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Summary 

 

Nocturnal non-dipping and morning surge in blood pressure for hypertensive patients are strong risk 

factors for cardiovascular events if untreated for prolonged time. Even though means for continuous 

and non-continuous monitoring of blood pressure parameters are available, there is a lack of methods 

for unobtrusive long-term monitoring. In this thesis, three different methods of pulse arrival time 

estimation from synchronously recorded electrocardiogram and photoplethysmogram are compared 

and later correlated with blood pressure parameters, such as systolic blood pressure, diastolic blood 

pressure, mean blood pressure and pulse pressure. The selected methods are middle amplitude of 

pulse slope, peaks of slope sum function and peaks of matched filtered photoplethysmogram. These 

methods are tested on thermal stress test database and breathing test database. The results were tested 

with two models such as Moens-Korteweg exponential arterial elasticity model and derivative of 

Moens-Korteweg linear model. The results show that volunteers from breathing test database have 

higher correlation than thermal stress test database. Also, the volunteers from breathing test database 

have moderate (0.4–0.59) to strong (0.6–0.79) downhill correlation for systolic blood pressure, mean 

blood pressure and pulse pressure, and very weak (0.0–0.19) to weak (0.2–0.39) correlation for 

diastolic blood pressure especially for middle amplitude of pulse slope method. When blood pressure 

estimation models based on pulse arrival time were created and tested, the correlation of real and 

predicted systolic blood pressure is moderate (0.4–0.59) to strong (0.6–0.79). Moreover, the models 

have good response such that their mean difference is <5 mmHg and standard deviation of difference 

is <8 mmHg when tested on systolic blood pressure and the results are similar for all three evaluated 

methods.
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Santrauka 

Naktinio kraujospūdžio sumažėjimo nebuvimas ar staigus rytinis kraujospūdžio padidėjimas yra 

svarbūs širdies ir kraujagyslių ligų ūminių įvykių veiksniai hipertenzija sergantiems pacientams. Nors 

nuolatinio ar protarpinio kraujospūdžio stebėjimo metodai yra prieinami, tačiau vis dar trūksta 

kasdienės veiklos nevaržančių ilgalaikės kraujospūdžio  stebėsenos metodų. Šiame darbe lyginami 

trys pulsinės bangos atvykimo laiko vertinimo iš sinchroniškai užregistruotos elektrokardiogramos ir 

fotopletizmogramos metodai. Įvertinama šiais metodais gautų pulsinės bangos atvykimo laiko verčių 

koreliacija su kraujo spaudimo parametrais, tokiais kaip sistolinis, diastolinis, vidutinis ir pulsinis 

kraujo spaudimas. Charakteringam pulsinės bangos atvykimo taškui rasti naudoti metodai: pusinė 

pulso fronto amplitudė, suminės fronto funkcijos maksimumas ir suderintuoju filtru nufiltruotos 

fotopletizmogramos maksimumas. Šiems metodams ištestuoti naudotos šiluminio streso ir 

kvėpavimo testo duomenų bazės. Kraujospūdžio parametrams įvertinti panaudoti du modeliai: 

Moens-Korteweg eksponentinis arterinio elastingumo modelis ir išvestinis Moens-Korteweg tiesinis 

modelis. Tyrimo rezultatai rodo, kad analizuojant kvėpavimo testo duomenų bazę gaunama didesnė 

pulsinės bangos atvykimo laiko ir kraujo spaudimo parametrų koreliacija nei analizuojant šiluminio 

streso duomenų bazę. Kvėpavimo testo duomenų bazėje gaunama vidutinė (0.4–0.59) arba stipri (0.6–

0.79) neigiama koreliacija sistoliniam, vidutiniam ir pulsiniam kraujo spaudimui, ir silpna arba labai 

silpna koreliacija diastoliniam kraujo spaudimui, ypač taikant pusinės pulso fronto amplitudės 

metodą. Sudarius kraujo spaudimo vertinimo iš pulsinės bangos atvykimo laiko modelius, gauta 

vidutinė (0.4–0.59) arba stipri (0.6–0.79) koreliacija tarp realių ir modeliu prognozuojamų sistolinio 

kraujo spaudimo verčių. Be to, abu modeliai pademonstravo gerą sutapimą, kadangi vidutinis 

skirtumas tarp realių ir prognozuojamų sistolinio kraujo spaudimo verčių buvo mažesnis nei 5 mmHg, 

o skirtumo standartinis nuokrypis nesiekė 8 mmHg visiems trims tirtiems metodams. 



Acknowledgement 

I would like to thank my supervisor Dr. Vaidotas Marozas and co-supervisor Birutė Paliakaitė for 

supporting me throughout this thesis with their valuable comments and ideas.   

I express my special thanks and gratefulness to Birutė Paliakaitė who has spent enough time for me, 

guided me and provided immense support during the experiment that is used in this thesis and the 

implementation of the ideas. I am also thankful to Dr. Andrius Rapalis who guided through the 

handling of experiment’s devices and collection of the signals. Finally, I thank all the volunteers of 

experiment who provided their presence despite of their work.



7 

 

Table of contents 

List of abbreviations and terms ........................................................................................................ 8 

Introduction ....................................................................................................................................... 9 

1. An overview of cardiovascular background and physiological signals ................................ 11 

1.1. Anatomy of cardiovascular system .......................................................................................... 11 

1.2. Blood pressure and blood pressure parameters ........................................................................ 12 

1.3. Morning surge and nocturnal blood pressure in cardiovascular disease .................................. 13 

1.4. Photoplethysmography and electrocardiography ..................................................................... 14 

2. An overview of existing non-invasive blood pressure estimation techniques ...................... 18 

2.1. Non-continuous blood pressure monitoring ............................................................................. 18 

2.2. Continuous blood pressure monitoring .................................................................................... 18 

2.3. Photoplethysmography based blood pressure estimation techniques ....................................... 20 

2.3.1. Pulse transit time-based blood pressure estimation ............................................................... 21 

2.3.2. Pulse arrival time-based blood pressure estimation .............................................................. 21 

2.3.3. Photoplethysmogram derivative-based blood pressure estimation ....................................... 22 

3. Databases of physiological signals ............................................................................................ 24 

3.1. Acquisition of physiological signals ........................................................................................ 24 

3.2. Thermal stress test database ..................................................................................................... 24 

3.3. Breathing test database ............................................................................................................. 25 

3.4. Pre-processing .......................................................................................................................... 26 

3.5. Statistical analysis .................................................................................................................... 27 

4. Methods ...................................................................................................................................... 28 

4.1. R-peaks detection in electrocardiogram ................................................................................... 28 

4.2. Methods for finding fiducial points of photoplethysmogram in pulse arrival time estimation 28 

4.2.1. Middle amplitude of pulse slope ........................................................................................... 28 

4.2.2. Peaks of slope sum function .................................................................................................. 29 

4.2.3. Peaks of matched filtered photoplethysmogram ................................................................... 30 

4.3. Detection of systolic and diastolic blood pressure in blood pressure signal ............................ 31 

4.4. Pulse arrival time-based models for estimating blood pressure parameters ............................. 32 

5. Results and Discussions ............................................................................................................. 33 

5.1. Estimation of blood pressure parameters in thermal stress test database ................................. 33 

5.2. Estimated PAT values and models for breathing test database ................................................ 39 

Conclusions ...................................................................................................................................... 45 

List of References............................................................................................................................. 46 

 

 



8 

List of abbreviations and terms 

Abbreviations: 

BP – blood pressure; 

CO – cardiac output; 

CVS – cardiovascular system; 

CVD – cardiovascular disease; 

DBP – diastolic blood pressure; 

ECG  – electrocardiogram; 

MBP – mean blood pressure; 

PAT – pulse arrival time; 

PP – pulse pressure; 

PPG – photoplethysmogram; 

PTT – pulse transit time; 

PWV – pulse wave velocity; 

SBP – systolic blood pressure; 

SSF – slope sum function; 

SVR – systemic vascular resistance; 

MK – Moens-Korteweg and exponential arterial elasticity model; 

L-DMK – derivative of Moens-Korteweg and linear model; 

 

 

 

  



9 

Introduction 

One of the major fatal diseases globally is cardiovascular disease (CVD), and hypertension is the 

foremost risk factor for many CVD diseases such as arterial stiffness [1], aortic wall calcification, 

arrhythmia [2], ventricular ectopic beats [3][4], chronic kidney dysfunction, heart failure, aortic and 

peripheral artery malfunctions [5]. Early detection of these diseases can save lives and it has become 

a vital health challenge all over the world. Hypertensive patients with non-dipping nocturnal blood 

pressure (BP) and morning surge in BP are at higher risk of CVD like stroke, left ventricular 

hypertrophy, myocardial ischemia, increase in QTc dispersion and duration, decrease in left 

ventricular diastolic function, thickening of intima-media of vessels, arterial stiffness and susceptible 

plaques [5]–[8]. Hence BP is an early indicator to be diagnosed and monitored in long term. It can be 

measured either invasively or non-invasively by using different types of devices and techniques [9]. 

Although invasive methods can provide continuous monitoring of BP, it has some limitations such as 

the risk of infection, bleeding, hematoma, arterial thrombosis and even nerve damage. Therefore, in 

recent years, non-invasive BP measuring methods have received considerable research attention. 

Non-invasive monitoring of BP is classified into continuous and non-continuous monitoring. Non-

continuous BP monitoring includes Riva-Rocci technique, mercury sphygmomanometer, 

auscultatory method and oscillometric method; whereas continuous BP monitoring methods are 

Penaz technique, arterial tonometry, pulse transit time (PTT) estimation, photometric method [9] and 

pulse arrival time (PAT). Since all non-invasive continuous BP monitoring methods except PTT and 

PAT requires inflation of a cuff, this thesis concentrates on PAT method for long term BP monitoring 

[10]. BP is conventionally characterized by four parameters: systolic blood pressure (SBP), diastolic 

blood pressure (DBP), mean blood pressure (MBP) and pulse pressure (PP). Photoplethysmography 

(PPG) is a device that calculates the changes in blood volume by utilizing a light source and a photo 

detector. As the skin is illuminated by the light from the light source, the light is absorbed by the 

blood in the arteries and the intensity of the reflected light changes which is measured by the photo 

detector.  

