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Abstract: Water and food are two of the most important commodities in the world, which makes 
agriculture crucial to mankind as it utilizes water (irrigation) to provide us with food. Climate change 
and a rapid increase in population have put a lot of pressure on agriculture which has a snowball effect 
on the earth’s water resource, which has been proven to be crucial for sustainable development. The 
need to do away with fossil fuel in powering irrigation systems cannot be over emphasized due to 
climate change. Smart Irrigation systems powered by renewable energy sources (RES) have been 
proven to substantially improve crop yield and the profitability of agriculture. Here we show how the 
control and monitoring of a solar powered smart irrigation system can be achieved using sensors and 
environmental data from an Internet of Everything (IoE). The collected data is used to predict 
environment conditions using the Radial Basis Function Network (RBFN). The predicted values of 
water level, weather forecast, humidity, temperature and irrigation data are used to control the 
irrigation system. A web platform was developed for monitoring and controlling the system remotely. 

Keywords: smart irrigation; smart agriculture; Internet of Everything; Internet-of-Things; neural 
networks; decision support 
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1. Introduction  

Agriculture is key to sustainable development and poverty alleviation in many third world 
countries. Fantu et al. in [1] showed the evidence of this using Ethiopia has a case study. Modernization 
and development cannot take place in a country until the issue of sustainable development in 
agriculture has been addressed [2], whereas irrigation is crucial to the realization of this sustainable 
development. Irrigation demands a stable source of electricity, but the absence of stable grid-connected 
power source in many remote areas means that most of these systems rely on diesel engines for power. 
Agriculture is one of the major contributors to climate change [3] although not all of that is as a result 
of the use of fossil fuel in irrigation systems. Moreover, climate change is expected to impact 
negatively on agriculture and pose a major threat to food security [4]. To address this issue, Renewable 
Energy Sources (RES) such as solar energy [5] can be employed to power irrigation systems. Another 
crucial factor in irrigation systems is the need for efficient water management to avoid wastage. 
Mismanagement of water resource can have adverse effect on the world as whole therefore there is a 
need for smart monitoring and control in irrigation systems. 

Common Agricultural Policy (CAP) 2014/2020 adopted by the European Commission suggested 
the “Greening” policy [6], which, among others, aims to obtain energy efficiency in agriculture 
production. This goal can be achieved by applying new technologies in farms. The implementation of 
RES powered irrigation systems can be seen as one of the many aspects of green computing, which 
aims at decreasing carbon emissions and creating effective methods to utilize our computing 
technological advancements without having an adverse effect on the environment [7]. Green 
computing has many aspects, Murugesan [8] identified four aspects which are green use, green 
disposal, green design, and green manufacturing [9,10]. Sustainability is all about ensuring to present 
and future generations the capability for self-sufficiency [11]. Computing accounts for about 10 
percent of world CO2 emissions [11] therefore RES in an IoE environment as an aspect of green 
computing can have a major role to play in environmental sustainability in developing countries [12].  

Today, agriculture uses nearly 85% of worldwide freshwater resources while still using traditional 
irrigation methods and the demand for water is expected to soar in the coming years. RES integrated 
with irrigation and irrigation scheduling control has become a major research topic, which includes 
irrigation scheduling in a solar powered irrigation system [4], solar-powered water pumping 
systems [13], off-grid solar irrigation [14], wind powered pumping systems for irrigation [15,16], 
water consumption prediction models [17], smart water management [18], wireless sensor networks 
for data collection and monitoring [19]. For large agricultural areas, a Wireless Sensor Network (WSN) 
can be employed in which multiple sensor nodes can be distributed over the large area [20–22]. The 
effectiveness of smart agriculture can be improved by predicting the ideal time for manuring, applying 
fertilizer and pesticides as was demonstrated in [23] using Long Short Term Memory (LSTM) 
networks for predicting soil humidity, soil temperature and air temperature. The IoT-based smart 
system proposed in [24] uses a smart algorithm, which uses sensed data and predicted weather 
parameters (humidity, precipitation, air temperature and UV level). 

