runtimes (in seconds) of TMAP fitting procedures.

R serial
parallel,

L = L∗
parallel,

L = 2L∗
parallel,

L = 4L∗

2 2992.35 239.27 167.06 182.72

3 3779.80 296.15 216.99 295.09

4 4423.85 363.43 295.82 407.54

5 5242.63 414.14 402.48 504.83

6 6239.32 483.69 518.32 605.46

7 7598.72 567.83 634.03 701.60

8 8732.11 667.00 745.96 798.75

9 10404.82 780.53 842.25 894.20

10 12209.27 903.22 947.06 977.08
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Fig. 4.1. The runtimes of TMAP fitting procedures.

4.5. Conclusions

The EM method for TMAP (of ER-CHMM structure) fitting has been derived.

The serial and parallel versions of the algorithm have been implemented and tested

with a generated trace data of 50 000 000 inter-arrivals. The following conclusions

have been drawn:

• In order to perform a serial algorithm for a huge number of inter-arrivals, a sum-

mation technique (see Section 3.5) has to be used.

• The serial and parallel procedures have to use a scaling technique (see Section

3.5) to avoid numerical issues in the computation of forward/backward vectors.
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• Our parallel procedure is not effective for execution on GPU because its threads

have high divergence, and the global memory access is not coalesced.

However, the parallel procedure can be effectively used on parallel execution

systemswhose thread performance does not depend on a common operation sheduling.
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5. FINITE REQUEST QUEUE MODEL

The work presented in this section is an extension of methodology of modeling

presented in our conference paper ‘Software relialibility Markovian model based on

phase-type distribution’.

We formulate and implement a simple finite request queue model. Then we com-

pute several of its characteristics when the given distributions are approximated by

Phase-type distributions. The objective of this section is to compare Phase-type fitting

of full and random (withm = 2n transitions) structures in a more practical context.

5.1. Model description and construction

Let us describe the conceptual finite request model. We assume that there are

L requests. Yet, initially, these requests are not available. Requests appear (i.e., are

received) at random time intervals, which has a distribution F(a). Once a request has

been received, its serving starts and takes a random amount of time of distribution F(b).

If a request is received while the previous one is still being served, it is placed into a

waiting queue (first in, first out). The queue model is shown in Figure 5.1.

Fig. 5.1. The process of receiving and serving requests.

We approximate F(a), F(b) distributions by Phase-type distributions using the

full structure (i.e., all the transitions between phases are enabled) and the randomly

generated sparse structures (with m = 2n transitions). For more on Phase-type ap-

proximation, see Section 2.

In addition, we simulated the process for checking how these results match the

ones obtained from the Markovian model approximation.

The queueing system (Figure 5.1) Markovian approximation is obtained by re-

placing F(a), F(b) distributions with their Phase-type distribution approximations. The

Markovian queueing system is given in Figure 5.2.
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Fig. 5.2. The process of receiving and serving requests using Phase-type distributions.

The construction of the model consists of two phases. First, we generate a set

of all the reachable system states, and then generate the transition rate matrix Q. The

modeling is performed by computing αeQt vectors, from which, based on the state’s

definition, desired statistical properties are extracted.

The system state is vector v =
[
v1 v2 v3 v4

]
, where v1 ∈ {1, . . . , n(a)}

denotes the index of an active phase of PH(a) and v1 = 0 indicates that there is any act-
ive phase in PH(a); v2 ∈ {0, 1, . . . , L− 1} denotes a number of the received requests
which are waiting in the queue; v3 ∈ {1, . . . , n(b)} denotes the index of an active phase
of PH(b), v3 = 0 indicates that there is any active phase in PH(b); v4 ∈ {0, 1, . . . , L}
denotes a number of served requests. The number of requests in the system state, in-

cluding the one which is being received, is the function

c(v) = 1{v1>0} + v2 + 1{v3>0} + v4.

We denote the set of the reachable system states by set V = {v(1), . . . ,v(nV)}.
The ordering of the states is not relevant.

