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SANTRAUKA 

Šiame darbe aprašoma glicerolio kontrolės sistema. Išnagrinėtas glicerolio kontrolės sistemos 

veikimas ir nustatyti faktiniai intervalai. 

Tyrimo dalyje aprašomi tyrimo metodai: Pirmosios eilės laiko atidėjimo modeliai, antrosios eilės 

polinomo modelis, PID valdymo algoritmas, Cohen ir Coon derinimo taisyklės. 

Tyrimo tiriamojoje dalyje skaičiavimai atlikti pagal tris skirtingus metodus. Matematiniai modelio 

parametrai gaunami naudojant atvirojo kontūro testą. Apskaičiuoti reakcijos kreivės rezultatai 

palyginami su eksperimentiniais rezultatais, naudojant antrosios eilės polinomo metodą. 

Eksperimentiniai rezultatai buvo atlikti naudojant adaptyvią sistemą ir ne adaptyvius sistemos 

metodus. Palyginti abiejų metodų rezultatai ir išspręsta problema. Pateiktos skaičiavimo lentelės su 

rezultatais ir optimizuotais rezultatų grafikais. 

Eksperimentiniai skaičiavimai, programavimas ir modeliavimas atliekamas naudojant MATLAB / 

SIMULINK programinę įrangą. 
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SUMMARY 

This work describes the glycerol control system. The operation of the glycerol control system has 

been analyzed and actual showing intervals determined. 

The research part describes the research methods: First order time delay models, second order 

polynomial model, PID control algorithm, Cohen and Coon tuning rules. 

In the investigation part of the study, the calculation was made according to three different methods. 

The mathematical model parameters are obtained using an open loop test. The calculated reaction 

curve results are compared with experimental results using a second order polynomial method. The 

experimental results were carried out using an adaptive system and non-adaptive system methods. 

The results of the two methods were compared and the problem was solved. The tables of calculation 

with the results and the optimized results graphs are presented. 

Experimental calculations, programming and modelling performed using MATLAB/SIMULINK 

software. 
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INTRODUCTION 

1. INTRODUCTION TO CONTROL TECHNOLOGY 

Initially, some universal characteristics of bioreactors are highlighted with reference to control 

applications. Two main features, it is important to know before designing a control system for 

bioreactors, are:  

• The multivariable system, and 

• Non-linear dynamics. 

The control of a bioreactor comprises many variables. Device measurement and control technologies 

applied to a standard bioreactor are well known in classical process engineering [1]. 

1.1. Control system 

In recent years, control systems have played a central role in improving and advancing current 

technology and civilization. Practically each one of the subjects of our daily life is affected with the 

help of some system of manipulation. A bathroom, a tank, a refrigerator, an air conditioner, an ironing 

machine, a computerized iron, a vehicle, everything is a control system [2][1]. 

1.1.1. Open loop control systems 

Any physical system without any automatic correction of variation towards the output change which 

is called an open loop control system. This type of systems is simple to construct, stable and cheap 

but it will not maintain its accuracy and reliability. These systems do not have external disturbance 

to affect the output and it will not initiate correction action automatically [2].   

 

Figure 1. Block diagram of the open-loop control system [2] 

1.1.2. Closed loop control systems 

A closed loop control system is a system will maintain desired output values in accordance with input 

quantity in a closed loop manner, as shown in Figure 2. This type of systems is complicated to 

construct as compared to an open loop system [2]. 

1.1.3. Biomass Growth Control System 

In collaboration with NASA under the SBIR (Small Business Innovation Research) program, it is 

established by orbital technologies corporation to meet the growing needs of commercial, 

biotechnology and science plants in the era of the Space Station. The BPS was developed based on 

interactions with NASA engineers and scientists and on the "lessons learned" from already flown 

plant growth systems, including the ASTROCULTURETM unit, Plant Growth Plant and Bio-

processing Apparatus of plants [3].   
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Figure 2. Block diagram of closed loop control systems [2] 

1.2. Types of bioreactors or fermenters  

A biological reaction carried out into a vessel and culture aerobic cells are used for conducting 

enzymatic immobilization [4]. Different types of bio-reactor or fermenters: Continuous Stirred Tank 

Bioreactor: In a vessel, the time will no longer vary the contents to hold up of micro-organisms and 

the components will contain some concentration in the fermenter. To achieve steady-state conditions 

by chemo static principles. These types of bioreactor are commonly used in a continuous process to 

activate in wastewater sludge industry. Airlift Bioreactor: The capacity, kinetic data, the specific 

growth rate is determined from rector volume of the organism used. The airlift pump works on a 

principle of fermenter are internal loop type and external loop type respectively. The uniform 

cylindrical cross type and has a configuration of the internal and external loop.Fluidized Bed 

Bioreactor: The regular particles contain some characteristics that are suspended in a flowing liquid 

stream with some additional gas phase is involved in this bioreactor, the tendency of particles which 

are involved in the bed that is less evenly distributed.Photo Bioreactor: Phototrophic microorganism 

is used with some light source to cultivate. The photosynthesis is used by organisms to trigger biomass 

from the light source and carbon dioxide. The respective species are controlled for the artificial 

environment of a photobioreactor. In the photobioreactor, growth rate and level of purity in nature 

will be higher other than anywhere. Membrane Bioreactor: The various microbial bioconversions are 

applied successfully by membrane bioreactor. The alcoholic fermentation, solvents, organic acid 

production, wastewater treatment used in microbial conversions. The soluble enzyme and substrate 

are used in membrane bioreactor on one side of the ultrafilter membrane [5].  

1.3. The operating modes of bioreactor 

In a bioreactor, all the bioprocesses are carried out, where a microorganism like bacteria, fungi, yeast 

is cultivated under product formation conditions. For this reason, nutrients are compulsorily required 

to grow and under some conditions like temperature, pressure, PH and oxygen concentration are 

required to control the microorganism and these are the basic requirements to control bioprocess in a 

bioreactor [6].Batch mode, in this mode no substrate is added to the initial charge and no product is 

taken until it finishes the process. In batch operation have a major advantage for low investment cost, 

it does not require much control and without skilled labor, it can be accomplished operation. It has 

greater flexibility can be accomplished by using a bioreactor in various fields of product [6]. Fed-

batch mode, in this mode during operation substrates are fed into the bioreactor. The combination of 

the batch and continuous operation are very popular in the ethanol industry. It has the main advantage 

is that inhibition and catabolite repression are avoided and additionally improves the productivity of 

the broth by holding at a low substrate concentration [6]. The continuous mode in this mode the 
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substrate is added continuously until it finishes the process and product removal. In this process, the 

product is taken from the top of the bioreactor such as ethanol, cells and residual sugar as shown in 

Figure 3. Here operation is classified into two types, single stage continuous fermentation and multi-

stage continuous fermentation [6]. The research part describes the research methods, first order time 

delay models, second order polynomial model, PID control algorithm, Cohen and Coon tuning rules 

Experimental calculations, programming and modelling performed using MATLAB/SIMULINK 

software. 

 

Figure 3. Alternate stirred bioreactor processes [7] 

AIM: To develop and investigate biomass growth control system in fed-batch operating mode 

bioreactor. 

TASKS: To develop and investigate a model for simulation of adaptive control system performance 

for tracking of specific growth rate at specific setpoint time trajectories and compare the result with 

ordinary control system performance indices.  
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2. LITERATURE REVIEW 

In microbiology, researchers often faced problems in describing the growth-rate of microorganisms 

growing on sub-strategy or in the study of competition through depletion resource. Improved growth 

rate and growth function from a mathematical model of flocs and microbial using negative feedback 

density-dependent process Compared growth rate and cell size in homeostasis at the metabolic signal 

in the cell division according to animal cell [8][9].Obtained biofilm growth from purple non-sulfur 

bacteria using a mathematical model of photo-bioreactor. The synthesis, design, and decision making 

related to the wastewater treatment process modelling Measured leaf chlorophyll from biomass 

production under various heat stress treatments during climate change occur in critical wheat 

production [10] [11]. Developed leaf elongation and leaf appearance derived from maize production 

during crop modelling and climate change condition [13]. 