By using PPG and electrocardiogram (ECG) signals, it is possible to measure BP in long-term with 

the help of PAT method. PAT is the time period between the R peaks of the ECG and peaks or other 

fiducial points of the PPG slope. This thesis elaborately defines three different methods to calculate 

PAT using thermal stress test database and breathing test database and provides the comparative 

results of these methods. These methods are different in terms of PPG peak detection and they are: 

slope sum function (SSF) [11][12], middle amplitude of pulse slope [13] and matched filtering [14]. 

Later PAT values are estimated for these methods and the three different PAT values obtained are 

checked for correlation with SBP, DBP, MBP and PP. Moens-Korteweg exponential arterial elasticity 

model and derivative of Moens-Korteweg linear model were created and tested on SBP to find their 

response for all PAT methods. 

The aim of this thesis is to investigate methods based on pulse arrival time estimation for long-term 

monitoring of blood pressure parameters unobtrusively.  

The objectives of this thesis are the following: 

1. To perform a scientific literature review concerning blood pressure monitoring. 

2. To implement the selected algorithms for pulse arrival time estimation. 

3. To test the implemented algorithms on the collected signal database. 
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4. To perform a comparative study of the selected models for estimation of blood pressure 

parameters. 
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1. An overview of cardiovascular background and physiological signals 

This chapter consists of the physiological background of cardiovascular system in section 1.1, blood 

pressure and blood pressure parameters (see section 1.2), consequences of nocturnal BP and morning 

surge in BP on cardiovascular disease patients (see section 1.3) and photoplethysmography and 

electrocardiography signal’s pathophysiological overview and their acquisition (see section 1.4). 

1.1.   Anatomy of cardiovascular system 

One of the important physiological systems in a human is cardiovascular system (CVS) which 

includes the main purposes [15]: 

1. Transportation of oxygen, nutrients and water to all the tissues and organs of body and 

removal of unwanted products from the body. 

2. Secretion and supplying of hormones. 

3. Maintaining the body temperature. 

The human circulatory system or CVS consists of two main circulatory loops namely, the pulmonary 

circulation and the systemic circulation. The heart is a part of circulatory system which is a muscular 

organ approximately in the size of a closed fist which has four chambers such as right and left auricle, 

right and left ventricle. The heart is liable for transporting oxygen, nutrients, hormones and waste 

products from the cells throughout the body. The wall of the heart is formed of three layers namely 

epicardium (the outermost layer), myocardium (middle layer that contains cardiac muscle tissue), 

endocardium (inner layer) [16]. The location of the human heart, lungs and kidneys along with their 

interconnection with blood transfusion is shown in Fig.1.1.  

Fig.1.1. Cardiovascular system showing the pulmonary and systemic circulation, location of vital organs and 

their interconnection and blood pressure sensing baroreceptor, RA – right auricle, LA – left auricle, RV – 

right ventricle, LV – left ventricle, respectively, adapted from [15]. 
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The heart can generate its own rhythm and the conduction is initiated by the pacemaker known as 

sinoatrial (SA) node, then passed to atrioventricular (AV) node through the AV bundle. The AV 

bundle later divides into left and right branches to touch the apex of the heart through Purkinje fibers 

that stimulates the cardiac muscle cells to contract. 

The pulmonary circulation involves in the collection of deoxygenated blood from the heart to the 

lungs through the pulmonary artery and supplies oxygen to the blood in the lungs and go back to the 

heart again through pulmonary vein. The systemic circulation carries the oxygenated blood from the 

heart through the aorta and supplies the oxygenated blood to the whole body. Arteries carry these 

oxygenated bloods with maximum force pumped from the heart and hence they experience maximum 

BP. To sustain this force and pressure, arterial wall is thick, elastic and muscular enough so that as 

the pressure increases, the stretching of arterial wall also increases. Smaller arteries are provided with 

more muscular walls and hence they supply blood to small areas and maintains the regulation of blood 

flow. Arterioles are the end of the arterial branch which experience minimum BP since they are large 

numbered, reduced blood volume and far away from the direct pressure of the heart. Capillaries 

collect blood from arterioles and exchanges gases, nutrients and waste products between the tissues 

and blood using an endothelium filtrate. At the end of this process, the systemic circulation takes 

away the impurities from all tissues in the form of deoxygenated blood and reaches the heart for the 

next cycle of circulation.  

1.2. Blood pressure and blood pressure parameters 

As the blood is travelling throughout the blood vessels ranging from larger diameter in size to smaller 

one, the pressure exerted on the vessel wall is important which is known as BP. Regulation of BP is 

an important role of CVS in order to maintain the proper BP in vital organs like brain, heart or kidneys 

[15]. The information about BP and blood flow are sensed by baro-receptors and transmits it to the 

central nervous system (CNS). When the information about BP is passed through Autonomic Nervous 

System (ANS), the baroreflex changes the function of heart and blood vessels to attain focused BP 

values which in turn changes the cardiac output (CO) and systemic vascular resistance (SVR). CO is 

the amount of blood exerted from heart into aorta in l/min whereas SVR is resistance of fluid against 

the blood flow in mm Hg min/l. To maintain BP in long term, kidney controls the extra cellular fluid 

volume i.e. volume of fluids outside the all cells of the body. BP can be expressed as the product of 

CO and SVR i.e. 

𝐵𝑃 = 𝐶𝑂 × SVR        (1) 

BP is represented in the form of four BP parameters such as SBP, DBP, MAP and PP based on one 

cardiac cycle. During systolic event of the cardiac cycle, the blood is driven out from the heart into 

the arteries by closing the tricuspid valve followed by aortic or pulmonary valve as a result of 

ventricular contraction [17]. The pressure that is exerted at the time of systolic event on blood vessels 

is known as SBP. As the next phase, during diastolic event, the blood is filled into heart once the 

aortic or pulmonary valve and tricuspid valve closes and it is said to be ventricular relaxation. The 

pressure that is exerted during diastolic event is known as DBP. The global normal pressure range of 

SBP/ DBP is 120/80 and it is represented in terms of mm/Hg units. 
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Fig.1.2. Arterial blood pressure waveform showing SBP as the peak or maximum of the pulse, DBP as the 

foot or minimum of the pulse, MAP and PP, adapted from [15]. 

The above Fig.1.2 shows six waveforms of arterial blood pressure of a human whose SBP, DBP, 

MBP and PP are marked in blue line. In other words, SBP and DBP are the maximum (peak) and 

minimum (foot) of an arterial blood pressure. MBP is the average of SBP and DBP but not defined 

by a simple averaging formula. MBP is expressed by two different formulas: 

𝑀𝐵𝑃 =
(𝑆𝐵𝑃+2𝐷𝐵𝑃)

3
        (2) 

𝑀𝐵𝑃 = 𝐷𝐵𝑃 +
𝑃𝑃

3
        (3) 

In equation 2, MBP is analysed as one third of SBP and DBP multiplied by two [15] whereas in 

equation 3, MBP is not the normal average of SBP and DBP because the ventricles spend longer time 

for DBP rather than SBP [18] . MBP is directly proportional to CO and it is the product of CO and 

total peripheral resistance. 

𝑀𝐵𝑃 = 𝐶𝑂 × 𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒    (4) 

The normal range of MBP is approximately between 75mmHg and 105mmHg [19]. PP is the common 

difference between SBP and DBP and so it ranges approximately 40mmHg. 

𝑃𝑃 = 𝑆𝐵𝑃 − 𝐷𝐵𝑃        (5) 

𝑃𝑃 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒
       (6)  

PP is directly proportional to stroke volume which is the volume of blood expelled from heart for 

every contraction in l minute and inversely proportional to arterial compliance that is as the 

compliance increases from capillaries to aorta, PP decreases [20].  

1.3.  Morning surge and nocturnal blood pressure in cardiovascular disease     

The major risk factor of CVD is unhygienic diet, lack of exercises, intake of large amount of tobacco 

and alcohol. This relatively express in individuals as high BP, high blood glucose level, high blood 

lipids and obesity due to the deposition of fats on the inner wall of the blood vessels that causes 
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blockage in the blood vessels delivering the blood to the heart. According to WHO, CVD are a cluster 

of diseases of the heart and blood vessels which includes coronary heart disease, cerebrovascular 

disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease and deep vein 

thrombosis and pulmonary embolism. If CVD is untreated for a prolonged time, it would lead to heart 

attack or atherosclerosis especially for those who with high risk factors such as hypertension, diabetes 

or hyperlipidaemia. 

Henceforth, an early prediction of CVD is most essential to reduce the sudden death and it is 

straightforward to predict in hypertensive patients. In several studies it is evident that hypertensive 

patients with non-dipping nocturnal BP and morning surge in BP are at higher risk of CVD like stroke, 

left ventricular hypertrophy, myocardial ischemia, increase in QTc dispersion and duration, decrease 

in left ventricular diastolic function, thickening of intima-media of vessels, arterial stiffness and 

susceptible plaques [5], [6]. BP exhibits a diurnal variation by exhibiting a rapid incline in BP after 

waking up in morning is known as morning surge BP and decline of BP during night time is known 

as nocturnal BP. There are two events in nocturnal BP that is in hypertensive patients if the BP does 

not decline during night time, they are non-dippers while the others, whose BP decline during night 

time are dippers. Daily life activities shows a vital place in diurnal BP and it is proven that non-

dippers have inclined BP during night time due to sleep disorder, obesity and high intake of sodium 

[21], and they are suspected to be at increased risk of CVD  while alcohol ingestion and smoking 

would lead to inclination in morning BP. Non-dippers who are with or without morning surge greater 

than 23 mm Hg are at extreme risk of ischemic stroke compared to dippers while the SBP in dippers 

with inclined morning surge are at risk of ischemic stroke [8],[10]. When the BP increases for 

nocturnal non-dippers or for morning surge, chamber of left ventricle increases and causes left 

ventricular hypertrophy. The reduction in sympathetic baroreflex activity in young and elder 

individuals have shown inclination in morning surge BP and this condition happens when the large 

arterial wall stiffens, the arterial baroreceptors stretches less in the arteries [23]. This condition even 

increases stroke volume and results in rapid inclination of morning surge BP especially SBP. QT 

interval in ECG represents the ventricular depolarization. QTc dispersion is measured as difference 

between highest and lowest QT interval in all 12 leads of ECG [24] and it is proven that QTc 

dispersion was longer in non-dippers than dippers. It is also proved that non-dippers may be suspected 

to ventricular arrhythmia. Therefore, it is significant to monitor morning surge BP and nocturnal BP 

especially for hypertensive patients to avoid risk of CVD.  