In summary, the majority of previously developed irrigation systems do not consider the predicted 
weather conditions while making irrigation decisions. Several authors did focus on the prediction of 
weather, environment and soil conditions [25–27], but not in the context of developing smart 
agriculture systems. As a result, large amounts of water and energy are wasted, leading to crop failures 
(due to excess water) when watering of the crop coincides or is immediately followed by precipitation. 
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To avoid such problems, the intelligent IoT based solutions must be developed to ensure decision 
support for irrigation by using local weather prediction. The novelty of this paper is the adoption, 
modelling and implementation of a solar powered irrigation system using the Internet of Everything 
(IoE) [28] approach. 

2. Materials and method 

2.1. State-of-the-art 

Automation of drip irrigation was the focus of research presented in [29]. The authors employed 
the smartphone to captures the soil image, while the hardware microcontroller calculates the wetness 
of the soil. The system tested in Tamilnadu allowed to save 41.5% and 13% of water when compared 
to the conventional irrigation methods of flood and drip. Chang and Lin [30] combines computer vision 
to perform variable rate irrigation within a cultivated field. Fuzzy logic controller is used to evaluate 
the data on the wet distribution area of surface soil in order to perform variable rate irrigation and to 
achieve water savings. The proposed system performs watering while maintaining the deep soil 
wetness at 80 ± 10%. Corbari et al. [31] advocated the use of weather forecasting to support precision 
smart irrigation use in the South of Italy. The system provides the reliable forecast of soil moisture for 
three days in advance. Diffalah et al. [32] implemented smart irrigation strategy using wireless sensor 
networks of WSN and IoT. The sensor nodes are cheap, self-organized and event-driven, providing a 
low-cost and energy-efficient solution to the problem. Geetha and Sathya Priva [33] employed 
Wireless Sensor Networks (WSNs), GSM and Android phone supporting android applications and an 
expert irrigation scheduling using fuzzy logic in order to optimize water usage for smart agriculture 
irrigation. Goap et al. [34] used Support Vector Regression (SVR) and k-means clustering for 
predicting change in soil moisture due to local weather conditions. Hema & Kant [35] specifically 
acknowledged the need to acquire real-time data in order to calculate soil conditions for smart 
agriculture. Kamienski et al. [36] described the implementation of IoT platform for precision irrigation 
that provides management of thousands of sensors for large-scale soil monitoring. Katvara et al. [37] 
used WSNs as remote terminal units (RTUs) and local control for supervisory control and data 
acquisition, allowing to save large amount of waters in Pakistan. Abayomi-Alli et al. [38] used wireless 
moisture sensors with independent solar power supply, and communication with central control unit 
using Near Radio Frequency (NRF) for smart irrigation system. Keswani et al. [21] presented the WSN 
framework consisting of soil moisture, temperature, environmental temperature, environmental 
humidity, CO2 sensor, daylight intensity sensors to acquire real-time information, while neural network-
based prediction of soil moisture was used to control water valves. Similarly, Mohapatra et al. [39] used 
a radial basis function type of neural network to predict hourly soil moisture content in India. On the 
other hand, Munir et al. [40] used fuzzy logic rules to decide on the amount of water needed based on 
the current moisture in soil, humidity, and time of the day. Summarizing, the need for optimization of 
water usage is recognized by all state-of-the-art irrigation systems, and the authors employ a variety 
of solutions based on sensor networks, microcontrollers and machine learning (or fuzzy logic) to 
evaluate and predict water needs for irrigation in order to ensure efficient use of water. 
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2.2. Architecture 

The smart irrigation systems has the following components: solar power station, networking 
infrastructure and water management and control stations, which includes water storage, irrigation 
sprinklers, water pumps, sensors and micro-controller unit (MCU). 

Figure 1 shows by use of a block diagram the entire system. The solar power station is 
independent of the other subsystems rather the other subsystems depend on input from the solar power 
plant. Other systems are co-dependent on each other as input from the networking subsystem affects 
the IoE environment, which in turn affects the water management and control subsystem. The 
integration of the solar power subsystem, the networking architecture and water management and 
control subsystem in an IoE environment makes up the complete functional system. 

 

Figure 1. Block diagram showing the interconnection of the subsystems. 