Identified heat stress and grain filling in leaf chlorophyll of photosynthesis during leaf area index 

dynamics are carried in climate change for wheat production. The Wheat Grow model is a process-

based wheat model, which can predict wheat phenology, photosynthesis and biomass production, 

biomass partitioning and organ establishment, and grain yield and quality formation under various 

environmental factors and management practices [10]. Compared to large cells and small cells are 

achieved multiple signaling pathways in cell division of growth rate and cell cycle progression helps 

to find in homeostasis [8]. Indicated unidentified extracellular components from bacteria will increase 

biomass and lipid productivities in a co-cultivation of algae and will reduce the expenditure in mass 

algae cultivation process in microorganisms [12]. 

2.1. Mathematical modelling of Fed-batch fermentation   

Maximized enzyme activity by reducing metabolic heat and feeding inlet air in solid-state 

fermentation of a fixed bed reactor [14]. Developed excessive lovastatin 3.5-fold by microparticles 

of the preculture during bioreactor process [15]. Improved simultaneously high solids of 

saccharification and fermentation by recycle membrane from paper production of lactic acid [16]. 

The developed dynamic model for metabolic pathway in a sequential identification method [17]. 

Modified ethanol production at different temperature in the production of wine using yeast hinder 

[18]. Removed aerobic oxide of biomass segmentation with ammonium-oxidizing and nitrite-

oxidizing impact on microbial [19]. Developed growth and decline phase of specific growth rate and 

biomass estimation in penicillin production of microorganisms [20]. Integrated model computation 

and biomass model of NIR data applied control overflow metabolism using partial least square and 

control a cholera-toxin in the monitor of batch cultivation [21]. Obtained numerical simulation of 

substrate feed rate in batch-to-batch process and leads to a robust process from measured problems 

in protein production [22]. Showed that heat capacity calorimeter of growth behavior will help to find 

validity and accuracy in a fermentation process used in many applications by this simple strategy 

[23]. Evidenced that glycan fractions with a heavy chain and the protein abundance enzyme to 

measure the time evolution of heterogeneities in pharmaceutical production as shown in Figure 4 

[24][25]. Solved multi-objective optimization in a significant way the feed recipe helps to create 

productivity from dynamic optimization problems [26]. Showed the strain stability in ABE 

concentrations carried from oxygen tolerant process enforced by a butanol and acetate production 

[27]. Introduced multi-objective optimization in a distinct objective is computed to optimum 

algorithms for the productivity of dynamic optimization problems [26]. Observed enzyme activity of 

monoclonal antibodies in a bioreactor scale to improve intracellular clustering of micro-
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heterogeneities mining method for an absolute measure of scale in a pharmaceutical production [25]. 

Compared heat capacity calorimetry to compensation mode in a validity and accuracy, since mainly 

deal with PAT solution [23]. Analyzed the NIR data and EN data in partial least square with high 

correlation biomass, glucose, and acetate during monitoring and control of spectral identification [21]. 

Estimated the growth and decline phase for the development of control strategy in specific growth 

rate via online estimation method for specific production in penicillin production of bioprocess 

filamentous microorganisms to control quantitative and qualitative process [20]. 

 

Figure 4. Process optimization [24] 

2.2. Adaptive control system applied for biomass growth control in fed-batch cultivation 

processes 

The oxygen concentration in the exhaust gas and the air supply rate no need of a mathematical model 

for the culture of microorganisms under control using fed-batch cultivation process having inferential 

control algorithm [28]. The recombinant production systems for collecting the data straight forward 

by controlling experiments for optimization predefined specific growth rate of the green fluorescent 

protein for keeping a microbial cultivation process in a generic control model [29].In simulation 

experiment fast adaptation, robust behavior significant changes in control performance for controlling 

dissolved oxygen concentration into control algorithm of steady-state action for adaptation controller 

to process on-linearity and time-varying operating conditions of microbial process [30].The transient 

response and robustness sliding observer an estimation growth rate it is implemented to control law 

using Lyapunov functions feed-back proportional output error for nonlinear integral action of the 

biomass specific growth rate based on the minimal model paradigm. The yeast Saccharomyces 

cerevisiae in glucose-limited chemostat culture indeed the affinity of the enzyme its transport on the 

specific growth rate for its growth-limiting substrate [31].The recombinant proteins are produced 

more in the robust process which is reliable, fast for various monitoring techniques of the specific 

growth rate in the microbial fed-batch mode for real-time estimation and other measurable variables 
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to grow the microorganisms essential in product quality [32]. The fermentation of glucose and acetate 

developed observer, estimator and controller in E.coli fed-batch fermentation desired recombinant 

protein for a specific growth rate it often related simulations by characterizing microorganisms [33]. 

Online regulation is usually limited to maintaining a small number of environmental conditions such 

as broth temperature, pH and dissolved oxygen level.  

 

Figure 5. Instrumentation and monitoring of bioreactor [34] 

Fermentation processes can also have a classical problem associated with interactions between 

multiple variable systems, which help complicate regulator regulation. The controller is usually tuned 

by loop loops, ignoring the effects of any process interactions. A trajectory of the benchmark that 

optimizes fermentation is difficult to specify and a more in-depth approach to specifications should 

be developed as shown in Figure 5 [34]. 
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3. DEVELOPMENT OF ADAPTIVE CONTROL SYSTEMS 

The modelling of the modelled data management system structure is shown in Figure 6 an 

experimental research idea and experimental design of the subject was created. Based on polynomial 

results of gain coefficient(k), a time constant(T) and time delay (Tau) were evaluated, next moving 

to experimental results using the least square method. For example, the polynomial model of the 

process parameter was created, and the ACS model was created using the MATLAB/SIMULINK 

software tool. By modifying the control law adaptive system works slowly the time changes of any 

parameters of a specific system. ACS motivated to improve the performance of the fixed gain control 

system. The adaptive control can have less dependent to the accuracy of the mathematical models of 

the system, but fixed gain controller mainly relies on it, since there will be no variation in the system 

dynamics [35](appendix Number 14).  

 

Figure 6. Block scheme of ACS [35] 

The dynamic parameters of the system consist of the oxygen uptake rate(OUR) and the growing of 

specific growth rate(μ) for glycerol. In this parameter, the gain coefficient(k), time constant(T) and 

time delay(τ) is determined. The Cohen and Coon method (Smith method) is provided for tuning of 

the controller parameters. In both cases, the PID regulator's parameter remains the same as the 

algorithm for the regulatory variation. The differential parameter is integrated into the DEE block at 

the control object. General different models for modelling of specific growth rate formulae as shown 

in Table 1.  

Table 1. Typical models  for modelling of specific growth rate [34][35][36] 

SL 

NO 

Specific Growth Rate (SGR) (Model 

Equation) 

Authors Comments 

1 μ = Constant - - 

2 μ = KS - - 



15 
 

3 μ = KSn - - 

4 μ =  
μmsk

𝑘𝑠+𝑠
 Monod function Empirically 

derived from the 

Michaelis and 

Menten equation 

5 μ=
(𝜇𝑚(1+𝑠/𝑘1)

(1+𝑠/𝑘2)) 
 Haldane/Andrews 

function 

Substrate 

inhibition in a 

chemostat 

6 μ =
𝜇𝑚𝑠

𝑘𝑠+𝑠+
𝑠2

𝑘𝑖

 Webb function - 

7 
μ =

𝜇𝑚𝑠(1+
𝑠

𝑘𝑖
)

(𝑘𝑠+𝑠)(1+
𝑠

𝑘𝑖
)
 

Andrews function Substrate 

inhibition in a 

chemostat 

8 μ =
𝜇𝑚𝑎𝑥 ((𝑠𝑛 /𝑘𝑠))

𝑠𝑛 
 Moser Analog with hill 

kinetics(n>0) 

9 μ =
𝜇 max(1−𝑒−𝑠)

𝑘𝑆
 Tessier - 

10 μ =
𝜇𝑚𝑠𝑘

(𝑘𝑠+𝑠)𝑒
−

𝑠
𝑘𝑖,𝑆  

 Aiba - 

11 μ(S)=μmax 
𝑠

𝑘𝑠+𝑘𝐷+𝑠
 Powell Equation Influence of cell 

permeability, 

substrate diffusion 

and cell 

dimensions 
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μ(S) = 𝜇𝑚𝑎𝑥 (1-𝑘𝑠𝑋) 

 

Verhulst 

It is known as 

growth logical 

model 

13 

μ(X, S) = 𝜇𝑚𝑎𝑥

𝑠0 −
𝑥
𝑦

𝑘𝑠 + 𝑠0 −
𝑥
𝑦

 

Meyrath It is based on 

Monod kinetics 

14  

μ=𝜇𝑚𝑎𝑥
𝑠

𝑘𝑥𝑥+𝑠
 

 

Contois If S=constant, the 

only dependence 

remains μ = f(x) 

15 
μ = 𝜇𝑚𝑎𝑥

1

1 +
𝑘𝑠

𝑆
+ ∑ (

𝑠
𝑘𝑗,𝑠

)
𝑗

𝑗

 
Yano model - 

16 μ(P) = 𝜇𝑚𝑎𝑥 − 𝑘1(𝑝 − 𝑘2) Holzberg - 

17 μ(P) = 𝜇𝑚𝑎𝑥(1 −
𝑝

𝑝𝑚𝑎𝑥

) Ghose and Tyagi - 
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3.1. Mathematical model of the fed-batch cultivation process 

Using a simple bioprocess model are controller initial first test was performed and E. coli growing on 

glycerol using fed-batch cultivation was simulated in the following way, mass balance equation of 

biomass concentration [36](appendix Number 1 and Number 2). 