The generation of state set V is given in Algorithm 20. States are generated by

two events of: a) request reception (seeAlgorithm 21), b) request serving (i.e., an event

which occurs while a request is being served, see Algorithm 22). We start with the

initial state of
[
1 0 0 0

]
and apply these two events to it so that to produce the

proceeding states which are used to generate the remaining states. At first, in the state

generation algorithm, we do not account for the number of phases in PH(a), PH(b) dis-

tributions (it is assumed to be 1). These states are then used to generate the final states
which account for the number of phases in Phase-type distributions and are included

into system state set V .
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Algorithm 20 Pseudo-code for generating reachable state set V .
1: procedure System-State-Set-Generation (L, n(a), n(b))

2: V := ∅
3: V∗ := {

[
1 0 0 0

]
}

4: while nV∗ > 0 do
5: remove one state v from V∗

6: invoke Request-Reception-Event (v, V∗)

7: invoke Request-Serving-Event (v, V∗)

. generate the states which account for n(a), n(b)

8: if v1 = 1 and v3 = 0 then
9: for i = 1 to n(a) do

10: insert
[
i v2 0 v4

]
into V

11: end for

12: end if

13: if v1 = 0 and v3 = 1 then
14: for j = 1 to n(b) do

15: insert
[
0 v2 j v4

]
into V

16: end for

17: end if

18: if v1 = 1 and v3 = 1 then
19: for i = 1 to n(a) do

20: for j = 1 to n(b) do

21: insert
[
i v2 j v4

]
into V

22: end for

23: end for

24: end if

25: end while

26: return V
27: end procedure

Algorithm 21 Pseudo-code for generating a reachable state associated with request

reception event.

1: procedure Request-Reception-Event (v, n(b), V∗)

2: if v1 = 1 then
3: if v3 = 0 then . request serving can be started
4: if c(v) = L then

5: insert
[
0 0 1 v4

]
into V∗

6: else

7: insert
[
1 0 1 v4

]
into V∗

8: end if

9: else . the received request is placed into queue
10: if c(v) = L then

11: insert
[
0 v2 + 1 1 v4

]
into V∗

12: else

13: insert
[
1 v2 + 1 1 v4

]
into V∗

14: end if

15: end if

16: end if

17: end procedure
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Algorithm 22 Pseudo-code for generating a reachable state associated with request

serving event.

1: procedure Request-Serving-Event (v, n(b), V∗)

2: if v3 = 1 then
3: if v2 = 0 then
4: insert

[
v1 0 0 v4 + 1

]
into V∗

5: else

6: insert
[
v1 v2 − 1 1 v4 + 1

]
into V∗

7: end if

8: end if

9: end procedure

Next, based on system state set V , we construct the state transition rate mat-

rix Q, see Algorithm 23. The generation of the transition rate associated with request

reception is given in Algorithm 24. The generation of the transition rate associated

with request serving is given in Algorithm 25. The order of the states in the set is not

significant, but, for the purpose of consistency, we keep it fixed.

Algorithm 23 Pseudo-code for generating transition rate matrixQ.

1: procedure Transition-Rate-Matrix-Generation (PH(a), PH(b), V)
2: ∀i, j:Qi,j := 0
3: for from = 0 to nV do

4: invoke Request-Reception-Transitions (PH(a), v(from),Q)

5: invoke Request-Serving-Transitions (PH(b), v(from),Q)

6: end for

7: returnQ
8: end procedure
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Algorithm 24 Pseudo-code for generating transition rates associated with request re-

ception event.

1: procedure Request-Reception-Transitions (PH(a), v(from),Q)

2: if v
(from)
1 > 0 then

3: for i = 1 to n(a) do

4: find v(to) =
[
i v

(from)
2 v

(from)
3 v

(from)
4

]
5: Qfrom,to := D

(a)
0 v

(from)
1 ,i

6: end for

7: if c(v(from)) < L then

8: if v
(from)
3 > 0 then

9: for i = 0 to n(a) do

10: for j = 0 to n(b) do

11: find v(to) =
[
i 0 j v

(from)
4

]
12: Qfrom,to := d

(a)
1 v

(from)
1

α
(a)
i α

(b)
j

13: end for

14: end for

15: else

16: for i = 1 to n(a) do

17: find v(to) =
[
i v

(from)
2 + 1 v

(from)
3 v

(from)
4

]
18: Qfrom,to := d

(a)
1 v

(from)
1

α
(a)
i α

(b)
j

19: end for

20: end if

21: else

22: if v
(from)
3 = 0 then

23: for j = 1 to n(b) do

24: find v(to) =
[
0 0 j v

(from)
4

]
25: Qfrom,to := d

(a)
1 v

(from)
1

α
(b)
i α

(b)
j

26: end for

27: else

28: find v(to) =
[
0 v

(from)
2 + 1 v

(from)
3 v

(from)
4

]
29: Qfrom,to := d

(a)
1 v

(from)
1

30: end if

31: end if

32: end if

33: end procedure
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Algorithm 25 Pseudo-code for generating transition rates associated with request

serving event.