1.4. Photoplethysmography and electrocardiography 

BP can be measured non-invasively for long-term and their techniques will be seen later in Chapter 

2. One of the techniques for long-term monitoring of BP is PPG and ECG which together can provide 

PAT. PAT correlates with BP which helps to measure non-invasively. PPG is a cost effective, non-

invasive photosensitive technique which determines the change in blood volume in the microvascular 

bed of tissue. There are pulsatile AC component and DC component in a PPG waveform. AC 

component whose fundamental frequency is usually 1 Hz, measures the change in blood volume of 

CVS while the DC component changes gradually due to respiration, vasodilator and vasoconstrictor 

waves, thermoregulation, width of tissue construction, complexion and mean blood volume 

accordingly by the superimposition of AC component [25][26].  
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Fig.1.3. (a) PPG transmittance mode showing LED and photodiode placed in adjacent position, (b) PPG 

reflectance mode showing LED and photodiode placed in parallel position, adapted from [26]. 

PPG device which comprises of a probe with light source and a detector that detects arterial pulse 

wave which transmits through the body and this technique is non-contact with skin [27]. The light 

from the light source penetrates through the skin into the tissue and the reflected light is detected by 

a photodetector or a photodiode. The backscattered light provides the variations in blood volume 

related with every single heart-beat. In recent trend, the PPG sensors consists of light emitting diode 

(LED) as the light source and applicable photodetectors that works at the infrared wavelengths which 

may be either red or near infrared wavelengths or both and it senses in two ways as transmittance 

approach and reflectance approach as displayed in Fig. 1.3. The transmittance mode of PPG uses 

larger LED intensity while the reflectance uses comparatively low intensity. The bandwidth of LED 

is approximately 50 nm which switches into light energy from electrical energy. The photodetector 

which switches into electrical energy from light energy must be chosen based on the spectral features 

that match with the source of illumination.  

Fig.1.4. PPG waveform with amplitude of systolic peak (x) and diastolic peak (y), adapted from [27]. 

A single PPG waveform comprises of a systolic peak, diastolic peak and a dicrotic notch. The systolic 

peak represents the pressure wave that is travelling from the left ventricle of the heart to the fringe of 

the body whereas diastolic peak represents the pressure wave of arteries of the inferior body [28]. 

PPG can detect pulses from ear, finger or toe and it can be measured accurately by transmittance 

mode while the reflectance mode measures from any parts of the body. The penetration of light is 

inverse of absorption coefficient i.e. the higher the penetration, the lesser the absorption. Red and 

infrared light are commonly used in PPG sensors as they penetrates deeper into the tissue due to their 

low absorption coefficients from 650 nm to 850 nm [26]. When the LED and photodetector is kept in 

larger distance, the penetration will be higher. The normal distance among LED and photodetector 

 

(a) LED   (b)    

   

 

                       Photodiode                          LED   Photodiode 
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used is between 4 mm and 6 mm. The PPG signals of right- and left-hand fingertips do not have any 

evident for the difference in terms of heart rate variability when the study was conducted for 23 male 

healthy subjects and hence both hand’s PPG signal can be utilized as a substitute [29].  

The cardiac cell membranes are positively charged outside due to the presence of large number of 

cations outside called as resting membrane potential. In sodium-potassium pump mechanism, when 

sodium channels open, there is a rapid incoming of extracellular sodium or calcium ions through 

membrane into the cardiac cells followed by sudden closing of sodium channels to avoid further 

incoming of sodium ions and this process is called depolarization as the resting potential is inversed. 

Concurrently, when the potassium channels open, there is a rapid outgoing of intracellular potassium 

ions outside the cells along with active pumping out of sodium ions from the cardiac cells and this 

process regains the positivity of cells outside and it is called repolarization [30]. The 

electrocardiography (ECG) is the measure of electrical activity of the heart using skin electrodes. An 

ECG lead either connects the electrodes to the ECG machine or it is an assembly of electrodes. ECG 

wave is formed from three distinct activities [31]: 

• Upward deflection is formed when electrical activity is towards a lead. 

• Downward deflection is formed when electrical activity is away from a lead. 

• Deflections of depolarization and repolarization appears in adjacent position. 

The electrical activity is initiated by sinoatrial node of the heart. It produces the PQRST wave by 

reaction of electrical changes in the heart. For every cardiac cycle, a single PQRST wave is formed. 

The P wave is formed due to atrial depolarization with minimal deflection. QRS waves denotes 

ventricular depolarization while Q wave is former downward deflection formed due to septal 

depolarization and might be linked to breathing. R wave is the first upward deflection that represents 

major ventricular depolarization with largest deviation of wave whereas S wave represents the late 

ventricular depolarization. Finally, the T wave represents the repolarization of the ventricles and U 

wave represents papillary muscle repolarization. The distance in time between initial P wave 

deflection and initial QRS complex deflection is said to be PR interval while the distance in time 

between final QRS wave deflection and initial T wave reflection is called as ST segment or ST 

interval  [31], [32]. ECG waveform is presented in Fig.1.5.  
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Fig.1.5. ECG of a normal heart with PQRSTUV wave and PR, ST, TP, RR and QT intervals, adapted from 

[32]. 

From these various peaks, segments and waves of ECG, R-peak is most commonly used in measuring 

time interval-based monitoring of BP from PPG waveform. 
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2.  An overview of existing non-invasive blood pressure estimation techniques 

Blood pressure can be defined as the pressure that is exercised on the blood vessel wall by the blood 

that is pumped from the heart. BP can be reported by three parameters namely systolic BP, diastolic 

BP and mean BP. SBP is the pressure exercised by blood in the last part of the ventricular contraction 

during systole on the blood vessels wall. DBP is the pressure exercised by blood in the last part of the 

diastole or expansion. MBP is the measure of rate of average BP exercised on the blood vessels wall 

[9]. The BP can be measured either invasively or non-invasively. Invasive BP measurement method 

involves in arterial line placement technique through the radial artery or femoral artery or brachial 

artery. This method provides the continuous monitoring of BP, but it is quite insecure. Due to 

injecting, even though the transducer is disposable, it may cause infection. It also causes other risks 

like bleeding, hematoma, arterial thrombosis and even nerve damage which diminish the advantage 

of real time measurement of this method. So, the focus of invasive BP measurement is turned towards 

the non-invasive methods.  

2.1. Non-continuous blood pressure monitoring 

There are several types of non-invasive BP measurement methods. They may be either continuous or 

non-continuous. The non-invasive non-continuous BP monitoring consists of Riva-Rocci technique, 

auscultatory method and oscillometeric method [9]. The Riva-Rocci technique uses an inflatable cuff 

surrounded by the inelastic material and manometer is included to measure the change in BP. The 

manual auscultatory method depends on puffing up the cuff using the squeezable bulb to increase the 

cuff pressure exceeding 120 mm Hg. The stethoscope is placed on the brachial artery. The first sound 

that is heard is observed as the SBP (phase I) and the sound is termed as Korotkoff sound which is 

attained by gradually shrinking the cuff and later DBP (phase II) is noted from the 

sphygmomanometer. The mercury sphygmomanometer performs like the auscultatory method along 

with that it makes use of a mercury manometer and stethoscope to hear the Korotkoff sounds. Later, 

the aneroid sphygmomanometer uses a barometer instead of mercury which is then followed by 

electronic sphygmomanometer that comprises of a pressure gauge and electronic monitor to display 

the BP [33].   

Furthermore, oscillometric method is the technique that measures the BP by estimating the 

oscillations in the cuff pressure caused by contraction and relaxation of brachial artery. This method 

also comprises of cuff pressure inflation and deflation above the SBP and below the DBP 

respectively. The notable difference of this method from the other methods is, it employs a band-pass 

filter to obtain the oscillometric pulses from the cuff deflation curve which is formed during the 

deflation of cuff pressure [34].  

2.2. Continuous blood pressure monitoring 

In recent trends, the non-invasive continuous monitoring has become vital. Hence, Penaz technique 

came into existence which utilizes the vascular unloading method. It provides the information of 

changes in blood volume and converts the PPG signal into information of BP. It makes use of infrared 

light source, photocell and an electro-pneumatic transducer. The infrared light source and the 

photocell continuously measures the changes in blood volume. During systole, as the blood volume 

increases, electro-pneumatic transducer controls the cuff pressure by increasing it and hence it expels 

excess blood volume. During diastole, as the blood volume decreases, electro-pneumatic transducer 
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furthermore decreases the cuff pressure thereby keeping the blood volume constant. This constant 

light signal and blood volume leads to the determination of mean arterial pressure which is like the 

cuff pressure by using the manometer. But this technique is expensive and contains the impacts of 

change in environmental factor [35]. Another non-invasive continuous arterial pressure measurement 

is arterial tonometry. This method incorporates a tonometer, pressure transducer and utilizes the bony 

structure which is below the radial artery. So, the artery is sandwiched between the bone and the 

tonometer and pressure transducer (see Fig.2.1.). As the tonometer tries to flatten the radial artery, 

the amount of pressure needed to flatten the artery is measured and the SBP and DBP is measured 

from that. It provides continuous pulse waveform with the help of strain gauge [36]. 

