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Abstract: This research aims to identify spatial and time patterns of theft in Manhattan, NY, to
reveal urban factors that contribute to thefts from motor vehicles and to build a prediction model
for thefts. Methods include time series and hot spot analysis, linear regression, elastic-net, Support
vector machines SVM with radial and linear kernels, decision tree, bagged CART, random forest, and
stochastic gradient boosting. Machine learning methods reveal that linear models perform better
on our data (linear regression, elastic-net), specifying that a higher number of subway entrances,
graffiti, and restaurants on streets contribute to higher theft rates from motor vehicles. Although the
prediction model for thefts meets almost all assumptions (five of six), its accuracy is 77%, suggesting
that there are other undiscovered factors making a contribution to the generation of thefts. As an
output demonstrating final results, the application prototype for searching safer parking in Manhattan,
NY based on the prediction model, has been developed.

Keywords: geospatial data; machine learning; Manhattan; prediction model; theft from motor vehicle;
crime prevention through urban planning

1. Introduction

Safety and security are both considered components of sustainability, as are the quality of air,
land, and water, well-being, economy, education, and health [1]. According to multiple theories and
studies [2–6], minimizing crime improves an area’s sustainability, and safer neighborhoods result in
better social and population health outcomes. Therefore, sustainable development can be achieved
by improving safety and security, and crime can be reduced by the correct implementation of urban
planning and design. The study by Stankevice et al. [7] revealed that when green areas and specialized
areas are incorporated into the residential areas, we observe less crime. Also, public areas combined
with residential and green areas lead to crime reduction. Mixed use areas and commercial areas
create good opportunities for the pickpocketing. Newman [8] proves that “spaces with low urban
development density and single use with a strictly limited access to strangers are less vulnerable to
crime,” whereas Jacobs’ [9] states that “urban spaces with mixed land use and open access to strangers
lead to less crime because they provide more ‘eyes on the street’ and more natural surveillance.” In
the research of Hillier [10] and Monteiro [11], some types of anti-ocial behavior are strongly related
to some urban functional zones. Moreover, Hiller [10] states that low-activity and low-movement
areas are related to crime. In the research performed by Sypion-Dutkowska and Leitner [12], it was
proven that activities such as alcohol outlets, clubs and discos, cultural facilities, municipal housing,
and commercial buildings are strongly related to the higher crime rates, especially in their immediate
surroundings (within 50 m from the activity). On the other hand, they [12] unveil activities that detract
crime, such as grandstands, cemeteries, green areas, allotment gardens, depots, and transport bases.

Sustainability 2019, 11, 2848; doi:10.3390/su11102848 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/11/10/2848?type=check_update&version=1
http://dx.doi.org/10.3390/su11102848
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 2848 2 of 15

In environmental security, Crime Prevention Through Environmental Design (CPTED) is one
of the most powerful tools to achieve safety goals. CPTED explains the ideas for crime prevention
through urban planning and design [2,3,13–18]. The well-known principles of CPTED that we rely
on in this research include natural surveillance (id est. ‘eyes on the street’), natural access control (id
est. making paths and other spaces visible and easy for communication), and activity support (id
est. urban spaces have to be frequently used by various activities). These CPTED principles can be
implemented through the proper urban planning and design, regulating land uses and activities on
sites, landscaping, lighting, signage, etc. [3]. The recent examples of successful application of CPTED
principles to safer cities include the COPS project in London, UK [19], demolition and rebuilding of
Bijlmermeer residential area in Netherlands [20], Hammarby Sjöstad in Stockholm, Sweden, Gellerup
and Bispehaven in Aarhus, Denmark, Tingbjerg and Husum North in Copenhagen, Denmark, La
Duchère urban project in Lyon, France, as well as projects in the Arab Emirates [21], Korea [22], and
Botswana [23]. In this paper, we search for patterns in crime time and locations by analyzing geospatial
data, as well as we attempt to predict places of safe and unsafe parking places in Manhattan, NY, and
urban factors as generators of crime through the application of machine learning methods.