1: procedure Request-Serving-Transitions (PH(b), v(from),Q)

2: if v
(from)
3 > 0 then

3: for j = 1 to n(b) do

4: find v(to) =
[
v
(from)
1 v

(from)
2 j v

(from)
4

]
5: Qfrom,to := D

(b)
0 v

(from)
3 ,j

6: end for

7: if v
(from)
2 > 0 then

8: for j = 1 to n(b) do

9: find v(to) =
[
v
(from)
1 v

(from)
2 − 1 j v

(from)
4 + 1

]
10: Qfrom,to := d

(b)
1 v

(from)
3

α
(b)
j

11: end for

12: else

13: find v(to) =
[
v
(from)
1 0 0 v

(from)
4 + 1

]
14: Qfrom,to := d

(b)
1 v

(from)
3

15: end if

16: end if

17: end procedure

5.2. Numerical experiments (case 1)

In this case, we chose the so-called ‘well behaved’ distributions (for F(a), F(b))

which can be easily approximated by Phase-type distributions. This will help us to

validate our modeling approach. In the following section, we will experiment with a

distribution which is much more difficult to approximate to better contrast full/random

structure Phase-type fitting.

We chose the Weibull distribution, whose distribution function is

F (x) =

{
k
λ

(
x
λ

)k−1
e

(
x

λ

)k

, x ≥ 0,

0, x ≤ 0.

For time intervals between request reception distribution F(a), we chose parameters

k(a) = 0.9, λ(a) = 0.5 (W3). To have more variety, for request serving time distribu-

tion F(b), we chose parameters k(b) = 2, λ(b) = 0.9 (W4). The latter (W4) distribution

is less similar to exponential (because value k(b) is further from 1 compared to k(a));
thus we approximate it with more phases.

Based on the research results presented in Section 2.6, in order to better benefit

from random structure fitting, we introduce the following strategy. We perform the fit-

ting procedure in a number of passes. The pass purpose is to select the most potentially

good solutions (i.e., Phase-type distribution representation parameters) for further fit-

ting. In the first pass, a number of randomly generated parameters (byAlgorithm 2) are
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updated for a fixed number of iterations (with the EM method) and sorted according

to their likelihood value. In the second pass, the best (i.e., with the bigger likelihood

value) parameters are further updated, and so on. In the final pass, the number of it-

erations is not limited, and updates are performed until the relative likelihood value

increase becomes smaller than 10−8. Such a final pass is ideal for full structure fitting

which can benefit from its flexibility. Meanwhile, for randomly generated structures,

a lot depends on how good a structure was selected in the first passes. For details on

how full/random structure fitting differs, we refer to Section 2.6.

For approximating request reception distributionW3, we have chosen to use 4
phases, and for request serving distribution W4 we use 8 phases. The summary of

running passes is presented in Tables 5.1, 5.2.

Table 5.1. Passes summary of fittingW3 by PH(4).

pass struct. inst.

count

best llh RND better by

#1,
1min, 100 it.

FULL 538 −3.485439 · 10−1

3.699660 · 10−4

RND 491 −3.481739 · 10−1

#2,
1min, 200 it.

FULL 261 −3.484207 · 10−1

2.629414 · 10−4

RND 288 −3.481578 · 10−1

#3,
1min, 300 it.

FULL 162 −3.483044 · 10−1

1.976435 · 10−4

RND 184 −3.481068 · 10−1

#4,
3 min

FULL 5 −3.480386 · 10−1

−1.756088 · 10−5

RND 23 −3.480562 · 10−1

Table 5.2. Passes summary of fittingW4 by PH(8).

pass struct. inst.

count

best llh RND better by

#1,
1min, 100 it.

FULL 220 −4.983716 · 10−1

6.101469 · 10−3

RND 112 −4.922701 · 10−1

#2,

1min, 200 it.

FULL 113 −4.926344 · 10−1

1.888646 · 10−3

RND 86 −4.907457 · 10−1

#3,
1min, 300 it.

FULL 76 −4.915799 · 10−1

1.155153 · 10−3

RND 57 −4.904248 · 10−1

#4,

3 min

FULL 4 −4.902161 · 10−1

3.048077 · 10−5

RND 7 −4.901857 · 10−1

The general tendency (Tables 5.1, 5.2) of the fitting procedure using passes is

the following. Sparse structures converge faster, but, when more iterations are given,

the full structures start to catch up.
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Next, we present some general characteristics of the Phase-type distribution ap-

proximations in Tables 5.3, 5.4.