Fig.2.1. Arterial tonometry principle, adapted from [36] 

Finapres® (FINger Arterial PRESsure) is the recent technology that enables Penaz techcnique in its 

equipment with double finger cuff system as a non-invasive continuous BP monitor. It measures SBP, 

MBP, DBP, heart rate, cardiac output etc. Finometer® is the non-invasive method for beat-to-beat 

monitoring of BP by using patented modelflow technology. Portapres® (PORTable Arterial 

PRESsure) is the ambulatory monitor of BP that displays hemodynamic parameters like cardiac 

output and stroke volume and it can be easily used during exercise while the hand should be stable 

[37].  

Fig. 2.2. The complete system of Portapres® BP monitoring device, (1) output box, (2) Portapres control 

unit, (3) main unit to be worn on waist, (4) Front-end unit to be worn on wrist, (5) double finger cuffs, 

adapted from [37]. 

 

 

(1) 

(2) 

(3) 

(4) 

(5) 



20 

But Finapres®, Finometer® and Portapres® are inconvenient for people to use due to its bulk device 

connections and complexity. Thus, continuous monitoring of BP is vital without causing 

inconvenience to people to predict the hypertension which is an early indicator of CVD. 

2.3. Photoplethysmography based blood pressure estimation techniques 

The recent emerging cuff-less non-invasive long-term monitoring of BP parameters based on time 

interval of PPG waveform includes PTT, PAT, PWV and fiducial points selected for PTT and PAT. 

The velocity of pulse pressure that transmits from the largest artery to peripheral artery is termed as 

PWV [15]. When the heart ejects blood from left ventricles, the sudden aortic pressure that travels 

alongside the artery is absorbed by the arterial walls during systole. Consequently, the arterial pulse 

wave distributes the energy between arterial walls and arterial blood flow during diastole (see figure 

2.3).  

Fig. 2.3. Formation of pulse wave velocity during systole and diastole, adapted from [15]. 

PWV is clinically used now as a gold standard to measure arterial stiffness non-invasively. PWV can 

be expressed by combining Bramwell-Hills and Moens-Kortweg’s equation [15], [38], [39], 

𝐴 =
𝐿

𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦
=  √

ℎ𝐸𝑜𝑒∝𝑃

𝜌𝑑
       (7) 

where L represents the distance of artery, time delay is the period needed for the pressure wave to 

reach the periphery of the artery, h is thickness of elastic tube, Eo is Young’s modulus for zero arterial 

pressure, ∝ is vessel parameter, P is fluid pressure, 𝜌 is blood density and d is diameter of artery. 

Time delay can be measured non-invasively using PTT and PAT. An equation to calculate PWV with 

known length of artery D can be given as: 

𝑃𝑊𝑉 =
𝐷

𝑃𝑇𝑇
         (8) 

 where PTT is the period taken for a pulse to pass on the entire length of artery.  
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2.3.1. Pulse transit time-based blood pressure estimation 

PTT can be calculated [15], [40] by the difference between arrival time of pressure pulse away from 

the heart i.e. distal limit (PATd) and arrival time of pressure pulse near the heart i.e. proximal limit 

(PATp) which is expressed as: 

𝑃𝑇𝑇 = 𝑃𝐴𝑇𝑑 − 𝑃𝐴𝑇𝑝        (9) 

The increase in BP in the arteries, eventually increase the PWV which affects the time delay inversely. 

Thus, greater the BP, lesser the time delay, PTT. PTT or photometric method measures arterial 

pressure at two different sites which is achieved by the help of PPG i.e. the time period of an arterial 

pressure trend that arrives at two different locations of blood vessel is measured [9], [41]. In other 

words, PTT is the time delay between two peaks of two different PPG. Different fiducial points were 

marked on PTT to estimate BP in various studies. Among them, single fiducial point is considered, 

and it is called as mean slope transit time (MSTT) which is an alternative to PTT in this study, but 

this method has limitations and required better performance.  

Then, 9 healthy subjects undergone various test to change BP [42]. In that study, SBP and DBP were 

achieved from lead V5 ECG and left finger PPG concurrently with the help of cuff 

sphygmomanometer placed on the right wrist. Five fiducial points of PPG were selected, and they are 

correlated with SBP and PP. The results shown that fiducial points, time and area ratio of systole to 

diastole, time distance of PPG and diastolic interval could advance the functioning of PPG-based BP 

estimation. The foot of PTT has higher correlation to invasive DBP while the PPG peaks are 

unpredictable markers of SBP.  

In the study [43], the variation in pulse wave and baseline wander in pressure for long-term PTT-

based BP monitoring is examined. The five characters of pulse wave: heart cycle (HC), diastolic time 

(DIT), systolic (SA), position of local minimum of the first derivative wave (PMID) and height of 

tidal wave peak (HTWP) has shown the changes during change in pressure baseline which were the 

better indicators. Likewise, another study [44] which observed 22 healthy individuals for BP 

estimation using intensity ratio of first derivative wave of PPG (1st dPIR) and PTT has increased 

accuracy. 1st dPIR also shown that its output is baseline wander free and low-frequency noise free 

signals.   

2.3.2. Pulse arrival time-based blood pressure estimation 

PAT is the time difference between the R-peak of ECG and a distal arterial wave i.e. any fiducial 

point of PPG and is equivalent to the total amount of PTT and pre-ejection period (PEP) [38], [40], 

[41]. PEP represents the period required to unlock aortic valve from isovolumetric contraction of 

heart. 

𝑃𝐴𝑇 = 𝑃𝑇𝑇 + 𝑃𝐸𝑃        (10) 
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Fig. 2.4. PAT wrist taken from PPG on wrist and ECG, PAT finger taken from PPG on finger and ECG, PTT 

derived from difference between PAT wrist and PAT finger, adapted from [41] . 

PAT better represents SBP due to the ventricular contraction and vascular function dependency rather 

than DBP and MBP. This result is even proved in another study [40] which states that PAT estimation 

correlates better with SBP rather than DBP. In the comparison study [45], six foot finding methods 

were chosen among which the maximum value in the PPG wave and the minimum value in the PPG 

wave were time-based methods. It is seen that the minimum value in the PPG wave is obviously near 

the base of the pulse wave whereas maximum value arises later in the cardiac cycle. Later on, PAT 

calculation is done by using various PPG feature detection methods such as, PAT peak- largest value 

of a single PPG waveform, PAT foot- smallest value of a single PPG waveform, PAT dpeak- largest 

value of the first derivative of a single PPG waveform, PAT ddpeak-maximaum value of second 

derivative of a single PPG waveform [10]. The results shown that the PAT dpeak has given the lowest 

variance in PAT and in the difference of standard deviation of PP and RR intervals while the ddpeak 

and PAT foot has given nearly alike results. 

2.3.3.  Photoplethysmogram derivative-based blood pressure estimation 

PPG derivatives are most likely to be either first derivative of PPG or second derivative of PPG. The 

second derivative of PPG (SDPTG) were observed for 30 subjects and they divided according to their 

age [46]. The SDPTG-AI which is the second derivative of PPG with ageing index is employed and 

the wave consists of initial positive wave (a wave), early negative wave (b wave), re-upsloping wave 

(c wave), late re-down sloping wave (d wave) and diastolic positive wave (e wave). Here b/a, d/a and 

SDPTG-AI parameters have shown difference for different age subjects and it is helpful to determine 

the condition of artery. First derivative of PPG would likely be a good predictor for arterial stiffness 

whereas the second derivative of finger PPG has the better performance than first derivative of PPG 

[47].  
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First Derivative of PPG 

 

 

Second Derivative of PPG 

 

Fig.2.5. (a) Top figure shows the PPG wave and bottom figure shows the first derivative of PPG with 

systolic and diastolic peak markings. CT-crest time-time from foot of PPG to peak of PPG, ∆T-time between 

systolic and diastolic peak. (b) Top figure shows PPG wave and bottom figure shows second derivative of 

PPG with selected fiducial points a, b, c, d and e, adapted from [47]. 

Second derivative of PPG provides the valuable prediction of coronary heart disease and 

atherosclerosis by providing the near correlation with the distensibility of carotid artery. The 

increased arterial stiffness leads to raised b/a index and decreased c/a, d/a and e/a indices. Among the 

six-foot finding methods, maximum first derivative, maximum second derivative, intersecting 

tangents diastole patching in the study [45] were based on the derivates measurement. From these 

methods, the results shown that the best method for achieving immediate measurement of pulse rate 

from PPG signals is intersecting tangent method.  
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3. Databases of physiological signals 

This chapter consists of five sections such as acquiring the physiological signals like PPG, ECG and 

BP (see section 3.1), experimental procedure handled and physiological conditions of volunteers for 

thermal stress test database (see section 3.2) and breathing test database (see section 3.3) and finally 

pre-processing of physiological signals and statistical analysis of the signals in sections 3.4 and 3.5 

respectively. 

3.1. Acquisition of physiological signals 

PPG is acquired by Nautilus1 (BMII, Lithuania) while non-invasive continuous blood pressure 

measurement and recording system Portapres Model-2 (Finapres Medical Systems B.V., 

Netherlands) was used for acquiring continuous arterial BP. ECG was recorded by standard 

Einthoven leads (I, II, and III leads) whereas PPG was recorded from right hand. In this thesis, all the 

signals were upsampled to 1000 Hz. In breathing test database, ECG was acquired by KTU BMII 

Cardiologor V6 device while Nautilus 1(BMII, Lithuania) is used for acquiring ECG in thermal stress 

test database. 

3.2. Thermal stress test database 

The thermal stress test has been conducted to determine how thermal stress produced in the evening 

by means of sauna affects the mental activity at night and the functional efficiency of cognitive and 

neuro-muscular system and the hormonal change in the morning [48]. This study was conducted in 

collaboration with partners from Lithuanian Sports University. The experiment was divided into three 

steps such as experiment no.1, experiment no.2 and control no.1 each lasted up to 54 hours. The 

protocol was permitted by Kaunas Regional Biomedical Research Ethics Committee.  

Out of 15 healthy male volunteers, first 4 volunteers were used in this thesis. The volunteers were 

non-smokers, normotensive and not intaking any medication throughout the study. They have been 

instructed to cease exercise for 54 hours, food for 6 hours and other beverages like coffee, energy 

drinks, etc. for 12 hours before the examination. The selected volunteer’s physiological characteristics 

is presented in Table 1. This thesis uses the signals from control no.1. 