A review of recent cases of the application of machine learning methods to crime analysis and
predictions demonstrates that despite some interesting examples, machine learning, as well as data
mining and other computational methods, are still not widely used for crime analytics using geospatial
data. Recently, a machine learning algorithm was applied to support the analysis and prediction of
crime patterns in Brazilian cities. During the past few years, Brazilian citizens provided Web-based
systems with a large amount of data. Therefore, the designed machine learning algorithm automatically
acquires data from collaborative sources, generates logical rules and visualizes the found patterns [24].
Boldt and Borg [25] proposed a novel method to approximate offense times for residential burglaries
using a dataset of all Swedish residential burglaries committed from 2010 to 2014 (a total of 103,029).
Having access to burglary data over five years (2011—2015), Mburu and Bakillah [26] developed a
series of regression models to identify local indicators of the urban environment (e.g. unemployment,
building density, and type) that increase the risk of burglaries. For the investigation of impact of
vegetation density and transport network on crime, Du and Law [27] employed geographically
weighted regression modeling to unveil the associations across an urban central-peripheral gradient for
the following crime types: Assaults, vehicle theft, sex offences, and drugs. Marco et al. [28] performed
Bayesian analysis with a spatial beta regression model to analyze the association between the spatial
distribution of drug-related police interventions and the neighborhood characteristics. Their results
indicated the following factors related to the high levels of drug-related police interventions: physical
decay, low socioeconomic status, and high immigrant concentration.

2. Materials and Methods

The research subject and area for this research are dependent on the client needs: one of the
biggest insurance companies in the USA was searching for the state-of-the-art data science ideas that
could help them to tailor the insurance price for the car owners based on their parking behavior. Our
idea lays in applying state-of-the-art machine learning methods to predict the rate of theft from motor
vehicle (as one of the components influencing the calculation of price of the car insurance) for each
street segment and to identify urban factors that cause higher rate of theft. Manhattan, NY, which
contains mostly residential, commercial, and manufacturing districts, was selected as an experimental
area for this research. Thefts from motor vehicles in Manhattan are the main subject of this research.
The dataset about crimes (including thefts from motor vehicles) comes from the NYC Open Data
“NYPD Complaint Map” (csv file), which contains 25 variables for 478,805 samples [29]. Under NY
Penal Law, the theft from motor vehicle falls under the category of larceny, both grand and petit.
However, the yearly percentage of thefts from motor vehicles in Manhattan is not more than 6%
compared to other crimes, with 99.5% of all thefts from motor vehicles occurring in the street. Parking
lots (both public and private) result in 0.496% of all cases, and the rest of urban spaces make up only
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0.004% of all cases. The dataset we use in this research contains the following attributes for each crime:
Latitude and longitude, crime type, date and time when a crime was committed, as well as date and
time when a crime was registered by the police, circumstances of the crime, address, description of
premises, and other variables. The granularity of crime classification is very fine. For instance, theft
from motor vehicle is categorized as grand larceny from vehicle, petty larceny from vehicle, theft of
vehicle accessory, etc. As this fine granularity was not necessary for our research goals, we do not focus
on small classes of crime (for instance, theft of vehicle accessory or similar), and we have aggregated
crime types into bigger groups, such as theft from motor vehicle, burglary, etc., using only crime data
for the years 2015, 2016, and 2017. The crime data for the recent 2—3 years is considered enough
data for making crime analytics and predictions/forecasting, especially when the crime is analyzed in
terms of urban planning. We also aggregated the new variable “day of week” using R programming
language. Next, we performed data reduction to leave in our dataset only the variables of our interest:
Unique ID, crime type, date and time, day of week, and latitude/longitude. Time series analysis is
applied to analyze the trend of thefts to occur within a day/night time. We used ArcGIS with Python
for the hot spot analysis (Getis-Ord G∗i ) to identify geospatial trends of thefts. For this purpose, the
G∗i statistic (that is a z-score) is computed for each analyzed feature (independent variable) in the
dataset, using the formulas in Eq. (1) integrated in ArcGIS software. It reveals spatial clusters of high
(statistically significant positive large z-scores) or low (statistically significant negative small z-scores)
values by considering each feature in terms of the neighboring features [30–33]. For instance, only
features with a high value and surrounded by other features with high values will be considered as a
statistically significant hot spot.
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where xj is the attribute value for feature j, wi,j is the spatial weight between features i and j, n is the
total number of features. G∗i statistic is a z-score [30–33].