𝑑𝑥

𝑑𝑡
= 𝜇𝑥 − 𝑢

𝑥

𝑉
.           (1) 

Mass balance equation of substrate concentration [36] 

𝑑𝑠

𝑑𝑡
= −

1

Yxs
𝜇𝑥 − 𝑚𝑥 + 𝑢

sf−𝑠

𝑉
.        (2) 

Mass balance equation of specific growth rate(μ) [36] 

𝑑𝜇

𝑑𝑡
=

1

𝑇
(𝜇𝑚𝑎𝑥

𝑠

𝐾𝑠+𝑠
∗

𝐾𝑖

𝐾𝑖+𝑠
− 𝜇) .       (3) 

Mass balance equation of volume fermentation broth [36] 

𝑑𝑉

𝑑𝑡
= 𝑢.          (4) 

A wide class of fermentation process of oxygen uptake rate (OUR) [36] 

OUR=αμxV+βxV.         (5) 

In simulation experiments the parameters values and initial conditions of the state variables as shown 

in the Table 2(appendix Number 1). 

Table 2. Model parameter and initial condition of state variables [37] 

 

 

According to initial values and model parameters of state variables for specific growth rate values are 

taken from 0.1 - 0.6 h-1 with corresponding oxygen uptake rate (OUR) values are also noted down as 

per simulation time using open loop test (Smith method). This method helps to find basic dynamic 

parameters like Gain coefficient(k), Time constant(T), Time delay(τ) for analyzing further steps. 

YXS 0.8 gg-1 

M 0.02 g(gh)-1 

Α 0.82 gg-1 

Β 0.01 g(gh)-1 

μmax 1.1 h-1 

Ks 0.7 gl-1 

Ki 85 gl-1 

sf 150 gl-1 

x(0) 0.5 gl-1 

s(0)  5.0 gl-1 

V(0) 8.0 l 
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Figure 7. Estimating of  parameter values of first order plus time delay process model [37] 

In this method we are dealing with the process reaction curve by first order plus time delay model, 

then it is possible to obtain controller parameters from this curve shown in Figure 6 [37], 

𝑇𝑝𝑟 =
3

2
(𝑡2 − 𝑡1)         (6) 

𝜏𝑝𝑟 = 𝑡2 − 𝑇𝑝𝑟         (7) 

𝑘𝑝𝑟 =
𝑦𝑝𝑒𝑎𝑘

∆𝑢
          (8) 

y(t1)  =  0.283ypeak         (9) 

y(t2)  =  0.632ypeak         (10) 

𝑘𝑝𝑟 = gain coefficient 

𝑇𝑝𝑟 = time constant  

𝜏𝑝𝑟 = time delay  

ypeak = maximum peak value of the curve 

These relationships are used empirically to provide a closed-loop response of the system and give a 

better result to process reaction curve. According to the above method, calculated parameters of gain 

coefficient(k), time constant(T), the time delay(τ) respectively. Approximation of specific growth rate 

response to a step change in feed rate by first order plus time delay model(appendix Number 3 and 

Number 4).   
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Figure 8. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=2.37, 

T=0.0957, τ=0.0099, μ=0.1. 

 

  

Figure 9. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=2.14, 

T=0.0869, τ=0.0095, μ=0.1. 

As shown in Figure 8, the x-axis indicates the time(h) and the y-axis indicates a specific growth rate 

(μ) of 0.1. The simulation time starts at 4 (h) in which the red line shows the reaction curve in open 

loop test (Smith method) and the pink line shows the experimental result by using first order plus the 

time delay function and dynamic parameters values are calculated by this graph k=2.37, T=0.0957, 

τ=0.0099,  μ=0.1 respectively. As shown in Figure 9, the x-axis indicates the time(h) and the y-axis 

indicates a specific growth rate (μ) of 0.1. The simulation time starts at 5 (h) in which the red line 

shows the reaction curve in open loop test (Smith method) and the pink line shows the experimental 

result by using first order plus the time delay function and dynamic parameters values are calculated 

by this graph k=2.14, T=0.0869, τ=0.0095, μ=0.1 respectively. 
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Figure 10. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=1.87, 

T=0.0689, τ=0.0087, μ=0.1. 

As shown in Figure 10, the x-axis indicates the time(h) and the y-axis indicates a specific growth rate 

(μ) of 0.1. The simulation time starts at 6 (h) in which the red line shows the reaction curve in open 

loop test (Smith method) and the pink line shows the experimental result by using first order plus the 

time delay function and dynamic parameters values are calculated by this graph k=1.87, T=0.0689, 

τ=0.0087, μ=0.1 respectively. 

 

Figure 11. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=1.7, 

T=0.0627, τ=0.0077, μ=0.1. 

As shown in Figure 11, the x-axis indicates the time(h) and the y-axis indicates a specific growth rate 

(μ) of 0.1. The simulation time starts at 7 (h) in which the red line shows the reaction curve in open 

loop test (Smith method) and the pink line shows the experimental result by using first order plus the 

time delay function and dynamic parameters values are calculated by this graph k=1.7, T=0.0627, 

τ=0.0077, μ=0.1 respectively. 
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Figure 12. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=1.4, 

T=0.0510, τ=0.0066, μ=0.1. 

As shown in Figure 12, the x-axis indicates the time(h) and the y-axis indicates a specific growth rate 

(μ) of 0.1. The simulation time starts at 8 (h) in which the red line shows the reaction curve in open 

loop test (Smith method) and the pink line shows the experimental result by using first order plus the 

time delay function and dynamic parameters values are calculated by this graph k=1.4, T=0.0510, 

τ=0.0066, μ=0.1 respectively. 

 

Figure 13. Simulation results of model-based specific growth rate response and its approximation by first 

order plus time delay model and estimated parameters values of first order plus time delay model are k=0.89, 

T=0.0408, τ=0.0056, μ=0.1 

As shown in Figure 13, the x-axis indicates the time(h) and the y-axis indicates a specific growth rate 

(μ) of 0.1. The simulation time starts at 10 (h) in which the red line shows the reaction curve in open 

loop test (Smith method) and the pink line shows the experimental result by using first order plus the 

time delay function and dynamic parameters values are calculated by this graph k=0.89, T=0.0408, 

τ=0.0056, μ=0.1 respectively. 

Table 3. First order plus time delay model parameters at various levels of oxygen uptake rate(OUR) and 

specific growth rate(SGR) 

SL no MU OUR K T TAU 

1 0.1 4.6304 2.37 0.0975 0.0099 

2 0.1 5.1194 2.14 0.0869 0.0095 
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3 0.1 5.6578 1.87 0.0689 0.0087 

4 0.1 6.2529 1.7 0.0627 0.0077 

5 0.1 7.6367 1.4 0.0510 0.0066 

6 0.1 12.5927 0.89 0.0408 0.0056 

7 0.2 12.1234 1.595 0.07395 0.01195 

8 0.2 14.8081 1.32 0.06105 0.0115 

9 0.2 18.0872 1.1 0.05085 0.01135 

10 0.2 22.0922 0.905 0.0425 0.0108 

11 0.2 32.9967 0.63 0.03125 0.0099 

12 0.3 24.3869 1.1433 0.0681 0.0118 

13 0.3 32.9233 0.8666 0.05265 0.01115 

14 0.3 44.4447 0.65333 0.04095 0.01035 

15 0.3 59.9968 0.49 0.0318 0.0102 

16 0.3 109.0498 0.28 0.0234 0.0077 

17 0.4 43.2441 0.8275 0.06705 0.01215 

18 0.4 64.5238 0.575 0.04815 0.01125 

19 0.4 96.2653 0.395 0.03525 0.01025 

20 0.4 143.6018 0.28 0.0278 0.0092 

21 0.5 71.0925 0.608 0.06975 0.01315 

22 0.5 117.2368 0.386 0.04905 0.01145 

23 0.5 193.3035 0.243 0.03375 0.01115 

24 0.5 318.7199 0.155 0.02685 0.00915 

25 0.6 110.0697 0.451 0.08085 0.01275 

26 0.6 200.5792 0.2265 0.05325 0.01155 

27 0.6 365.4866 0.161 0.0447 0.0081 

Based on simulation graph, oxygen uptake rate is calculated for particular values of specific growth 

rate using the first order plus time delay model parameters 0.2, 0.3, 0.4, 0.5, 0.6 values of μ are also 

calculated in a similar manner as per the above procedure, since many information has to explain 

further, so remaining values are given in Table 3. 