Table 1. Physiological characteristics of the volunteers. BMI* - Body Mass Index, adapted from [48] 

Volunteer Age (years) Sex Height (cm) Weight (kg) Bmi*(kg/m2) 

Volunteer no.1 28 Male 183 69.7 20.8 

Volunteer no.2 35 Male 183 82.0 24.5 

Volunteer no.3 28 Male 190 88.1 24.4 

Volunteer no.4 26 Male 187 80.1 22.9 

 

The sauna room temperature was set to 80-90̊ C, relative humidity to 30%. The subjects were allowed 

to sit before and after the sauna sessions in the neutral temperature of 25̊C.   
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REST 1 Sauna 

session 1 

REST 2 Sauna 

session 2 

REST 3 Sauna 

session 3 

REST 4 Sauna 

session 4 

REST 5 

00:00               00:20         00:35                  00:50         01:00               01:15            01:25             01:40                01:50                   02:20 

Fig.3.1. Experimental protocol of thermal stress test database, adapted from [48] 

ECG, PPG, ACC and temperature signals were recorded during the entire experiment while BP is 

recorded only at rest period: Rest 1 – 20 min., Rest 2 – 10 min., Rest 3- 10 min., Rest 4 – 10 min., 

Rest 5 – 30 min. In this thesis, Rest 2 to Rest 5 is utilized to observe the highest changes in BP 

waveform. Hence the total time period used here is 2 hours and 20 minutes. This database can be used 

to find the correlation of BP with PAT and one rest session can be used to create the model and the 

other can be used to test the model. 

3.3. Breathing test database 

The breathing test was conducted to observe the change in BP during exercises such as Valsalva 

manoeuvre and full controlled respiration. This test was carried out for 8 healthy male volunteers and 

2 healthy female volunteers. However, two sets of signals were not able to be synchronized properly 

and BP signals of three volunteers had been corrupted by calibration for every 10 seconds. Hence 4 

healthy male volunteers and 1 female volunteer is used in this thesis (see Table 2). The volunteers 

were instructed to be in rest position in a chair without any external disturbances.  

Table 2. Physiological characteristics of volunteers of respiratory test 

Volunteer Age (years) Sex Height (cm) Weight (kg) 

Volunteer no.1 28 Male 183 69.7 

Volunteer no.2 20 Male 172 60.0 

Volunteer no.3 19 Male 170 61.2 

Volunteer no.4 18 Male 168 63.5 

Volunteer no.5 18 Female 165 65.0 

 

The experiment was conducted in continuous two phases for about 16 minutes. Initial phase was 

carried out at 5 minutes of rest followed by Valsalva manoeuvre in which the volunteer’s nostrils and 

mouth were closed and they try to exhale for 20 seconds, next the continuous second phase is 5 

minutes of rest, full controlled respiration where the volunteers were instructed to deep breath in for 

5 seconds and breath out for next 5 seconds and the procedure continues for 1 minute which is 

followed by final 5 minutes of recovery time.  

Rest Session Valsalva manoeuvre Rest Session Full controlled 

Respiration 

Recovery Period 

00:00:00                   00:05:00                        00:05:20                      00:10:20                       00:11:20                    00:16:00 

Fig.3.2. Experimental protocol of breathing test. 
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During the whole procedure, ECG, PPG and BP signals were recorded. In this thesis, the period of 

Valsalva manoeuvre and full controlled respiration is utilized to test and predict BP parameters and 

their correlation with desired algorithms.  

3.4. Pre-processing 

The collected stress test database and respiratory test database were analysed using various signal 

processing methods such as: pre-processing the signals, finding fiducial points of PPG (middle 

amplitude of PPG slope, peaks of SSF and finding the peaks of PPG using matched filter). Initially, 

in the stress test database, PPG signal whose sampling rate is 1000 Hz is pre-processed by a 

butterworth low pass filter with cut off frequency 27 Hz and butterworth high pass filter with cut off 

frequency 0.4 Hz which removes the baseline wander. ECG signal is band pass filtered at the 

frequency range of 0.4 to 30 Hz using butteworth filter to avoid baseline contamination and a rejection 

filter is applied to remove 50 Hz powerline interference.  

Later, for the respiratory test database, PPG signal of sampling frequency 1000 Hz is filtered using a 

butterworth low pass filter and high pass filter at a cut off frequency 0.5 Hz and 25 Hz respectively 

to remove baseline wander. ECG signal with sampling frequency 1000 Hz was low pass filtered by 

enabling Parks-McClellan optimal FIR filter whose passband frequency is 35 Hz, stopband frequency 

is 50 Hz and attenuated by passband ripple and stopband ripple at the rate of 0.00575 dB and 0.0001 

dB respectively with a density factor of 20. Afterwards, ECG is removed with low frequency noises 

by butterworth high pass filtering at a cut off frequency 0.5 Hz. Portapres and Cardiologer 

synchronization problems on breathing test database were solved by using analog output from 

Portapres for event generation in Cardiologer (see Fig. 3.3). 
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Fig.3.3. Example of pre-processed ECG, BP and PPG signals for volunteer 1 from breathing test database. 

3.5. Statistical analysis 

Pearson correlation coefficient is used to find how one variable is correlated or related on another 

variable. The level of strength of Pearson correlation coefficient r can be seen in Table 3 based on 

which the correlation coefficients will be defined in upcoming results. The colour of each strength 

level would indicate the respective correlation coefficient. So that, purple for very strong correlation, 

pink for strong correlation, blue for moderate correlation, green for weak correlation and yellow for 

very weak correlation. 

Table 3. Level of Strength for Pearson correlation coefficients 

Level of strength Correlation coefficients 

(r values) 

Very strong 0.80-1.00 

Strong 0.60-0.79 

Moderate 0.40-0.59 

Weak 0.20-0.39 

Very weak 0.00-0.19 
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4. Methods 

This chapter consists of four sections, first section 4.1 takes the detection of R-peaks in ECG, second 

section 4.2 has three methods  that are selected to find fiducial points of PPG such as middle amplitude 

of PPG in sub-section 4.2.1, peaks of slope sum function in sub-section 4.2.2, peaks of matched filter 

in sub-section 4.1.3, third section 4.3 explains the detection of SBP, DBP, MBP and PP and forth 

section 4.4 has two models that are used to estimate BP such as Moens-Korteweg model and 

derivative of Moens-Korteweg and linear model of vascular elasticity model. 

4.1. R-peaks detection in electrocardiogram 

R-peak detection of ECG requires extraction of QRS complex whose frequency range is between 12 

and 20 Hz and it is achieved by applying a butterworth filter of this required frequency range. 

Afterwards the extracted signal is integrated by taking the absolute value of signal followed by 

smoothing of signals using another butterworth low pass filter at 13 Hz of cut off frequency to remove 

high frequency noises. Threshold is pre-set with initial maximum of ECG and it is established as 

adaptive to the forthcoming R-peaks. To detect peaks, the algorithm checks for peaks within 1.5 

seconds in every cardiac cycle for the given threshold, if the peak is not detected, the threshold adapts 

itself to the lower value and checks for lower R-peaks. Next, the indices of R-peaks and their 

respective amplitudes were extracted and stored for further processing of the study (see Fig. 4.1(a)).  

4.2. Methods for finding fiducial points of photoplethysmogram in pulse arrival time 

estimation 

The fiducial points of PPG considered are peaks and middle amplitude of upslope of pulses in PPG. 

The middle amplitude of PPG slope (see subsection 4.2.1), peaks of slope sum function (see 

subsection 4.2.2) and peaks of matched filtered PPG (see subsection 4.2.3) are chosen as the three 

fiducial points of PPG. The calculated fiducial points are then subtracted from R-peaks of ECG to get 

their respective PAT values. 

4.2.1. Middle amplitude of pulse slope 

The middle amplitude of pulse slope is defined by the middle value of the amplitude of PPG upslope 

which will be 50% or average of peak and foot of PPG signal [13]. At the beginning the high 

frequency noises of PPG is attenuated by low pass FIR filter at a cut off frequency 10 Hz.  The upslope 

of PPG is initially found within the range of two subsequent R-peaks indices or RR interval (Ri, where 

i is the index of R-peak) of ECG and the cycle waits for every 150 milliseconds and the cycle repeats 

for the length of R-peak indices. The maximum value of upslope is recorded as peak of PPG Sp and 

it is expressed as:  

𝑠𝑝 = arg max
𝑠𝜖[𝑅𝑖,𝑅𝑖+1]

{𝑥(𝑠)}       (11) 

Where x(s) is pre-processed PPG signal. In the same upslope, minimum value within the range of Ri 

and Sp is noted as foot of PPG Sf and given as: 

𝑠𝑓 = arg min
𝑠𝜖[𝑅𝑖,𝑆𝑝]

{𝑥(𝑠)}       (12) 
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Subsequently, middle amplitude points of PPG slope Sm which is the point between Sp and Sf where 

the 50% of amplitude of maximum of pulse amplitude is achieved can be expressed as: 

𝑠𝑚 = arg min
𝑠𝜖[𝑠𝑝,𝑠𝑓]

{|𝑥(𝑠) −
𝑥(𝑠𝑝)+𝑥(𝑠𝑓)

2
|}     (13) 

PATSlope50 for every cardiac cycle PATSlope50i is calculated which is the time difference between the 

timing of middle amplitude of PPG slope Sm, Slope50pi and its subsequent time instant of R-peak 

index, ECGRi (see Fig. 4.1(b)). 