To proceed with the selection of independent variables (and datasets accordingly) for the geospatial
data analysis, we faced some limitations: (i) Data must be geospatial, or it must at least have coordinates,
longitudes-latitudes, or exact addresses; (ii) data must represent urban features (not social or economic),
such as visibility, location, and operation hours of commercial and public buildings, lighting, graffiti,
vegetation, etc.; (iii) data must be open. These limitations allowed us to select the following datasets
from NYC.gov [34], NYC DOT [35], Open Data NYC [29], and GIS Community [36]:

• Street segment centerlines—As a basis and connective grid for all subsequent datasets (shp). This
dataset contains information about street segment direction, street name, length and width of the
street segment, as well as all generic street and non-street features, along with roadbed. In the
scope of this research, we use only the data about street segment endpoint coordinates (in order to
map the street segment centerline), as well as street segment length and width.

• Subway entrances as points with their geolocations (shp), having five variables for 1929
samples—Unique ID, URL, name (street or intersection of streets), point geometry (latitude
and longitude), and subway line (A, B, C, D, etc.). This dataset comes from the year 2017. In terms
of this research, we keep for the further analysis only two variables—ID and point geometry.

• Restaurants as points with their geolocations (shp), having 13 variables for 9326 samples—Unique
ID, name, cuisine (Afghan, Chinese, French, etc.), phone, address, point geometry (latitude and
longitude), etc. This dataset comes from the year 2017. We keep for the further analysis only two
variables—ID and point geometry.

• Graffiti as points with their geolocations (shp), having 13 variables for 2226 samples—Unique ID,
address, community, borough, status, date, X and Y coordinates, etc. Only three variables—ID, X,
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and Y coordinates—were selected for merging the dataset and proceeding with the research. Also,
we limit the number of samples only to those registered in the years 2015, 2016, and 2017.

• Street pavement rating as lines with the rating being presented as ‘good,’ ‘fair,’ or ‘poor’ (shp),
having 10 variables for 81,210 samples—Unique ID of each segment, line geometry (latitude and
longitude for both start and end points of each street segment), segment length, segment width,
rating word (Good, Fair, Poor, Not Rated (NR)), and rating code as an ordinal variable (0, 1, 2,
3, etc.), rating date and time, etc. This dataset comes from the year 2017. To merge this dataset
with others and to perform the research, we keep only three variables—ID, line geometry, and the
pavement rating code.

Street segment was defined as the joining of elements for all six datasets, and further data processing
and research were performed on the microscale, i.e., on the scale of street segment. According to
the Space Syntax theory, “segment is the shortest path that uses the least number of streets (actually,
the least number of street sections between the crossings) to get to your destination” [37,38]. The
six datasets are to be joined by location method, since they do not have a common key value. Join
by location, or spatial join, uses spatial associations between the layers to append fields from one
layer to another. Therefore, ArcGIS in combination with Python is used for joining six datasets by
following this workflow: (i) All the necessary files (csv and shp) are imported into ArcMap; (ii) for
the thefts dataset that comes as a csv file, the data is geolocated in XY coordinates—id est., the layer
file is created (though, now the geolocated data does not have the unique ID (key) that is required
to proceed with the data processing); (iii) the layer file is converted into shp file and imported into
ArcMap; (iv) each of five shp file datasets, (thefts, restaurants, subway entrances, graffiti, pavement
rating) is joined one-by-one to the street segment centerlines dataset based on spatial location of the
added dataset (layer). Now, each street segment is assigned properties of the joined layer, where each
line (a street segment) is given attributes of the line (pavement rating) and points (thefts, restaurants,
subway entrances, graffiti) that are closest to the street segment centerline. Moreover, for each street
segment, the number of occurrences for each of the following variables was added: Thefts, restaurants,
subway entrances, and graffiti. For instance, for each street segment, the number of thefts that occurred
on that street segment was counted and added as a new generated value. In the same way, new values
were generated while counting the number of restaurants, subway entrances, and graffiti located on
each street segment. Using R programming language, we performed data reduction, leaving only the
variables of our interest, i.e., urban features that might be responsible for the generation of thefts from
motor vehicles. Therefore, the final dataset with 17,060 samples is a geospatial data, where each street
segment carries information about its pavement rating, as well as the number of thefts, restaurants,
subway entrances, and graffiti, as shown in Table 1.