Figure 2 shows the overall logic and operation of the developed smart irrigation system. The 
sensors read data from the environment. This data is stored in the web server and is used for automating 
the irrigation process. Only user inputs from authorized personnel can be used to alter the irrigation 
process parameters. A web-based interface of the entire system can be accessed by authorized 
personnel through the web server. Water in the storage tank is maintained above 70% capacity at all 
times to ensure availability in case of days with low solar irradiance due to adverse weather conditions. 
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Figure 2. Process flow diagram of the system. 

2.3. Solar power station  

The smart irrigation system is powered solely using the photovoltaic (PV) cells of the solar panel. 
The power thus generated is stored in a battery pack and is used to power the pumps in the water 
management and control station. At day time the solar panels keep the battery charged so that during 
the night time in the absence of solar irradiance the battery pack has sufficient power to keep the pumps 
going when necessary.  

The solar power station is implemented as follows. If a Direct Current (DC) pump is to be used 
the battery supplies the pump directly, if an Alternating Current (AC) pump is to be used an inverter 
system is put in place to convert the generated DC power to AC. 

2.4. Water management and control station 

The water management and control station consist of water pumps, sensors, irrigation sprinklers 
water storage and a micro-controller unit (MCU) (see Figure 3). The MCU controls the operation of 
the station. Water pumps connected to the power station are used to pump water, which is then stored 
in tanks in case of a power outage this reservoir ensures irrigation can be carried out when needed. 
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Temperature, humidity, soil moisture and atmospheric pressure sensors in conjunction with the MCU 
are used to control the irrigation process hereby improving the water management efficiency all this 
are interconnected and linked to a web server from which data can be pulled and devices can be 
controlled by an authorized personnel using web access from a remote location. Irrigation sprinklers 
are used to deliver water to the crops when necessary. The temperature, humidity and soil moisture 
sensors measure environmental parameters like soil temperature, humidity, moisture level which are 
crucial to irrigation, are processed by the and are also stored in the web server.  

The sensors are placed at the crop rooting depth (typically, 15–30 cm). Moisture sensor triggers 
irrigation when 20% of available soil water is depleted. Temperature sensors measure temperature in 
the range of 0–40 °C, while the optimum range in our system is set to 20–30 °C. 

The atmospheric pressure sensor is used to aid weather forecasting the pressure change over a 
period of time can be used to predict upcoming weather events which is very useful in utilizing water 
judiciously. The temperature sensor, humidity sensor and soil moisture sensor are integrated into one 
humiture (humidity-temperature) sensor, which makes the simulation easier to carry out. 

 

Figure 3. Water management and control station. 

2.5. Network architecture 

Figure 4 shows the interconnection of the various stations and sub systems in cluster form as 
simulated in the packet tracer tool each cluster has its own interconnection of devices within the solar 
power station and the water management and control station have been discussed in earlier sections 
the office and home networks are connected together via a generic cloud this enables the home network 
have access to the server that holds the web app in the office network. 
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Figure 4. Overview of proposed network architecture. 

The office network consists of several end devices (laptops and PCs) these are connected to a 
switch, the IoE devices from solar power station and water management station are also connected to 
the switch. An office router which to which the smart irrigation server is connected is configured to 
interact with eternal networks that would be authorized to have access to the irrigation server. The 
irrigation server is a remote IoE server to which IoE devices can connect to via the router–switch 
connection. From the server authorized users can have access to sensor information and can manually 
trigger the irrigation devices if the need be. The home network is similar to the office network as it has 
a router and a switch that form the backbone of the network the end devices are connected to the switch, 
an access point is also connected to the network to enable wireless access to the network via smart 
phones. The switch is connected to the router, which is in turn connected to the office network via the 
internet cloud. 

To ensure low energy consumption we have adopted the approach described in [41] and an energy 
efficient communication protocol proposed in [42]. The network nodes are split into active and inactive 
nodes to eliminate sleeping nodes and reduce data redundancy. The energy efficient IoT protocol 
provides for maximum bandwidth and security while keeping energy consumption low. An optimized 
obtaining strategy [43] for acquiring sensor data in WSN uses a hierarchical clustering algorithm for 
obtaining a better clustering structure and decreasing network communication overhead, thus reducing 
power requirements, and increasing network lifetime. 