𝑃𝐴𝑇𝑆𝑙𝑜𝑝𝑒50𝑖 = 𝑆𝑙𝑜𝑝𝑒50𝑝𝑖 −  𝐸𝐶𝐺𝑅𝑖     (14) 

4.2.2. Peaks of slope sum function 

The SSF helps to improve the upslope of the PPG signal and dominate the rest of the signal. This 

technique simplifies the identification of peaks of PPG. At first, a low pass FIR differentiator of order 

256 is designed with transition band between 7.7 Hz and 8 Hz for pre-processed PPG signal. The 

delay of the differentiator is the half of the filter order and it is removed after filtration. Then negative 

derivative samples are changed to zero. Now the SSF is implemented at time t, SSF(t) which can be 

given as follows: 

𝑆𝑆𝐹(𝑡) = ∑ 𝑄𝑛 , 𝑄𝑛 = {
𝑃𝑛,   𝑃𝑛 > 0
0,    𝑃𝑛 ≤ 0

𝑡
𝑛=𝑡−𝑤     (15) 

where w is the length of the considering window, Qn is the output from differentiator and Pn is the 

nth sample of filtered PPG signal. Here w is chosen to be 54 samples or 108 milliseconds which is 

the time interval of the upslope of the PPG signal [12]. Then the peaks of SSF is calculated within 

their subsequent RR interval, RRi. PATSSF for every cardiac cycle PATSSFi is calculated which is the 

time difference between the timing of peak of slope sum function, SSFpi and its subsequent time 

instant of R-peak index, ECGRi. 

𝑃𝐴𝑇𝑆𝑆𝐹𝑖 = 𝑆𝑆𝐹𝑝𝑖 −  𝐸𝐶𝐺𝑅𝑖       (16) 

SSF and the respective peaks are illustrated in Fig. 4.1(c). 
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Fig. 4.1. Provided results from thermal stress test database: (a) ECG with R peaks, (b) PPG with middle 

amplitude of PPG signal, (c) SSF with peaks of SSF and (d) Matched filtered PPG with its peaks.  

4.2.3. Peaks of matched filtered photoplethysmogram 

The matched filter finds the match for the similar pattern from the pre-defined waveform or the 

template of the selected pattern of the original PPG signal in the time sequence [14]. The defined 

template is the initial upslope of PPG i.e. within the range of first foot, Sfa (a is the index of foot) and 

first peak, Spb (b is the index of peak). Then conjugate is taken for the defined template. This 

conjugated template h(t) is now convoluted with pre-processed PPG signal x(k) which provides 

matched filtered signal. Delay is half the length of conjugated template and later it is removed from 

the matched filtered signal y(t). The matched filter can be expressed as: 

𝑦(𝑡) =  ∑ ℎ(𝑡)𝑥(𝑘 − 𝑡)𝐾−𝑡
𝑡=0        (15) 

The matched filtered signal provides higher amplitude to the matched patterns in which the time 

sequence looks like template and in other places with lower amplitude. This simplifies the way to 

find the peaks of PPG pulse. The peaks of matched filtered signal are evaluated within the RR interval, 

Ri. PATMatch for every cardiac cycle PATMatchi is calculated which is the time difference between the 

timing of peak of matched filtered PPG, Matchpi and its subsequent time instant of R-peak index, 

ECGRi. (see Fig. 4.1(d)). 

𝑃𝐴𝑇𝑀𝑎𝑡𝑐ℎ𝑖 = 𝑀𝑎𝑡𝑐ℎ𝑝𝑖 −  𝐸𝐶𝐺𝑅𝑖      (16) 
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4.3. Detection of systolic and diastolic blood pressure in blood pressure signal 

The maximum peak of blood pressure waveform is detected to be SBP. The peak of SBP is calculated 

within the RR interval, Ri which can be expressed as (17).  

𝑆𝐵𝑃𝑗  = arg max
𝑛𝜖[𝑅𝑖,𝑅𝑖+1]

{𝑥(𝑛)}      (17) 

where 𝑥(𝑛) is the BP signal. The minimum value or the foot of blood pressure waveform is DBP 

calculated within Ri by giving an approximate minimum value j for every SBP which then checks for 

the minimum value DBPj than j and it should not be equal to previous SBP.  

𝐷𝐵𝑃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑛𝜖[𝑅𝑖,𝑆𝐵𝑃𝑗]

{𝑥(𝑛)}      (18) 

PP and MBP is calculated from detected SBP and DBP where PP is the subtraction of DBP from SBP 

and MBP is estimated as the equation (3).  

Fig. 4.2.  SBP and DBP with outliers of BP 

The outliers of SBP and DBP were removed when PP is less than 20 mmHg. The outlier is due to the 

calibration of Portapres for every 70 seconds. The other outliers which is due to PAT were also 

removed by providing thresholds. Fig.4.2 and 4.3 shows the outliers of BP plotted on BP and without 

outliers of BP respectively. 

Fig. 4.3.  SBP and DBP without outliers of BP 
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4.4. Pulse arrival time-based models for estimating blood pressure parameters 

The vascular elasticity models for BP based on PAT values are divided into two types:  

• Linear models  

• Non-linear models 

The non-linear vascular elasticity models are further sub-divided into Moens-Korteweg and 

exponential arterial elasticity (MK) model [49], Moens-Korteweg and Bramwell-Hill model and 

MBP developed Moens-Korteweg and Bramwell-Hill model whereas the linear vascular elasticity 

model is derivative of Moens-Korteweg and linear (L-DMK) model [50]. This project mainly focuses 

on MK model and L-DMK model of vascular elasticity model. Initially the model is used to find the 

estimated or real BP parameter. The coefficients of the estimated BP parameters then used to predict 

the BP parameter of next session in thermal stress test database and to predict the BP parameter of 

next phase of breathing test database. 

Moens-Korteweg and exponential arterial elasticity model and derivative of Moens-Korteweg and 

linear model can be expressed as below: 

𝑀𝐾 = 𝑥(1) × ln(𝑃𝐴𝑇) + 𝑥(2)      (17) 

𝐿 − 𝐷𝑀𝐾 = 𝑥(1) + 𝑥(2) × ln(𝑃𝐴𝑇)     (18) 

where x(1) and x(2) are the coefficients of estimated BP parameters, MK is the predicted value of BP 

parameters for Moens-Korteweg model and L-DMK is predicted value of BP parameters for 

derivative of Moens-Korteweg and linear model. 
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5. Results and Discussions 

This chapter consists of all the results and discussions about PAT values that are estimated for thermal 

stress test database in section 5.1 and PAT values that are estimated for breathing test database in 

section 5.2. 

5.1. Estimation of blood pressure parameters in thermal stress test database 

BP is an early indicator of many diseases as mentioned in the previous studies [5]–[8], therefore it is 

mandatory to have a long-term monitoring method of BP. This thesis has concentrated on various 

methods to find PAT which includes middle amplitude of PPG slope, peaks of slope sum function 

and peaks of matched filtered PPG. The PAT values of thermal stress test database were calculated 

which provided PATSlope50, PATSSF and PATMatch and they are illustrated in Fig. 5.1. PATSSF amplitude 

is varying from 300 ms to 280 ms which is a good variation. PATSlope50 and PATMatch also have the 

good variation such as from 260 ms to 240 ms for PATMatch and from 240 ms to 220 ms for PATSlope50. 

Fig. 5.1. PATSlope50, PATSSF, PATMatch for the volunteer no.4 from thermal stress test database. 

The correlation coefficients of rest session 2, rest session 3 and rest session 4 were provided on table 

4, table 5 and table 6 respectively which shows the three PAT methods correlation with BP parameters 

through Pearson correlation coefficient r.  
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Table 4. Rest session 2 for thermal stress test database: SBP, DBP, MBP and PP correlation with PAT 

values shown through correlation coefficient r. 

Volunteer PATMatch 

(r values) 

PATSlope50 

(r values) 

PATSSF 

(r values) 

SBP MBP DBP PP SBP MBP DBP PP SBP MBP DBP PP 

1 0.1729 0.1937 0.1886 0.1001 0.2018 0.1928 0.1608 0.1639 0.1210 0.1105 0.0873 0.1056 

2 -0.3801 -0.4430 -0.4837 -0.2743 -0.4310 -0.4851 -0.5102 -0.3316 -0.4111 -0.4584 -0.4772 -0.3214 

3 -0.4655 -0.0897 0.1576 -0.6407 -0.4299 -0.0541 0.1860 -0.6274 -0.4875 -0.1264 0.1196 -0.6308 

4 -0.5006 -0.3831 -0.3077 -0.4399 -0.4907 -0.3650 -0.2861 -0.4636 -0.5237 -0.4130 -0.3400 -0.4223 

 

From the Table 4 we can see that volunteer 1 is having very weak correlation, volunteer 2 has 

downhill moderate and weak correlation, volunteer 3 has downhill strong, moderate and weak 

correlation and finally volunteer 4 has downhill moderate and weak correlation. It is noted that SBP 

is having downhill moderate correlation with all PAT methods such that correlation coefficient is r = 

-0.4655 and r = -0.5006 for volunteer 3 and 4 respectively with PATMatch, r = -0.4310, r = -0.4299 

and r = -0.4907 for volunteer 2, volunteer 3 and volunteer 4 respectively with PATSlope50 and finally 

r = -0.4111, r = -0.4875 and r = -0.5237 for  volunteer 2, volunteer 3 and volunteer 4 respectively 

with PATSSF. MBP does not have noticeable correlation except for volunteer 2 with r = -0.4430 for 

PATMatch, r = -0.4851 for PATSlope50 and r = -0.4111 for PATSSF showing as downhill moderate 

correlation and volunteer 4 has moderate downhill correlation as r = -0.4310 only for PATSSF. Then 

DBP is also having moderate downhill correlation for volunteer 2 with r = -0.4837, r = -0.5102 and 

r = -0.4772 for PATMatch, PATSlope50 and PATSSF respectively. Later, PP is having downhill strong 

correlation for volunteer 3 with r = -0.6407, r = -0.6274 and r = -0.6308 and for volunteer 4 with r 

= -0.4399, r = -0.4636 and r = -0.4223 for PATMatch, PATSlope50 and PATSSF respectively. It is 

observed from rest session 2 that for all methods, SBP and PP is having moderate and strong 

correlation compared to DBP and MBP which is having very weak correlation. 

Table 5. Rest session 3 for thermal stress test database: SBP, DBP, MBP and PP correlation with PAT 

values shown through correlation coefficient r. 