Table 1. Final geospatial dataset (extract).

ID Latitude,
Longitude

Segment
Length

Segment
Width Thefts Restaurants Subway

Entrances Graffiti Pavement
Rating

33

−74.25287637435896
40.50762599010005,
−74.25299942180904
40.50688186992653

229 33.58 1 2 0 0 6

35

−74.25308030444408
40.51209961294924,
−74.25299384780556
40.51206137595131

66 30 0 0 0 0 0

All data in the final dataset was divided randomly into the training set (80% of data) and the test
set (20% of data). To build a good prediction model we have tried nine machine learning algorithms
on the training set and tested the model performance using the test set data:

• Multiple linear regression (lm),
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• Elastic-net (enet) with a tuned hyper-parameter lambda λ, where penalties α for both lasso (here,
L-1 norm is used to shrink the regression coefficients toward zero by penalizing the regression
model, which is the sum of the absolute coefficients) and ridge (here, L-2 norm is used to shrink
the regression coefficients, with minor contribution to the outcome, to be close to zero, which is
the sum of the squared coefficients) regressions are balanced [39],

• Support vector machines (SVM) with the radial kernel with tuned parameters gamma γ, that
is, the Gaussian Kernel hyperparameter (to handle nonlinear classification), which controls the
shape of the peaks of the Radial Basis Function (RBF) kernel, and cost C, that, is the soft margin
hyperparameter, which controls the influence of each individual support vector and how much
we penalize variables. If gamma is large, it leads to high bias and low variance models. High
gamma makes our decision boundary depend on points close to the decision boundary and nearer
points carry more weights than faraway points due to which our decision boundary becomes
wigglier, and small gamma makes faraway points carry more weights than nearer points. Thus,
our decision boundary becomes more like a straight line. The cost of misclassification is low with
small C values (id est. a soft margin), whereas the cost of misclassification high with the large C
values (id est. hard margin). With the large C values, the algorithm tries to explain the input data
stricter, and it usually leads to overfitting. Therefore, the goal is find the balance between small
and large C and gamma values,

• Support vector machines (SVM) with the linear kernel with a tuned parameter C, which defines
how much we want to avoid misclassification, where small C corresponds to small margin between
support vectors, and high C gives bigger margin,

• Decision tree (CART) with a tuned complexity parameter cp that corresponds to the size of the
decision tree. When the cp value is reached for the particular node in the tree, then tree building
stops growing,

• Bagged CART (different from CART), a bootstrapped aggregation is an ensemble method that fits
many trees to bootstrap-resampled versions of the training data to build independent prediction
models, and then combines them using an averaging technique (for instance, a majority vote).
Because this technique takes many uncorrelated trees to make a final model, it reduces error by
reducing variance [40],

• Random forest (rf) with tuned number of trees in the forest and mtry parameter as a number
of variables randomly taken as candidates from the initial list of all variables to make the split
for building the trees, where usually mtry = n/3 for regression, with n being a number of
independent variables,