3.2. Development of PID controller adaptation algorithm  

3.2.1. Estimation of process dynamic parameters 

3.2.1.1. Gain coefficient algorithm inference 

Based on model parameters estimation results presented in Table 3, the second order polynomial 

model is used to describe relationships between process gain and oxygen uptake rate at specific 

growth rate values in the interval 0.1-0.6 h-1. 

K=a0+a1(OUR)+a2(OUR)2       (3.1) 
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The least square method is used for identification of the model parameter [38]. 

A = (FT.F)-1.FT.(Y)        (3.2) 

we put F data into the matrix it consists of x1 = free suitable 1, x2 = OUR(oxygen uptake rate) , x3= 

OUR2(appendix Number 5). 

F = [x1   x2   x3]; 

x1=[1 1 1 1 1 1]; 

x2=[4.6304   5.1194   5.6578   6.2529   7.6367   12.5927]; 

x3=[21.4406   26.2083   32.0107   39.0988   58.3192   158.5761]; 

The available data obtained matrix Y_o for the three parameters are K-gain coefficient, T- Time 

constant, τ- time delay respectively. The simplification gain coefficient K = f(OUR) is determined by 

the experimental function independence of oxygen uptake rate at point of the specific growth rate (0.1 

- 0.6 h-1) in matrix Y_x. 

Y_o = [2.37    2.14    1.87    1.7    1.4    0.89]; 

The coefficients of least square model and study, to continue calculated, the model parameters a0, a1 

and a2 coefficient in the MATLAB simulation by using least square formula A = (FT. F)-1. FT. (Y). 

Therefore, the results are: a0= 4.8751, a1=-0.6863, a2=0.0294(appendix Number 6). After obtained 

model parameters of the gain coefficient from Equation 3.1, then the mathematical model process is 

obtained. 

K = 4.8751 - 0.6863.x1+0.0294.x2 

Estimating the functional independence of the oxygen uptake rate at specific values of specific growth 

rate in the MATLAB simulation software tool model Y_x: 

Y_x = [2.3276   2.1322   1.9333   1.7332   1.3486    0.8949]; 

Now, the comparison between experimental and modelling results via graph: 

 

Figure 14. Graphical comparison of experimental and modelling results at 0.1 specific growth rate 
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As shown in the Figure 14, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 14, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification gain coefficient K = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.1h-1) is Y_x = (2.3276, 

2.1322, 1.9333, 1.7332, 1.3486, 0.8949) . As shown in the Figure 15, experimental results are 

determined by least square method, from a reaction curve dynamic parameters of gain(k), Time 

constant(T), Time delay(τ) are calculated that are substituted in the experimental results for different 

values of specific growth rate because to compare the results of reaction curve and experimental  will 

approximately same as shown in the Figure 15, since reaction curve is identified ‘o’ and experimental 

results is identified ‘x’. In this experiment simplification gain coefficient K = f(OUR) is determined 

by the experimental function independence of oxygen uptake rate at point of the specific growth rate 

(0.2h-1) is y= (1.5735, 1.3435, 1.1057, 0.8794, 0.6209) .  

 

Figure 15. Graphical comparison of experimental and modelling results at 0.2 specific growth rate 

As shown in the Figure 16, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 16, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. 
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Figure 16. Graphical comparison of experimental and modelling results at 0.3 specific growth rate 

In this experiment simplification gain coefficient K = f(OUR) is determined by the experimental 

function independence of oxygen uptake rate at point of the specific growth rate (0.3h-1) is y= (1.1023, 

0.9061, 0.6817, 0.4522, 0.2823). As shown in the Figure 17, experimental results are determined by 

least square method, from a reaction curve dynamic parameters of gain(k), Time constant(T), Time 

delay(τ) are calculated that are substituted in the experimental results for different values of specific 

growth rate because to compare the results of reaction curve and experimental will approximately 

same as shown in the Figure 17, since reaction curve is identified ‘o’ and experimental results is 

identified ‘x’. In this experiment simplification gain coefficient K = f(OUR) is determined by the 

experimental function independence of oxygen uptake rate at point of the specific growth rate (0.4h-

1) is y= (0.8163, 0.5990, 0.3792, 0.2837). As shown in the Figure 18, experimental results are 

determined by least square method, from a reaction curve dynamic parameters of gain(k), Time 

constant(T), Time delay(τ) are calculated that are substituted in the experimental results for different 

values of specific growth rate because to compare the results of reaction curve and experimental will 

approximately as shown in the Figure 18, since reaction curve is identified ‘o’ and experimental 

results is identified ‘x’ .  

 

Figure 17. Graphical comparison of experimental and modelling results at 0.4 specific growth rate 
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Figure 18. Graphical comparison of experimental and modelling results at 0.5 specific growth rate 

In this experiment simplification gain coefficient K = f(OUR) is determined by the experimental 

function independence of oxygen uptake rate at point of the specific growth rate (0.5h-1) is y= (0.5901, 

0.4146, 0.2188, 0.1502).As shown in the Figure 19, experimental results are determined by least 

square method, from a reaction curve dynamic parameters of gain(k), Time constant(T), Time 

delay(τ) are calculated that are substituted in the experimental results for different values of specific 

growth rate because to compare the results of reaction curve and experimental will approximately 

same as shown in the Figure 19, since reaction curve is identified ‘o’ and experimental results is 

identified ‘x’. In this experiment simplification gain coefficient K = f(OUR) is determined by the 

experimental function independence of oxygen uptake rate at the point of the specific growth rate 

(0.6h-1) is y= (0.4050, 0.3145, 0.1496). The dynamic parameter dependence of the process depends 

on the oxygen uptake rate (OUR) and the dynamic parameters of the gain coefficient are determined 

by the specific set-point of specific growth rate, the modelled graphical representations of the reaction 

surface are shown in Figure 19. The reaction surface model program was presented in 

MATLAB/SIMULINK software. 

 

Figure 19. Graphical comparison of experimental and modelling results at 0.6 specific growth rate 

The experiment results and modelling results are compared below as shown in Table 4, using the 

mathematical model equation, modelling parameters are obtained, which are compared in Table 4 

and Table 3 shows the comparison of experimental and modelling study results. 
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Table 4. Comparison of  the process gain experimental and model-based estimations at various SGR and 

OUR values 

SL no MU OUR Kmod KLSM 

1 0.1 4.6304 2.37 2.3276 

2 0.1 5.1194 2.14 2.1322 

3 0.1 5.6578 1.87 1.9333 

4 0.1 6.2529 1.7 1.73320 

5 0.1 7.6367 1.4 1.3486 

6 0.1 12.5927 0.89 0.8949 

7 0.2 12.1234 1.595 1.5735 

8 0.2 14.8081 1.32 1.3435 

9 0.2 18.0872 1.1 1.1057 

10 0.2 22.0922 0.905 0.8794 

11 0.2 32.9967 0.63 0.6209 

12 0.3 24.3869 1.1433 1.1023 

13 0.3 32.9233 0.8666 0.9061 

14 0.3 44.4447 0.65333 0.6817 

15 0.3 59.9968 0.49 0.4522 

16 0.3 109.0498 0.28 0.2823 

17 0.4 43.2441 0.8275 0.8163 

18 0.4 64.5238 0.575 0.5990 

19 0.4 96.2653 0.395 0.3792 

20 0.4 143.6018 0.28 0.2837 

21 0.5 71.0925 0.608 0.5901 

22 0.5 117.2368 0.386 0.4146 

23 0.5 193.3035 0.243 0.2188 

24 0.5 318.7199 0.155 0.1502 

25 0.6 110.0697 0.451 0.4050 

26 0.6 200.5792 0.2265 0.3145 

27 0.6 365.4866 0.161 0.1496 

 

3.2.1.2. Time constant algorithm inference 

Based on model parameters estimation results presented in Table 3, the second order polynomial 

model is used to describe relationships between time constant and oxygen uptake rate at specific 

growth rate values in the interval 0.1-0.6 h-1. 