Volunteer PATMatch 

(r values) 

PATSlope50 

(r values) 

PATSSF 

(r values) 

SBP MBP DBP PP SBP MBP DBP PP SBP MBP DBP PP 

1 -0.2381 -0.2611 -0.2768 -0.1848 -0.2033 -0.2249 -0.2404 -0.1545 -0.2337 -0.2561 -0.2712 -0.1818 

2 0.1645 0.0847 -0.0190 0.2589 0.1853 0.1082 0.0064 0.2746 0.1447 0.0638 -0.0400 0.2419 

3 -0.3137 -0.3156 -0.2779 -0.2618 -0.2362 -0.2380 -0.2099 -0.1968 -0.3698 -0.3738 -0.3310 -0.3065 

4 -0.8337 -0.8709 -0.8506 -0.4416 -0.8406 -0.8689 -0.8424 -0.4665 -0.8411 -0.8786 -0.8580 -0.4458 

 

The rest session 3 does not have noticeable correlation with all BP parameters as it has shown only 

weak and very weak correlation for volunteers 1, 2 and 3. The only exception is volunteer 4 who has 

downhill very strong downhill correlation for SBP as r = -0.8337, r = -0.8406 and r = -0.8411, for 

MBP as r = -0.8709, r = -0.8689 and r = -0.8786  and finally for DBP as r = -0.8506, r = -0.8424 

and r = -0.8580 for PATMatch, PATSlope50 and PATSSF respectively. Also volunteer 4 has moderate 
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downhill correlation for PP such as r = -0.4416 with PATMatch, r = -0.4665 with PATSlope50 and r = -

0.4458 with PATSSF. From rest session 3, it is noted that only one volunteer is having very strong 

downhill correlation for SBP, MBP and DBP and moderate downhill correlation for PP while other 

volunteers shows only weak and very weak correlation. 

Fig. 5.2. Scattered plot of SBP, DBP, MBP and PP with PAT values for rest session 3, volunteer no.4. 

As the Table 5 shows, it is clearly seen in scatter plot (see Fig. 5.2) that volunteer 4 has very strong 

downhill correlation with SBP, MBP and DBP and moderate downhill correlation with PP. 

To test the estimated models, at first, rest session 2 was used to create MK model and L-DMK model 

for SBP and then tested on rest session 3. The correlation between real SBP and predicted SBP is 

expressed by Pearson correlation coefficients. Volunteers 1 and 3 has weak correlation while 

volunteer 2 has very weak correlation. In contrast, volunteer 4 has very strong uphill correlation of 

SBP such as r = 0.8334 and r = 0.8402 for PATMatch, r = 0.8402 and r = 0.8337 for PATSlope50 and r 

= 0.8334 and r = 0.8402 for PATSSF when tested on MK and L-DMK model respectively. 

From Table 6 it is observed that volunteers 1 and 2 have downhill correlations while volunteers 3 and 

4 have uphill correlation. This variation for volunteers is may be due to the synchronization of 

Portapres device. Bland-Altman plot is plotted to see the difference of agreements between SBP real 

and SBP predicted which was created by MK model and L-DMK model for PATMatch on rest session 

2 and rest session 3 for predicting which is shown in Fig. 5.3. 
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Table 6. Models created on rest session 2 for SBP and tested on rest session 3 and their real and predicted 

SBP correlation with PAT methods.  

Volunteer MK Model L-DMK Model 

PATMatch 

(r values) 

PATSlope50 

(r values) 

PATSSF 

(r values) 

PATMatch 

(r values) 

PATSlope50 

(r values) 

PATSSF 

(r values) 

1 -0.2419 -0.2083 -0.2371 -0.2381 -0.2033 -0.2337 

2 -0.1646 -0.1853 -0.1448 -0.1645 -0.1853 -0.1447 

3 0.3115 0.2346 0.3673 0.3137 0.2362 0.3698 

4 0.8334 0.8402 0.8409 0.8337 0.8406 0.8411 

The mean difference is of MK model is -3.2847 mmHg and L-DMK model is -3.1805 mmHg and 

their Pearson correlation coefficient are r =0.8334 for MK model and r = 0.8337 for L-DMK model 

which is a very strong uphill correlation as illustrated in Table 6.  

Fig.5.3. Bland-Altman plot showing agreement difference between real SBP and predicted SBP for PATMatch 

which was created by MK model and L-DMK model for volunteer 4. 

The calculated 95% confidence range is between -8.5483 mmHg and 1.9789 mmHg which are lower 

confidence interval and upper confidence interval respectively for MK model and between 2.0734 

mmHg and -8.4348 mmHg for L-DMK model. The standard deviation difference is calculated as 
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2.6855 mmHg for MK-model and 2.6807 mmHg for L-DMK model. According to the Association 

for the Advancement of Medical Instrumentation (AAMI) in the United States, the mean difference 

which is less than 5mmHg and difference in standard deviation not exceeding 8 mmHg were good 

results [51]. Hence, the result from volunteer 4 for PATMatch on Fig. 5.3 is a good result. Both models 

have not shown any changes in mean difference and standard deviation difference even though they 

are linear and non-linear models.  

Secondly, models were created on rest session 2 and tested on rest session 4 for SBP and the 

correlation of models with PAT values is calculated. Even though volunteer 2 and 3 has weak and 

very weak correlation, volunteer 1 has moderate uphill correlation such as r = 0.4635 and r = 0.4621 

for PATMatch, r = 0.4878 and r = 0.4867 for PATSlope50 and r = 0.4453 and r = 0.4448 for PATSSF 

when tested on MK and L-DMK model respectively. The correlation of real SBP and predicted SBP 

for volunteer 4 is found to be r = 0.8643 and r = 0.8659 for PATMatch, r = 0.8655 and r = 0.8672 for 

PATSlope50 and r = 0.8688 and r = 0.8701 for PATSSF when tested on MK and L-DMK model 

respectively.  

Table 7. Models created on rest session 2 for SBP and tested on rest session 4 and their real and predicted 

SBP correlation with PAT methods. 

Volunteer MK Model L-DMK Model 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 

PATSSF 

(r values) 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 
 

PATSSF 

(r values) 
 

1 0.4635 0.4878 0.4453 0.4621 0.4867 0.4448 

2 -0.1908 -0.1990 -0.1812 -0.1870 -0.1957 -0.1793 

3 -0.0485 -0.1291 0.0391 -0.0638 -0.1424 0.0298 

4 0.8643 0.8655 0.8688 0.8659 0.8672 0.8701 

 

The results were checked using the agreements (see Fig. 5.4) which is tested for volunteer 4 for 

PATSSF created by the MK model and L-DMK model. The correlation coefficient of the volunteer 4 

for PATSSF when created by MK model is found to be r = 0.8688 and for L-DMK model is found to 

be r = 0.8701 as illustrated in Table 7. MK model has the mean difference as -4.6711 mmHg with 

95% confidence range between -0.7865 and -8.5556 and their difference in standard deviation is 

1.9891 mmHg. The mean difference of L-DMK model is -4.4420 mmHg with the 95% confidence 

range as -0.6554 for upper confidence interval and -8.2285 for lower confidence interval with 

standard deviation difference as 1.9319 mmHg. As per the validation protocol by AAMI, the mean 

difference and standard deviation difference of both models were good, and they are similar. 
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Fig. 5.4. Bland-Altman plot showing agreement difference between real SBP and predicted SBP for PATSSF 

which was created by L-DMK model for volunteer 4. 

When the model, created on rest session 2 is tested on rest session 5 to calculate real SBP and predict 

SBP, the correlation coefficient for MK model and L-DMK model is found to be strong uphill 

correlation r = 0.7005 and r = 0.6976 for PATMatch, r = 0.7021 and r = 0.6979 for PATSlope50 and r 

= 0.6619 and r = 0.6605 for PATSSF for volunteer 1 while volunteer 3 and 4 has weak and very weak 

correlation respectively. Volunteer 2 has downhill moderate correlation for PATMatch as r = -0.3915 

and r = -0.4050 for PATSlope50 when created using MK model and r = -0.3969 for PATSlope50 when 

created using L-DMK model. 

 

 

 

 

 

 



39 

Table 8. Models created on rest session 2 for SBP and tested on rest session 5 and their real and predicted 

SBP correlation with PAT methods. 

 

Volunteer MK Model L-DMK Model 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 
 

PATSSF 

(r values) 
 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 
 

PATSSF 

(r values) 
 

1 0.7005 0.7021 0.6619 0.6976 0.6979 0.6605 

2 -0.3915 -0.4050 -0.3733 -0.3842 -0.3969 -0.3673 

3 -0.3798 -0.3844 -0.3570 -0.3781 -0.3832 -0.3562 

4 0.0369 0.0392 0.0800 0.0351 0.0371 0.0775 

 

The volunteer 1 result is checked by the scatter plot showing the real and predicted SBP for PATSlope50 

while created by MK model and L-DMK model (see Fig. 5.5).  

Fig. 5.5. Scattered plot for real SBP and Predicted SBP for volunteer 1, MK model (left) and L-DMK model 

(right) for PATSlope50. 

The models did not show any difference for any volunteers and for any PAT methods and hence their 

correlation is quite similar. When the rest session 2 is used for creating the models and tested on rest 

session 3 to 5, initially the correlation has increased from rest session 3 to 4 for all volunteers except 

volunteer 3. But the rest session 5 has sudden drop in correlation for volunteer 4 comparted to other 

volunteers. This change would have occurred due to the synchronization problems of Portapres and 

Nautilus and hence which resulted in quite low correlation. 

5.2. Estimated PAT values and models for breathing test database 

The PAT values of breathing test for three estimated methods were calculated. It is observed that the 

PAT values are similar for all methods (see Fig.5.6). PATMatch and PATslope50 has the variations from 

250 ms to 210 ms while PATSSF has the variations from 350 ms to 260 ms. 
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Fig. 5.6. PAT for three different methods for breathing test database for volunteer no.5. 

The Pearson correlation coefficients of BP parameters with PAT values were calculated for breathing 

test for all volunteers and illustrated in Table 11. 