2.6. Prediction of environment conditions using neural network 

To predict the environmental conditions most important for the region of application. i.e., the 
precipitation, we employ Radial Basis Function Network (RBFN) [44]. The inputs of the network are 
local daily historical data of precipitation, while the output is the predicted event of precipitation the 
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next day. RBFN is a single hidden layer feed-forward neural network (see Figure 5). The first layer 
connections are not weighted. The transfer functions in the hidden nodes are defined by the 
multivariate Gaussian density function as follows: 

𝜑 𝑥 𝑒  
(1)

here 𝑥 is the input vector, 𝜇  and 𝜌  are the mean and the deviation of the Gaussian variables. Each 
RBF unit is activated over a region determined by 𝜇  and 𝜌 . The connections in the second layer 
are weighted. The output nodes perform linear summation. The value of the k-th output node 𝑦  is 
defined by 

𝑦 𝑥 𝑤 𝜑 𝑥 𝑤  (2)

where 𝑤  is the weight of the connection between the k-th output node and j-th hidden node, and 
𝑤  is the bias term. 

RBF networks have three layers: input layer, hidden layer and output layer. Input layer has one 
neuron for each predictor variable. In our case, we used precipitation values of 7 preceding days as 
well as mean historic precipitation of current month, as well as atmospheric pressure, high and low 
temperatures in each day, air humidity, wind direction and wind velocity in 7 preceding days and 
resulting in 50 neurons in input layer. The output layer in our case has only one neuron, since we 
predict only precipitation event. The hidden layer can have a variable number of neurons. We followed 
the following rule of thumb: the number of hidden neurons should be 2/3 of the input layer size, plus 
the size of the output layer [45]. Therefore, we have 35 neurons in the hidden layer. 

 

Figure 5. Schematic Diagram of RBF neural network. 

The RBFN training is performed in three steps as follows. The learning stage applies the batch 
mode K-means clustering algorithm to find the unit centers 𝜇 . Starting from a set of initial random 
seed values, the unit centers are adapted by applying the learning rule 
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𝜇
1

𝐶
𝑥

∈

 (3)

The optimization of error is realized by utilizing the learning rule 

∆𝜇 ∗
1

𝑁 ∗ 1
𝑥 𝜇 ∗  (4)

here 𝑁 ∗ is the count of wins of unit 𝑗∗ in the competition. 
The process is repeated until cluster centers do not change their position during the subsequent 

iteration. Next, a heuristic approach is used to determine unit widths and 𝜌  as maximum Euclidean 
distance between the cluster centers. Finally, we use linear regression with a least-squares objective 
function to find the weights of the second layer. 

To prevent network overfitting, we perform network regularization using the dropout method [46]. 
Every unit of the network is assigned the probability (dropout rate) of being temporarily ignored in 
calculations. The dropout rate is set to 0.5. Then, in each iteration, we randomly select the neurons that 
are dropped according to their dropout rate. 

2.7. Evaluation 

The dataset was collected in Ota, Nigeria, from March 1st to November 30th, 2018, resulting in 
275 instances of data. We used 80% of data for network training, and withheld 20% of data for testing. 

For the evaluation of the weather event prediction results were verified by the following 
evaluation indices as suggested in [25]: 

𝐻𝑅
𝐴 𝐷

𝐴 𝐵 𝐶 𝐷
 (5)

𝐶𝑅
𝐴

𝐴 𝐵
 (6)

𝑆𝑒𝑛
𝐴

𝐴 𝐶
 (7)

𝑆𝑝𝑒𝑐
𝐷

𝐵 𝐷
 (8)

here HR is hit rate (accuracy), CR is caching rate, Sen is sensitivity, Spec is specificity, A is a number 
of events where the predicted event matched the observed fact, B is the number of events where the 
predicted event failed the observed fact, C is the number of events where the predicted event failed 
non-event (when the result of observed fact was weather event), and D is the number of events where 
the predicted event matched non-event (when the result of observed fact was a non-event). 
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3. Results and discussion 

Figure 6 shows the interface of the desktop internet application, all remote field sensors can be 
accessed from here and there is an option to turn on the irrigation sprinkler or water pump if need be 
as there might be certain conditions that might call for the system to be operated outside the standard 
automatic thresholds. The IoE devices are programmed to do specific things in relation to the other 
IoE devices using JavaScript or python, there is also a condition tab in the web app where rules are set 
that trigger the water pump and irrigation sprinkler when the readings from the water level monitor 
and humiture monitor get to certain thresholds this keeps the whole process automated. 