Table 5.3. Statistical properties ofW3 distribution and its PH(4) approximations.

mean std. skewness llh

dist.W3 0.52609 0.58556 2.34497 N/A

trace 0.52602 0.58504 2.32717 N/A

PH(4):FULL 0.52602 0.58469 2.31704 −0.34804
PH(4):RND 0.52602 0.58363 2.28630 −0.34806

Table 5.4. Statistical properties ofW4 distribution and its PH(8) approximations.

mean std. skewness llh

dist.W4 0.79760 0.41693 0.63111 N/A

trace 0.79758 0.41686 0.62953 N/A

PH(8):FULL 0.79758 0.41809 0.66883 −0.49022
PH(8):RND 0.79758 0.41798 0.66656 −0.49019

The density plots ofW3,W4 distributions and their respective Phase-type dis-

tribution approximations are shown in Figures 5.3, 5.4.
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Fig. 5.3. Density graph ofW3 distribution and its Phase-type approximations.
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Fig. 5.4. Density graph ofW4 distribution and its Phase-type approximations.

The Phase-type approximations are fitted to distributionsW3,W4 fairly well.

In order to validate ourMarkovianmodel, we have implemented a simple process

simulation routine. A question arises how many instances of process simulation have

to be performed in order to get stable results. In order to have a clearer picture here, we

have plotted how the total request serving time mean and standard deviation depends

on the number of simulated process instances (Figures 5.5, 5.6). The number of total

requests is L = 3.
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Fig. 5.5. Convergence of total serving time mean for a finite request queue model with distri-

butionsW3,W4.
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Fig. 5.6. Convergence of total serving time standard deviation for finite request queue model

withW3,W4 distributions.

As shown in Figures 5.5, 5.6, the convergence is not stable. This shows the im-

portance of Markovian modeling as, for a more complex model simulation, it might

not be feasible due to a large number of necessary instances to reach convergence. Let

us choose to have 100000 process simulation instances for further investigation.

First we compare the average number of requests in the queue; the plot is shown

in Figure 5.7.
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Fig. 5.7. Graph of the average number of requests in the queue for a finite queue model with

distributionsW3,W4.

The average simulated queue occupation nicely matches the one modeled by
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the Markovian model. Another characteristic is the total time it takes to serve all the

requests. These results are presented in Table 5.5.

Table 5.5. Statistical properties of completion time distribution for a finite request

model with distributionsW3,W4.

mean std. skewness

simulation 3.18208 1.01053 0.91849

model, PH : FULL 3.18378 1.01482 0.91021

model, PH : RND 3.18368 1.01295 0.89380

Since our Markovian model is terminating CTMC, we can look at it as a huge

Phase-type distribution which is a distribution of the total serving time. The density

plots of such distributions alongside with the histogram obtained from the simulated

data are shown in Figure 5.8.
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Fig. 5.8.Density of distribution of time it takes to serve all the requests for a finite queue model

with distributionsW3,W4.

To conclude this case, we can state that, for small numbers of phases, there is not

much difference whether the fitting of full or random structure is performed. The main

difference between these fitting approaches is that fitting with a set of sparse structures

might help to obtain more likely parameters at first. This might be considered as an

option in the situations where precision can be slightly compromised for speed. But,

given enough time, the full structure might be able to give more likely parameters in

the end.
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5.3. Numerical experiments (case 2)

In this case, we change request reception distribution W3 by distribution ME.

The request serving time distribution remains the same, i.e.,W4.

First of all, we attempt to approximate distributionMEwith an arbitrarily chosen

number of phases, 17. The summary of the fitting passes is given in Table 5.6.

Table 5.6. Passes summary of fittingME by PH(17).

pass struct. inst.

count

best llh RND better by

#1,
10min, 100 it.

FULL 118 −9.509980 · 10−1

9.124475 · 10−2

RND 127 −8.597532 · 10−1

#2,
10min, 200 it.

FULL 59 −9.121713 · 10−1

6.667418 · 10−2

RND 87 −8.454972 · 10−1

#3,
10min, 300 it.

FULL 39 −8.782566 · 10−1

4.597987 · 10−2

RND 53 −8.322767 · 10−1

#4,
30 min

FULL 3 −8.184421 · 10−1

−7.391915 · 10−3

RND 6 −8.258340 · 10−1

There (Table 5.6), the tendency observed in the previous section remains – sparse

structures find better parameters during the first couple of hundreds of iterations. Yet,

the full structure, due to its flexibility, finds better parameters.