Table 9. Correlation coefficients of BP parameters and PAT methods for breathing test 

Volunteer PATMatch 

(r values) 

PATSlope50 

(r values) 

PATSSF 

(r values) 

SBP MBP DBP PP SBP MBP DBP PP SBP MBP DBP PP 

1 -0.5586 -0.5209 -0.4222 -0.4261 -0.5206 -0.4538 -0.3401 -0.4438 -0.5684 -0.5664 -0.4908 -0.3800 

2 -0.6512 -0.5421 -0.3862 -0.6919 -0.5713 -0.4652 -0.3193 -0.6225 -0.6650 -0.5628 -0.4115 -0.6929 

3 -0.4829 -0.3232 -0.1120 -0.6385 -0.4816 -0.3198 -0.1066 -0.6402 -0.4997 -0.3421 -0.1317 -0.6505 

4 -0.5257 -0.4676 -0.3443 -0.5088 -0.4763 -0.4185 -0.3021 -0.4674 -0.4846 -0.4293 -0.3140 -0.4713 

5 -0.6849 -0.6075 -0.4417 -0.5296 -0.6686 -0.5873 -0.4218 -0.5246 -0.6725 -0.5997 -0.4389 -0.5160 

From the Table 9, we can say that SBP is having highest correlation with all PAT methods i.e. strong 

downhill correlation with PATMatch for volunteer 2 as r = -0.6512 and for volunteer 5 as r = -0.6849, 

with PATSlope50 for volunteer 5 as r = -0.6686 and finally with PATSSF for volunteer 2 as r = -0.6650 

and for volunteer 5 as r = -0.6725. Then PP shows strong downhill correlation with PATMatch 

calculated as r = -0.6919 and r = -0.6385, with PATSlope50 is calculated as r = -0.6225 and r = -

0.6402, with PATSSF is estimated as r = -0.6929 and r = -0.6505 for volunteers 2 and 3 respectively. 

MBP has the strong downhill correlation only for volunteer 5 such that r = -0.6075 and r = -0.5997 

with PATMatch and PATSSF respectively. The other volunteers have moderate downhill correlation and 

few with weak correlation but only DBP is having very weak correlation for volunteer 3 i.e. r = -

0.1120, r = -0.1066 and r = -0.1317 with PATMatch, PATSlope50 and PATSSF respectively. The 

correlation for volunteer 5 is shown as scatter plot which proves that SBP and MBP has the strong 

downhill correlation while DBP and PP has the moderate downhill correlation (see Fig 5.7). It is 
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observed that SBP and PP were having downhill moderate and downhill strong correlation while 

MBP has downhill moderate, weak and strong correlation. But DBP is the only parameter which do 

not have strong correlation despite of moderate, weak and very weak correlation. PATMatch and 

PATSSF methods have shown similar correlation while PATSSF have shown quite low correlation.   

Fig. 5.7. Scatter plot showing correlation between BP parameters and three PAT methods for breathing test, 

volunteer no.5. 

Breathing test database is divided into two sessions: Valsalva manoeuvre and full controlled 

respiration so that the models can be created for Valsalva manoeuvre session and tested on full 

controlled respiration session. In order to test the selected models, Valsalva manoeuvre session is 

used for creating the model which provides real SBP and it is tested on full controlled respiration 

session which provides predicted SBP. The Pearson correlation coefficient r of real and predicted 

SBP created and tested by MK and L-DMK model for PATMatch, PATSlope50 and PATSSF is shown in 

Table 10. 

Table 10. Models created on Valsalva manoeuvre session for SBP and tested on full controlled respiration 

session and their real and predicted SBP correlation with PAT methods. 

Volunteer MK Model L-DMK Model 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 
 

PATSSF 

(r values) 
 

PATMatch 

(r values) 
 

PATSlope50 

(r values) 
 

PATSSF 

(r values) 
 

1 0.4447 0.4529 0.4313 0.4392 0.4473 0.4271 

2 0.6083 0.5770 0.6578 0.6071 0.5754 0.6568 

3 0.5872 0.5995 0.5848 0.5853 0.5963 0.5830 

4 0.4614 0.4265 0.4301 0.4589 0.4251 0.4283 

5 0.6456 0.6325 0.6474 0.6429 0.6296 0.6450 
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The Table 10 clearly shows that all the volunteers have either strong uphill correlation or moderate 

correlation which is quite a good result. Volunteer 2 and volunteer 5 has strong uphill correlation for 

PATMatch when created by MK model such that Pearson correlation coefficient, r = 0.6083 and r = 

0.6456, for PATSSF as r = 0.6578 and r = 0.6474 respectively. Volunteer 3 and volunteer 5 has strong 

uphill correlation for PATSlope50 with the MK model provided the coefficients as r = 0.5995 and r = 

0.6325 respectively. When the L-DMK model is used, the correlation of real and predicted SBP for 

PATMatch is given as r = 0.6071 and r = 0.6429, for PATSSF is given as r = 0.6568 and r = 0.6450 for 

volunteer 2 and volunteer 5 respectively. Likewise, for PATSlope50, the correlation is r = 0.5963 and r 

= 0.6296 for volunteer 3 and volunteer 5 respectively. It is observed that both models have uphill 

strong and moderate correlation with all PAT methods. 

Bland-Altman plot is plotted to see the difference of agreements between SBP real and SBP predicted 

which was created by MK model and L-DMK model for PATMatch on Valsalva manoeuvre session 

and full controlled respiration session for predicting (see Fig. 5.8) for volunteer 5. The mean 

difference is -4.0917 mmHg and their Pearson correlation coefficient are r = 0.6456 which is a strong 

uphill correlation for MK model as illustrated in Table 10.  

Fig. 5.8. Bland-Altman plot showing agreement difference between real SBP and predicted SBP for PATMatch 

which was created by MK model and L-DMK for volunteer 5. 

For MK model, the 95% confidence range is estimated as 8.5209 mmHg and -16.7044 mmHg for 

upper and lower confidence interval respectively with difference in standard deviation as 6.4350 

mmHg. The mean difference for L-DMK model is -4.0323 mmHg with 95% confidence range 
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between 8.6141 mmHg and -16.6787 mmHg and their standard deviation difference is 6.4522 mmHg. 

It is observed that this result is quite good as per AAMI’s validation protocol. 

When the MK model and L-DMK model is used, PATSSF for volunteer 5 is illustrated in Bland-

Altman plot (see Fig. 5.9).   

Fig. 5.9 Bland-Altman plot showing agreement difference between real SBP and predicted SBP for PATSSF 

which was created by MK model and L-DMK model for volunteer 5. 

The MK model with PATSSF has the mean difference as -4.1669 mmHg with standard deviation as 

6.4722 mmHg. The 95% confidence range is calculated for MK model which is between the range 

8.5186 mmHg and -16.8523 mmHg. Similarly, for the L-DMK model, mean difference is -4.0878 

mmHg and their Pearson correlation coefficient are r = 0.6450 which is a strong uphill correlation as 

illustrated in Table 10. The 95% confidence range is estimated as 8.5877 mmHg and -16.7634 mmHg 

for upper and lower confidence interval respectively with difference in standard deviation as 6.4671 

mmHg. From this result it is observed that both models are similar in mean difference and standard 

deviation deviation and it is good as per validation protocol of AAMI. 
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Fig 5.10. Bland-Altman plot showing agreement difference between real SBP and predicted SBP for 

PATSlope50 which was created by MK model and L-DMK model for volunteer 5. 

Bland-Altman plot is plotted for MK model and L-DMK model for PATSlope50 which has the mean 

difference as -4.0855 mmHg and -4.0282 mmHg respectively. The 95% confidence range for MK 

model is calculated as in the range between 8.7033 mmHg and -16.7042 mmHg while for L-DMK 

model the range is between 8.8032 mmHg and -16.8596 mmHg. The difference in standard deviation 

is 6.5249 mmHg for MK model and 6.5467 mmHg for L-DMK model. The Fig.5.10 shows that the 

mean is increasing from down to top. The results were similar in despite of different models and 

different PAT methods and the results were quite good according to AAMI’s validation protocol. 

All PAT methods have shown good correlation with two models and the results were similar 

nevertheless the linear or non-linear model. 
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Conclusions 

1. Hypertensive patients with non-dipping nocturnal blood pressure and morning surge are at 

higher risk of cardiovascular diseases and their blood pressure parameters should be 

monitored unobtrusively for a long-term. A scientific literature review of methods for long-

term blood pressure monitoring showed that methods based on pulse arrival time estimation 

from synchronously recorded electrocardiogram and photoplethysmogram could be an 

attractive continuous, non-invasive and unobtrusive solution to this problem. 

2. Three different algorithms for fiducial point detection in photoplethysmogram pulse wave 

were implemented and used for pulse arrival time estimation. The selected fiducial point 

definitions are middle amplitude of pulse slope, peak of slope sum function and peak of 

matched filtered photoplethysmogram. 

3. Implemented algorithms were tested on signals from two databases. Thermal stress and 

breathing tests (Valsalva maneuver and full controlled respiration) were used in these 

databases to induce changes in blood pressure parameters. However, moderate to strong 

correlation between pulse arrival time values and reference blood pressure values was 

obtained using breathing test database only. Possible shortcomings when using thermal stress 

database could be insufficient change in blood pressure due to thermal stress or 

synchronization problems between the device, used for recording reference blood pressure 

signal, and the device, used for electrocardiogram and photoplethysmogram acquisition.  

4. The results obtained on breathing test database showed that pulse arrival time are moderately 

or strongly correlated with systolic blood pressure, mean blood pressure and pulse pressure. 

However, pulse arrival time is weakly correlated with diastolic blood pressure, especially 

when using middle amplitude of pulse slope to obtain the fiducial point of the pulse wave. 

When blood pressure estimation models based on pulse arrival time, namely Moens-Korteweg 

exponential arterial elasticity model and derivative of Moens-Korteweg linear model, were 

created and tested, the correlation of real and predicted systolic blood pressure values was 

found to be moderate (0.4–0.59) or strong (0.6–0.79) similarly for both models. Moreover, 

mean difference between real and predicted systolic blood pressure values was <5 mmHg and 

standard deviation of difference was <8 mmHg showing good agreement for both models. 

Hence, both blood pressure estimation models are working similarly independently of their 

complexity.  
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