 

Figure 6. IoE devices as shown in the web access platform. 

To create RBF network, we chose to use R, a statistical programming tool that allows for creation 
of neural networks. We selected the neuralnet package to implement a neural network for precipitation 
event predictions. As compared to existing models the proposed model makes use of IoE to give remote 
control and security to an automatic irrigation system. This model makes use of all required sensors in 
a sensor based irrigation scheduling system, gives the user a field status report and the ability to 
monitor the weather using atmospheric pressure sensor. In addition to this the remote web access is 
restricted to only authorized personnel. This implies that a stringent water management system is put 
in place. Using RES means it would cut down the carbon emissions leading to improved 
environmental sustainability. 

The prediction results for precipitation in Ota, Nigeria, March-November, 2018 using RBFN are 
summarized in Table 1. The collected data was used to implemented prediction of precipitation events 
using RBFN and achieving the hit rate of 0.85, and the caching rate of 0.77, sensitivity of 0.77 and 
specificity of 0.90. 
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To compare the results with other machine learning approaches, we have implemented 
precipitation prediction using Probabilistic Neural Network (PNN), Learning Vector Quantization 
(LVQ) Neural Network, Extreme Learning Machine (ELM) and Support Vector Machine (SVM). The 
results presented in Table 2 show superiority of the proposed RBFN architecture (best results are shown 
in bold). 

The scalability of the developed system is very important for the approach to be developed 
elsewhere. Our approach uses local environmental data derived from soil temperature, moisture, 
humidity as well as local precipitation data to predict the precipitation events. Therefore, we belief that 
the system could be transferred and used in other geographical localities, too. 

Table 1. Precipitation prediction results for Ota, Nigeria, March–November, 2018. 

Month Metric Daily event 

HR CR Sensitivity Specificity A B C D 

March 0.9032 0.7000 1.0000 0.8750 7 3 0 21 

April 0.8667 0.7500 0.5000 0.9583 3 1 3 23 

May 0.7419 0.9000 0.5625 0.9333 9 1 7 14 

June 0.9667 0.8750 1.0000 0.9565 7 1 0 22 

July 0.8065 0.6923 0.8182 0.8000 9 4 2 16 

August 0.7419 0.7143 0.4545 0.9000 5 2 6 18 

September 0.9000 0.6667 1.0000 0.8750 6 3 0 21 

October 0.9355 0.8000 1.0000 0.9130 8 2 0 21 

November 0.8333 0.8571 0.6000 0.9500 6 1 4 19 

Mean 0.8551 0.7728 0.7706 0.9068     

Table 2. Comparison of precipitation prediction results for Ota, Nigeria, March–November, 
2018. 

Classification method Hit rate Caching rate Accuracy Sensitivity 

PNN 0.8223 0.7517 0.6909 0.8925 

LVQ 0.8042 0.7271 0.6435 0.8918 

ELM 0.7210 0.5376 0.6087 0.7790 

SVM 0.7729 0.6465 0.6384 0.8411 

RBFN 0.8551 0.7728 0.7706 0.9068 

4. Conclusion 

We have implemented the solar powered smart irrigation system was implemented using the 
Internet of Everything (IoE) environment. Sensors and environmental data were used to control the 
irrigation process from an IoE perspective automatically. A web platform was implemented to allows 
remote manual control in case of an oversight or sudden unexpected event that requires a prompt 
response. Access to the web platform was restricted to only authorized personnel. The control and 
monitoring of a solar powered smart irrigation system is achieved using sensors and local 
environmental data. 
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The developed system demonstrated the viability of the IoE-based approach for solar powered 
smart irrigation system, while the use of the artificial intelligence (Radial Basis Function Network, 
RBFN) allows to save on precious natural resources such as water by avoiding unnecessary irrigation 
when a precipitation event is predicted to happen. The predicted values of water level, weather forecast, 
humidity, temperature and irrigation data are used to control the irrigation system. 

Future work will include the extension of the system with other types of renewable energy sources 
and hybrid energy grid to unsure grid independence and sustainability of the system and setting the 
conditions for the use of the system in remote rural regions of sub-Saharan Africa. 
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