T = a0+a1(OUR)+a2(OUR)2        (3.3) 

 The least square method is used for identification of the model parameter [38]. 

A = (FT.F)-1.FT.(Y)        (3.4) 

we put F data into the matrix it consists of x1 = free suitable 1, x2 = OUR(oxygen uptake rate) , x3= 

OUR2(appendix Number 7). 

F = [x1   x2   x3]; 

x1= [1 1 1 1 1 1]; 

x2= [4.6304   5.1194   5.6578   6.2529   7.6367   12.5927]; 
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x3= [21.4406   26.2083   32.0107   39.0988   58.3192   158.5761]; 

The available data obtained matrix Y_o for the three parameters are K-gain coefficient, T- Time 

constant, τ- Time delay respectively. The simplification time constant T = f(OUR) is determined by 

the experimental functional independence of oxygen uptake rate at specific point of the specific 

growth rate (0.1 - 0.6 h-1) in matrix Y_x. 

Y_o = [0.0975    0.0869    0.0689    0.0627    0.0510    0.0408]; 

The coefficients of least square model and study, to continue calculated, the model parameters a0, a1 

and a2 coefficient in the MATLAB simulation by using least square formula A = (FT. F)-1. FT. (Y). 

Therefore, the results are a0= 0.2381, a1=-0.0400, a2=0.0020(appendix Number 8). After obtained 

model parameters of the time constant from Equation 3.3, then the mathematical model process is 

obtained. 

T = 0.2381-0.0400.x1+0.0020.x2 

Estimating the functional independence of oxygen uptake rate at specific values of specific growth 

rate in the MATLAB simulation software tool model Y_x, Now the comparison between 

experimental and modelling results via a graph. 

Y_x = [0.0940   0.0838   0.0735   0.0633   0.0447   0.0404]; 

As shown in the Figure 20, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 20, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time constant T = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.1h-1) is Y_x = (0.0940, 

0.0838, 0.0735, 0.0633, 0.0447, 0.0404). 

 

Figure 20. Graphical comparison of experimental and modelling results at 0.1 specific growth rate 
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Figure 21. Graphical comparison of experimental and modelling results at 0.2 specific growth rate 

As shown in the Figure 21, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 21, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time constant T = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.2h-1) is Y_x = (0.0726, 

0.0619, 0.0509, 0.0407, 0.0305). As shown in the Figure 22, experimental results are determined by 

least square method, from a reaction curve dynamic parameters of gain(k), Time constant(T), Time 

delay(τ) are calculated that are substituted in the experimental results for different values of specific 

growth rate because to compare the results of reaction curve and experimental will approximately 

same as shown in the Figure 22, since reaction curve is identified ‘o’ and experimental results is 

identified ‘x’. In this experiment simplification time constant T = f(OUR) is determined by the 

experimental function independence of oxygen uptake rate at point of the specific growth rate (0.3h-

1) is Y_x = (0.0661, 0.0550, 0.0425, 0.0300, 0.0238). 

 

Figure 22. Graphical comparison of experimental and modelling results at 0.3 specific growth rate 



29 
 

 

Figure 23. Graphical comparison of experimental and modelling results at 0.4 specific growth rate 

As shown in the Figure 23, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 23, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time constant T = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.4h-1) is Y_x = (0.0652, 

0.0485, 0.0317, 0.0274). As shown in the Figure 24, experimental results are determined by least 

square method, from a reaction curve dynamic parameters of gain(k), Time constant(T), Time 

delay(τ) are calculated that are substituted in the experimental results for different values of specific 

growth rate because to compare the results of reaction curve and experimental will approximately 

same as shown in the Figure 24, since reaction curve is identified ‘o’ and experimental results is 

identified ‘x’. In this experiment simplification time constant T = f(OUR) is determined by the 

experimental function independence of oxygen uptake rate at point of the specific growth rate (0.5h-

1) is Y_x = (0.0686, 0.0513, 0.0324, 0.0271). 

 

Figure 24. Graphical comparison of experimental and modelling results at 0.5 specific growth rate 
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Figure 25. Graphical comparison of experimental and modelling results at 0.6 specific growth rate 

As shown in the Figure 25, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 25, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time constant T = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.6h-1) is Y_x = (0.0746, 

0.0628, 0.0413). The dynamic parameter dependence of the process depends on the oxygen uptake 

rate (OUR) and the dynamic parameters of the time constant are determined by the specific set-point 

of specific growth rate, the modelled graphical representations of the reaction surface are shown in 

Figure 25. The Reaction Surface Model program was presented in MATLAB/SIMULINK software. 

The experiment results and modelling results are compared in the below Table 5, using the obtained 

mathematical model equation, modelling parameters are found, which are compared in Table 5 and 

Table 3 shows the comparison of experimental and modelling study results. 

Table 5. Comparison of  the time constant experimental and model-based estimations at various SGR and 

OUR values 

SL no MU OUR Tmod TLSM 

1 0.1 4.6304 0.0975 0.0940 

2 0.1 5.1194 0.0869 0.0838 

3 0.1 5.6578 0.0689 0.0735 

4 0.1 6.2529 0.0627 0.0633 

5 0.1 7.6367 0.0510 0.0447 

6 0.1 12.5927 0.0408 0.0404 

7 0.2 12.1234 0.07395 0.0726 

8 0.2 14.8081 0.06105 0.0619 

9 0.2 18.0872 0.05085 0.0509 

10 0.2 22.0922 0.0425 0.0407 

11 0.2 32.9967 0.03125 0.0305 

12 0.3 24.3869 0.0681 0.0661 

13 0.3 32.9233 0.05265 0.0550 

14 0.3 44.4447 0.04095 0.0425 

15 0.3 59.9968 0.0318 0.0300 



31 
 

16 0.3 109.0498 0.0234 0.0238 

17 0.4 43.2441 0.06705 0.0652 

18 0.4 64.5238 0.04815 0.0485 

19 0.4 96.2653 0.03525 0.0317 

20 0.4 143.6018 0.0278 0.0274 

21 0.5 71.0925 0.06975 0.0686 

22 0.5 117.2368 0.04905 0.0513 

23 0.5 193.3035 0.03375 0.0324 

24 0.5 318.7199 0.02685 0.0271 

25 0.6 110.0697 0.08085 0.0746 

26 0.6 200.5792 0.05325 0.0628 

27 0.6 365.4866 0.0447 0.0413 

 

3.2.1.3. Time delay  algorithm inference 

Based on model parameters estimation results presented in Table 3, the second order polynomial 

model is used to describe relationships between time delay and oxygen uptake rate at specific growth 

rate values in the interval 0.1-0.6 h-1. 

τ = a0+a1(OUR)+a2(OUR)2       (3.5) 

The least square method is used for identification of the model parameter [38]. 

A = (FT. F)-1. FT. (Y)         (3.6) 

we put F data into the matrix it consists of x1 = free suitable 1, x2 = OUR(oxygen uptake rate) , x3= 

OUR2(appendix Number 9). 

F = [x1   x2   x3]; x1= [1 1 1 1 1 1]; x2= [4.6304   5.1194   5.6578   6.2529   7.6367   12.5927]; 

x3=[21.4406   26.2083   32.0107   39.0988   58.3192   158.5761]; 

The available data obtained matrix Y_o for the three parameters are K-gain coefficient, T- Time 

constant, τ- Time delay respectively. The simplification time delay τ = f(OUR) is determined by the 

experimental functional independence of oxygen uptake rate at specific point of the specific growth 

rate (0.1 - 0.6 h-1) in matrix Y_x. 

Y_o = [0.0099    0.0095    0.0087    0.0077    0.0066    0.0056]; 

The coefficients of least square model and study, to continue calculated, the model parameters a0, a1 

and a2 coefficient in the MATLAB simulation by using least square formula A = (FT. F)-1. FT. (Y). 