The general characteristics of the Phase-type distribution approximation are given

in Table 5.7.

Table 5.7. Statistical properties ofME distribution and its PH(17) approximations.

mean std. skewness llh

dist.ME 1.04941 0.97623 2.07791 N/A

trace 1.04830 0.97110 2.07447 N/A

PH(17) : FULL 1.04830 0.99608 2.21869 −0.81844
PH(17) : RND 1.04830 1.00003 2.22452 −0.82583

The density plot of ME distribution and its respective Phase-type distribution

approximations are shown in Figure 5.9.
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Fig. 5.9. Density graph ofME distribution and its Phase-type approximations.

The simulatedmodel convergence of the total serving timemean and the standard

deviation are shown in Figures 5.10, 5.11.
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Fig. 5.10. Convergence of the total serving time mean for the finite request queue model with

ME,W4 distributions.
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Fig. 5.11. Convergence of the total serving time standard deviation for the finite request queue

model withME,W4 distributions.

The average queue occupation is shown in Figure 5.12. Due to the failure to

properly approximate theME distribution, inaccuracies showed up at the peak of the

average queue occupation.
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Fig. 5.12.Graph of the average number of requests in the queue for the finite queue model with

distributionsME,W4.

The total serving time characteristics and the desnity plot are given in Table 5.8

and Figure 5.13.
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Table 5.8. Statistical properties of the completion time distribution for a finite request

model with distributionsME,W4.

mean std. skewness

simulation 4.34926 1.61894 1.21197

model, PH : FULL 4.35451 1.65742 1.25033

model, PH : RND 4.35612 1.66357 1.25414
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Fig. 5.13. Density of the distribution of time it takes to serve all the requests for a finite request

model with distributionsME,W4.

The characteristics of the total serving time are similar to the ones obtained from

simulation. The reason for this could be the fact that even though we failed to approx-

imate the distribution ME probability function shape, the basic characteristics (i.e.,

mean, standard deviation) have been approximated fairly well. That was sufficient

(for this relatively simple queueing model) to obtain a reasonable total serving time

distribution.

5.4. Conclusions

Phase-type fitting using sparse (randomly generated, with m = 2n transitions)

and full structures has been compared in a more practical context. For that, a finite

request queue model has been formulated and implemented. The modeling results do

not differ much regardless of the structure type. However, two key observations have

been developed. First, sparse structures find more likely parameter estimates earlier

(which is consistent with the findings in Section 5). Second, despite the fact that a

relatively small number of randomly generated structures have been checked (i.e., for
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order n = 17), the obtained parameter estimates likelihood is not that worse compared
to the ones obtained with the full structure. This suggests that the minimal structure set

which covers the whole Phase-type distribution space might be comparatively small.

The advantage of fitting with a sparse structure is in its ability to converge faster.

However, to use this advantage in a practical context, a methodology to determine the

optimal (or near optimal) structure based on trace data should be used. Such method-

ology, in general, is not known yet.
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FINALCONCLUSIONS

1. APhase-type distribution matrix form representation structure algorithm has been

developed. It is not guaranteed that the generated structure sets are minimal, and

the algorithm is not practical for higher order (n > 4) structure generation. How-
ever, it managed to generate structures of order n = 4 for our presented research.

2. The hypothesis that 2n transitions are sufficient for Phase-type fitting is validated
empirically for the case n = 4 using structure sets generated with our algorithm.

3. PH(n) fitting of sparse representations with 2n transitions find more likely para-

meter estimates early. However, a full structure is capable of approaching good

parameter estimates, but it requires more computational effort and can be termin-

ated too early due to slow convergence. The convergence of sparse structures de-

pends on the structure choice. In case of a suitable structure, convergence is much

faster (compared to the full structure). In order to use an advantage of sparse struc-

ture fast convergence, a methodology for a suitable structure should be developed.

4. With additional computational complexity, the EM forward-backward algorithm

for MAP fitting can be parallelized. The implementations based on the Baum-

Welch algorithm are memory efficient, while an algorithm based on parallel like-

lihood vector computation is faster.

5. An algorithm based on the ExpectationMaximizationmethod forTransientMarkov

Arrival Process (TMAP) fitting has been formulated and tested.

6. MAPfitting performed 300-500 times faster on our GPU, while simple TMAPpar-

allelization implementation for GPU gave only 10-20 times speed-up. The MAP

parallelization is more efficient for the execution on a GPU device (compared to

TMAP fitting implementation) because of its uniform nature of computations.
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