Therefore, the results are a0= 0.01961, a1=-0.0026, a2=1.2052e-04(appendix Number 10). After 

obtained model parameters of the time delay from Equation 3.5, then the mathematical model process 

is obtained. 

τ = 0.2381-0.0400.x1+0.0020.x2 

Estimating the functional independence of oxygen uptake rate at specific values of specific growth 

rate in the MATLAB simulation software tool model Y_x, Now the comparison between 

experimental and modelling results via graph: 
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Y_x = [0.0102   0.0095   0.0088    0.0081    0.0068    0.0056]; 

 

Figure 26. Graphical comparison of experimental and modelling results at 0.1 specific growth rate 

As shown in the Figure 26, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 26, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time delay τ = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.1h-1) is Y_x = (0.0102, 

0.0095, 0.0088, 0.0081, 0.0068, 0.0056). As shown in the Figure 27, experimental results are 

determined by least square method, from a reaction curve dynamic parameters of gain(k), Time 

constant(T), Time delay(τ) are calculated that are substituted in the experimental results for different 

values of specific growth rate because to compare the results of reaction curve and experimental will 

approximately same as shown in the Figure 27, since reaction curve is identified ‘o’ and experimental 

results is identified ‘x’. In this experiment simplification time delay τ = f(OUR) is determined by the 

experimental function independence of oxygen uptake rate at point of the specific growth rate (0.2h-

1) is Y_x = (0.0119, 0.0116, 0.0112, 0.0108, 0.0099). 
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Figure 27. Graphical comparison of experimental and modelling results at 0.2 specific growth rate 

As shown in the Figure 28, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 28, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. 

 

Figure 28. Graphical comparison of experimental and modelling results at 0.3 specific growth rate 

In this experiment simplification time delay τ = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.3h-1) is Y_x = (0.0117, 

0.0113, 0.0107, 0.0100, 0.0078). As shown in the Figure 29, experimental results are determined by 

least square method, from a reaction curve dynamic parameters of gain(k), Time constant(T), Time 

delay(τ) are calculated that are substituted in the experimental results for different values of specific 

growth rate because to compare the results of reaction curve and experimental will approximately 

same as shown in the Figure 29 , since reaction curve is identified ‘o’ and experimental results is 

identified ‘x’. 
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Figure 29. Graphical comparison of experimental and modelling results at 0.4 specific growth rate 

In this experiment simplification time delay τ = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.4h-1) is Y_x = (0.0122, 

0.0113, 0.0103, 0.0092). 

 

Figure 30. Graphical comparison of experimental and modelling results at 0.5 specific growth rate 

As shown in the Figure 30, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 30, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time delay τ = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.5h-1) is Y_x = (0.0129, 

0.0120,  0.0108, 0.0092). 
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Figure 31. Graphical comparison of experimental and modelling results at 0.6 specific growth rate 

As shown in the Figure 31, experimental results are determined by least square method, from a 

reaction curve dynamic parameters of gain(k), Time constant(T), Time delay(τ) are calculated that 

are substituted in the experimental results for different values of specific growth rate because to 

compare the results of reaction curve and experimental will approximately same as shown in the 

Figure 31, since reaction curve is identified ‘o’ and experimental results is identified ‘x’. In this 

experiment simplification time delay τ = f(OUR) is determined by the experimental function 

independence of oxygen uptake rate at point of the specific growth rate (0.6h-1) is Y_x = (0.0130, 

0.0113, 0.0082). 

The dynamic parameter dependence of the process depends on the oxygen uptake rate(OUR) and the 

dynamic parameters of the time delay are determined by the specific set-point of specific growth rate, 

the modelled graphical representations of the reaction surface are shown in Figure 31. The Reaction 

Surface Model program was presented in MATLAB/SIMULINK software. The experiment and 

modelling results are compared as shown in Table 6, using the obtained mathematical model equation, 

modelling parameters are obtained, which are compared in Table 6 and Table 3 shows the comparison 

of experimental and modelling study results. 

Table 6. Comparison of  the time delay experimental and model-based estimations at various SGR and OUR 

values 

SL no MU OUR τmod τLSM 

1 0.1 4.6304 0.0099 0.0102 

2 0.1 5.1194 0.0095 0.0095 

3 0.1 5.6578 0.0087 0.0088 

4 0.1 6.2529 0.0077 0.0081 

5 0.1 7.6367 0.0066 0.0068 

6 0.1 12.5927 0.0056 0.0056 

7 0.2 12.1234 0.01195 0.0119 

8 0.2 14.8081 0.0115 0.0116 

9 0.2 18.0872 0.01135 0.0112 

10 0.2 22.0922 0.0108 0.0108 

11 0.2 32.9967 0.0099 0.0099 

12 0.3 24.3869 0.0118 0.0117 

13 0.3 32.9233 0.01115 0.0113 

14 0.3 44.4447 0.01035 0.0107 
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15 0.3 59.9968 0.0102 0.0100 

16 0.3 109.0498 0.0077 0.0078 

17 0.4 43.2441 0.01215 0.0122 

18 0.4 64.5238 0.01125 0.0113 

19 0.4 96.2653 0.01025 0.0103 

20 0.4 143.6018 0.0092 0.0092 

21 0.5 71.0925 0.01315 0.0129 

22 0.5 117.2368 0.01145 0.0120 

23 0.5 193.3035 0.01115 0.0108 

24 0.5 318.7199 0.00915 0.0092 

25 0.6 110.0697 0.01275 0.0130 

26 0.6 200.5792 0.01155 0.0113 

27 0.6 365.4866 0.0081 0.0082 

 

3.2.2. Development of controller gain scheduling algorithm   

a) Design of ACS: 

The model of the control system, which compensates for the effect of the two major parts to develop 

the adaptive system, shown in Figure 32. The model system consists of(appendix Number 11, Number 

12, Number 14, Number 15 and Number 16 ): 

• Controller adaptation subsystem 

• PID controller subsystem 

• DEE block (Differential Equation Editor) 

• Process dynamic parameter subsystem 

• Measurement noise modelling subsystem 

Table 7. process model input 

Variable Description Inputs 

U Feeding rate U (1) 

Table 8. process model outputs 

Variable Description Output 

x Biomass concentration X (1) 

s Substrate concentration X (2) 

μ(SGR) Specific growth rate X (3) 

v Volume broth X (4) 

OUR Oxygen uptake rate OUR 
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Figure 32. Block scheme of adaptative control system realized  in MATLAB /SIMULINK environment 

b) On-line estimation of control process dynamic parameters   

The set algorithm parameter consists of the second order polynomial rules that calculate the gain 

coefficient(K), time constant(T) and time delay(τ) respectively. After the model is built in 

MATLAB/SIMULINK tool, the second order of the polynomial rules is entered the subsystem block 

containing the one variable, oxygen uptake rate at specific values of the specific growth rate [38].  

The gain coefficient is calculated by function(appendix Number 11): 

K=a0+a1(OUR)+a2(OUR)2       (3.7) 

The time constant is calculated by function: 

T=a0+a1(OUR)+a2(OUR)2       (3.8) 

The time delay is calculated by function:   

τ=a0+a1(OUR)+a2(OUR)2       (3.9) 

Note: I have analyzed the data and found the reason for the 2 variable model identification problem. 

The problem is that the ranges of the OUR variation at various levels of mu are very different and the 

data obtained is not suitable for identification of the 2 variable relationships, covering full observed 

ranges of the mu and the OUR variations. So, for the μ controller adaptation, the algorithm based on 

the expert “IF-THEN” rules and the single variable OUR relationships can be used. 

c) PID controller gain scheduling algorithm 

The tuning method was selected to tune discrete PID control is calculated by using Cohen and Coon 

tuning rules [39]. They consist of a regulator gain factor, calculated according to the formula in the 
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book, the integration time constant, calculated according to the formula in the book and the 

differentiation time constant, calculated according to the formula in the book. The formulas assume 

that the process is characterized by the first series of suffixes. the duration of the charge and the range 

of the constant ratio of time are in the rules of adjustment(appendix Number 12): 

 0.1<τpr/Tpr<1.0       (3.10) 

A model MATLAB / SIMULINK developed for the tuning parameter compensation, calculated using 

subsystems block. Tuning parameters the regulator gain coefficient is calculated according to the 

formula [39]: 

 𝐾𝑟(𝑡𝑘) =
𝑇𝑝𝑟(𝑡𝑘)

𝐾𝑝𝑟 (𝑡𝑘)𝜏𝑝𝑟(𝑡𝑘)
(1.33 +

𝜏𝑝𝑟(𝑡𝑘)

4𝑇𝑝𝑟(𝑡𝑘)
)    (3.11) 

Integration time constant is calculated according to the formula [39]: 

 𝑇𝑖(𝑡𝑘) =
32+6

𝜏𝑝𝑟(𝑡𝑘)

𝑇𝑝𝑟(𝑡𝑘)

13+8
𝜏𝑝𝑟(𝑡𝑘)

𝑇𝑝𝑟(𝑡𝑘)

𝜏𝑝𝑟(𝑡𝑘)      (3.12)  

The differentiation time constant is calculated according to the formula [39]: 

 𝑇𝑑(𝑡𝑘) =
4

11+2
𝜏𝑝𝑟(𝑡𝑘)

𝑇𝑝𝑟(𝑡𝑘)

𝜏𝑝𝑟(𝑡𝑘)      (3.13) 

d) The control algorithm of discrete PID controller: 

The control system PID controller model consists of the input parameters that are entered in the 

formula (3.15). The obtained by rotating the engine of the modelled air water cooler according to the 

given data parameters available(appendix Number 15). 

• Present error signal - en 

• Previous error signal - en-1 

• Last two previous error signal - en-2 

• Proportional gain - Kr 

• Integration time constant - Ti 

• Differentiation time constant - Td 

• Discretization step – T 

 

Frequently used algorithms used by the regulator are reflected in the change of the controlling effect 

[39]: 

 Un = Un-1 + ∆Un        (3.14) 

All data is entered in a formula prepared by the PID editor, which calculates the engine brush N. The 

discrete change in the control effect of the PID controller is calculated according to the formula [39]: 

  ∆𝑈𝑛 = kr[(1 +
Td

T
+

T

Ti
) 𝑒𝑛 − (1 +

2Td

T
) 𝑒𝑛−1 +

Td

T
𝑒𝑛−2   (3.15) 
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4. SIMULATION RESULTS OF ORDINARY AND ADAPTIVE CONTROL SYSTEMS 

PERFORMANCE AND DISCUSSION OF RESULTS 

Experiment 1: The set-point of specific growth rate(μ) was changed from μset = 0.0501 h-1 to μset = 0.3 

h-1 and simulation time 6 (h) as shown in Figure 33. The overshoot and settling time of the adaptive 

system is decreased 42 %, 34% compared to non-adaptive system respectively.  

Table 9. PID controller tuning parameters 

Model parameters 

(Initial 0.0501; Final 0.3) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 6.854 10 

Integration time constant (Ti) 0.02669 0.0347 

Differentiation time constant (Td) 0.004103 0.00524 

 

Experiment 2: The set-point of specific growth rate(μ) was changed from μset = 0.5 h-1 to μset = 0.6 h-

1 and simulation time 8 (h) as shown in Figure 34. The overshoot and settling time of an adaptive 

system is increased 73% and decreased  25%  compared to non-adaptive system. 

Table 10. PID controller model parameters 

Model parameters 

(Initial 0.5; Final 0.6) 

Adaptive 

system 

Non-adaptive system 

Gain proportional (Kc) 34.75 10 

Integration time constant (Ti) 0.0219 0.0313 

Differentiation time constant (Td) 0.0034 0.0048 

 

Experiment 3: The set-point of specific growth rate(μ) was changed from μset = 0.2 h-1 to μset = 0.6 h-

1 and simulation time 8 (h) as shown in Figure 35. The overshoot and settling time of the adaptive 

system is decreased 11 %, decreased 50% compared to non-adaptive system respectively. 

Table 11. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 0.6) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 17.05 30.5 

Integration time constant (Ti) 0.02946 0.0288 

Differentiation time constant 

(Td) 

0.0045 0.0044 

 

Experiment 4:The set-point of specific growth rate(μ) was changed from μset = 0.4 h-1 to μset = 0.5 h-

1and  simulation time 6 (h) as shown in the Figure 36. The overshoot and settling time of the adaptive 

system is decreased 19%, decreased 67% compared to non-adaptive system respectively. 

Table 12. PID controller model parameters 

Model parameters 

(Initial 0.4; Final 0.5) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 21.75 20 

Integration time constant (Ti) 0.022 0.027 

Differentiation time constant 

(Td) 

0.0035 0.0041 
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Figure 33.  The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.0501 h-1 to μset=0.3 h-1) by automatic 

control system and simulation time is 6 (h) 
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Figure 34 The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.5 h-1 to μset=0.6 h-1) by automatic control 

system and simulation time is 8 (h) 
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Figure 35. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.2 h-1 to μset=0.6 h-1) by automatic control 

system and simulation time is 8 (h) 
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Figure 36. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.4 h-1 to μset=0.5 h-1) by automatic control 

system and simulation time is 6(h) 
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Experiment 5: The set-point of specific growth rate(μ) was changed from μset = 0.0501 h-1 to μset = 0.1 

h-1 and simulation time 6 (h) as shown in Figure 37. The overshoot and settling time of the adaptive 

system is decreased 37 %, decreased 28.75%  compared to non-adaptive system respectively. 

Table 13. PID controller model parameters 

Model parameters 

(Initial 0.0501; Final 0.1) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 5.545 8 

Integration time constant (Ti) 0.023 0.035 

Differentiation time constant 

(Td) 

0.0035 0.0052 

 

Experiment 6: The set-point of specific growth rate(μ) was changed from μset = 0.2 h-1 to μset = 0.5 h-

1 and simulation time 6 (h) as shown in Figure 38. The overshoot and settling time of the adaptive 

system is decreased 17%, decreased 22.22%  compared to non-adaptive system respectively. 

Table 14. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 0.5) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 14.49 20 

Integration time constant (Ti) 0.02643 0.0288 

Differentiation time constant 

(Td) 

0.004115 0.00438 

 

Experiment 7: The set-point of specific growth rate(μ) was changed from μset = 0.2 h-1 to μset = 0.3 h-

1 and simulation time 6 (h) as shown in Figure 39. The overshoot and settling time of the adaptive 

system is decreased 75%, decreased 57.14% compared to non-adaptive system respectively. 

Table 15. PID controller model parameters 

Model parameters 

(Initial 0.2; Final 0.3) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 7.613 15 

Integration time constant (Ti) 0.0244 0.0281 

Differentiation time constant 

(Td) 

0.0038 0.0043 

 

Experiment 8: The set-point of specific growth rate(μ) was changed from μset = 0.3 h-1 to μset = 0.6 h-

1 and simulation time 8 (h) as shown in Figure 40. The overshoot and settling time of the adaptive 

system is decreased 31 %, decreased 50% compared to non-adaptive system respectively. 

Table 16. PID controller model parameters 

Model parameters 

(Initial 0.3; Final 0.6) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 20.93 25 

Integration time constant (Ti) 0.0264 0.0281 

Differentiation time constant 

(Td) 

0.0041 0.0043 
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Figure 37.  The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.0501 h-1 to μset=0.1 h-1) by automatic 

control system and simulation time is 6(h) 
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Figure 38. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.2 h-1 to μset=0.5 h-1) by automatic control 

system and simulation time is 6(h) 
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Figure 39. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.2 h-1 to μset=0.3 h-1) by automatic control 

system and simulation time is 6(h) 
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Figure 40. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.3 h-1 to μset=0.6 h-1) by automatic control 

system and simulation time is 8(h) 
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Experiment 9: The set-point of specific growth rate(μ) was changed from μset = 0.3 h-1 to μset = 0.1 h-

1 and simulation time 7 (h) as shown in Figure 41. The overshoot and settling time of the adaptive 

system is decreased 20 %, decreased 60% compared to non-adaptive system respectively. 

Table 17. PID controller model parameters 

Model parameters 

(Initial 0.3; Final 0.1) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 12.5 10 

Integration time constant (Ti) 0.0167 0.0282 

Differentiation time constant 

(Td) 

0.0025 0.0043 

 

Experiment 10: The set-point of specific growth rate(μ) was changed from μset = 0.4 h-1 to μset = 0.1 

h-1 and simulation time 7 (h) as shown in Figure 42. The overshoot and settling time of the adaptive 

system is decreased 45%, decreased 18.18 compared to non-adaptive system respectively. 

Table 18. PID controller model parameters 

Model parameters 

(Initial 0.4; Final 0.1) 

Adaptive system Non-adaptive system 

Gain proportional (Kc) 6 15 

Integration time constant (Ti) 0.0465 0.0304 

Differentiation time constant 

(Td) 

0.0070 0.0064 

 

 

 

 

 

 

 

 

 

 

 



50 
 

 

Figure 41. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.3 h-1 to μset=0.1 h-1) by automatic control 

system and simulation time is 7(h) 
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Figure 42. The simulation results show the dynamics of the process a)oxygen uptake rate (OUR), b) feeding 

rate (UF), c) gain proportional (Kc), d) integration time constant (Ti), e) differentiation time constant  (Td), f) 

specific growth rate  (μ) with setpoint control change from  (μset = 0.4 h-1 to μset=0.1 h-1) by automatic control 

system and simulation time is 7(h) 
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CONCLUSIONS 

1. Analysis of Fed-batch cultivation process an object of monitoring and control and analysis of 

mathematical models applied for modelling of fed-batch cultivation processes are presented. 

2. MATLAB/SIMULINK model for simulation of E. coli fed-batch cultivation is developed and 

applied for investigation of the controlled process dynamics at various cultivation conditions.  

3. PID controller gain scheduling algorithm is developed for controller adaptation to time-varying 

cultivation conditions. In the adaptation algorithm, the biomass specific growth rate and the oxygen 

uptake rate are used as gain scheduling variables.  

4. MATLAB/SIMULINK models are developed for modelling of ordinary and the adaptive control 

systems. Simulation results of the investigated control systems performance under various cultivation 

conditions show that the adaptive control system outperforms the ordinary system. An overshoot of 

specific growth rate step response decreases in  (11%-75%) and settling time decrease in (18.18%-

67.63%). 

5. The presented specific growth rate controller adaptation approach can be applied for the 

development of biomass growth control systems of various fed-batch cultivation processes.   
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APPENDICES 

Number 1. Mathematical model used in the experiment 

 

Number 2. Developing and testing model performance using MATLAB/SIMULINK tool 

 

Number 3. Testing of model performance using feed-forward control 

 



57 
 

 

Number 4. The reaction curve (model performance of feed -forward control) and experimental 

curve of the model used for investigation of the process dynamic parameters. 

 

Number 5. The least squares method in a MATLAB / SIMULINK environment. A resizer program 

was found by counting the gain co-efficient 

%function main 

clc, clear 

E_number=6; 

N=1:1:E_number; 

A_number=6; 

x(:1)=[1 1 1 1 1 1]'; 

x(:2)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]'; 

x(:3)=[21.4406 26.2082 32.0107 39.0987 58.3191 158.5760]'; 

F=[x(:1),x(:2),x(:2).^2]; 

%K 

Ye=[2.37 2.14 1.87 1.7 1.4 0.89]'; 

A=(inv(F'*F))*F'*Ye 

Ym=F*A; 

figure(1) 

plot(N,Ym,'x',N,Ye,'o'); 
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Number 6. The MATLAB / Simulink program calculates the values by calculating the K-factor 

%K=a0+a1(OUR)+a2(OUR)2   

clc,clear 

%OUR = x(:3) 

x(:3)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]'; 

a0= 4.8751; 

a1=-0.6863;  

a2=0.0294; 

k=a0+(a1*(x(:3)))+(a2*(x(:3)).^2) 

Number 7. The least squares method in a MATLAB / SIMULINK environment. A resizer program 

was found by counting the time constant 

%function main 

clc, clear 

E_number=6; 

N=1:1:E_number; 

A_number=6; 

x(:1)=[1 1 1 1 1 1]'; 

x(:2)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]'; 

x(:3)=[21.4406 26.2082 32.0107 39.0987 58.3191 158.5760]'; 

F=[x(:1),x(:2),x(:2).^2]; 

%T 

Ye=[0.0975 0.0869 0.0689 0.0627 0.0510 0.0408]'; 

A=(inv(F'*F))*F'*Ye 

Ym=F*A; 

figure(1) 

plot(N,Ym,'x',N,Ye,'o'); 

Number 8. The MATLAB / Simulink program calculates the values by calculating the T-factor 

%T=a0+a1(OUR)+a2(OUR)2   

clc,clear 

%OUR = x(:3) 

x(:3)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]';  

a0= 0.2381; 

a1=-0.0400;  

a2=0.0020; 

T=a0+(a1*(x(:3)))+(a2*(x(:3)).^2) 

Number 9. The least squares method in a MATLAB / SIMULINK environment. A resizer program 

was found by counting the time delay 

%function main 

clc, clear 

E_number=6; 

N=1:1:E_number; 
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A_number=6; 

x(:1)=[1 1 1 1 1 1]'; 

x(:2)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]'; 

x(:3)=[21.4406 26.2082 32.0107 39.0987 58.3191 158.5760]'; 

F=[x(:1),x(:2),x(:2).^2]; 

%τ 

Ye=[0.0099 0.0095 0.0087 0.0077 0.0066 0.0056]'; 

A=(inv(F'*F))*F'*Ye 

Ym=F*A; 

figure(1) 

plot(N,Ym,'x',N,Ye,'o'); 

Number 10. The MATLAB / Simulink program calculates the values by calculating the τ-factor 

%τ=a0+a1(OUR)+a2(OUR)2   

clc,clear 

%OUR = x(:3) 

x(:3)=[4.6304 5.1194 5.6578 6.2529 7.6367 12.5927]'; 

a0=0.0196; 

a1=-0.0026; 

a2=1.2042e-04; 

τ=a0+(a1*(x(:3)))+(a2*(x(:3)).^2) 

Number 11. The “μ” controller adaptation algorithm based on the expert “IF-THEN” rules 

function [K_pr,T_pr,Tau_pr] = fcn(u) 

mu=u(1); 

our=u(2); 

y_1=0; 

y_2=0; 

y_3=0; 

if (0.05 < mu && mu < 0.15 ) 

     y_1=4.8751+(-0.6863)*(our)+(0.0294)*(our)^2; 

     y_2=0.2381+(-0.0400)*(our)+(0.0020)*(our)^2; 

     y_3=0.01961+(-0.0026)*(our)+(1.2052e-04)*(our)^2;       

    elseif  (0.15 < mu && mu < 0.25) 

     y_1=3.0068+(-0.1449)*(our)+(0.0022)*(our)^2; 

     y_2=0.1403+(-0.0069)*(our)+(1.0824e-04)*(our)^2; 

     y_3=0.0135+(-1.4326e-04)*(our)+(1.0348e-06)*(our)^2; 

    elseif (0.25 < mu && mu < 0.35) 

     y_1=1.8093+(-0.0332)*(our)+(1.7472e-04)*(our)^2; 

     y_2=0.1062+(-0.0019)*(our)+(1.0497e-05)*(our)^2; 

     y_3=0.0129+(-5.0891e-05)*(our)+(3.4919e-08)*(our)^2; 

    elseif (0.35 < mu && mu < 0.45) 

      y_1=1.4311+(-0.0169)*(our)+(6.2045e-05)*(our)^2; 

      y_2=0.1127+(-0.0013)*(our)+(4.7972e-06)*(our)^2; 

      y_3=0.0143+(-5.5698e-05)*(our)+(1.4166e-07)*(our)^2; 
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     elseif (0.45 < mu && mu < 0.55) 

      y_1=0.9445+(-0.0057)*(our)+(1.0065e-05)*(our)^2; 

      y_2=0.1038+(-5.6808e-04)*(our)+(1.0274e-06)*(our)^2; 

      y_3=0.0143+(-2.1297e-05)*(our)+(1.6875e-08)*(our)^2; 

     elseif (0.55 < mu && mu < 0.65) 

      y_1=0.5151+(-0.0010)*(our); 

      y_2=0.0890+(-1.3060e-04)*(our); 

      y_3=0.0150+(-1.8537e-05)*(our); 

end  

K_pr=y_1; 

T_pr=y_2; 

Tau_pr=y_3; 

 

Number 12. PID controller gain scheduling algorithm by using Cohen and coon adjustment 

parameter 
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Number 13. Simulation of ordinary control system 

 

Number 14. Simulation of ACS 

 

Number 15. Discrete PID controller design 
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Number 16. External noise  

 

Number 17. The comparison performance indices of the adaptive and the ordinary control systems 

 