• Stochastic gradient boosting (generalized boosted modeling (gbm)), different from bagged methods
and random forest, chooses all features to make a split, and predictors are made sequentially
(not independently, like in random forest and other bagged algorithms), where the subsequent
predictors learn from the errors (residuals) of the previous predictors. It aims to optimize the loss
function (that can be any function, for instance, regression can use a squared error), then uses a
weak learner (such as decision trees) to make a prediction, and finally, it makes an additive model,
where one tree as a weak learner is added at a time without changing existing trees. Here, error
is calculated and gradient decent is used to minimize the error by adding a tree to the model
that minimizes the error [41]. Here, we tune the following parameters: The number of trees, the
maximum depth of variable interactions (interaction.depth), the shrinkage parameter applied
to each tree in the expansion, and the minimum number of observations in trees terminal nodes
(n.minobsinnode).

Some algorithms require data preprocessing, such as feature scaling and centering the data points.
Therefore, the data preprocessing is performed within the linear regression, elastic-net, and both SVMs.
We applied repeated cross-validation of our dataset to select the best prediction model with 10-fold
cross validation and three repeats, which gives us a more robust estimate of the models. RMSE (root
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mean squared error) and R2 (R squared) are used to compare the models. RMSE gives us information
about the prediction model errors (the less the metric the better), and R2 tells us about the amount
of variability of a target (dependent variable) explained by the features (independent variables) (the
closer to 1 the better).

To build a good regression model, we checked data for missing values, multicollinearity, outliers,
and normality. Missing values: After finding out the character of missing values, we excluded them
from analysis. Multicollinearity: We wanted to avoid any two independent variables that are highly
correlated (r > 0.9) because they create a multicollinearity problem in the regression model. Therefore,
we performed a correlation analysis using the Pearson correlation coefficient, which describes the
relation between variables in terms of linearity. However, after checking the variables, we did not
find any independent variables that are strongly correlated. Therefore, we have no multicollinearity
problem in our data. Additionally, checking the training set data for outliers did not result in any
outliers. However, a normality check showed that data of four variables (thefts, restaurants, subway
entrances, and graffiti) is strongly right-skewed (Figure 1A) because many street segments have zero
values of thefts, restaurants, subway entrances, and graffiti. Therefore, we performed a logarithmic
transformation of data within these four variables, previously adding one to all values to avoid log
0 cases. Logarithmic transformation of data significantly improved data distribution, and therefore,
the transformed data in the training set was used to perform a correlation analysis to decide what
variables to include in the regression analysis. Finally, we checked six assumptions for correctness of
the prediction model and tested the prediction model on the test set data.
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Figure 1. (A). Histogram of restaurants. The data is strongly right-skewed, with the most of values equal
to zeros. (B). When do thefts happen? The graph shows a slight, although not very significant, increase
in theft rates on Fridays, Saturdays, and Sundays. (C). Where do thefts happen? Almost all thefts from
motor vehicles in Manhattan happen on the street. (D). Where and when thefts happen: Identifying
patterns. The temporal distribution (in terms of crime per hour) and the spatial distribution of thefts
from motor vehicles reveal a common pattern in theft location and time on Tuesdays, Wednesday, and
Thursdays. However, we do not observe any pattern for other weekdays.
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3. Results

3.1. Temporl and Spatial Distribution of Data

Exploration of day of week and theft variables does not demonstrate any significant trend
(Figure 1B). However, the initial theft data analysis with Tableau revealed that almost all thefts from
motor vehicles happen on streets (Figure 1C). Therefore, to investigate further, we used only thefts
that occurred on streets. Time series analysis of thefts for each day within a week and the geospatial
analysis of theft unveils a common pattern in both time series and theft mapping results for Tuesdays,
Wednesdays, and Thursdays data (Figure 1D) with theft rates increasing from 4 p.m. to 7—8 p.m.,
and the lowest theft rates being at 2—6 a.m. However, we did not observe any pattern for any of the
remaining week days, i.e., neither time series plots nor theft maps for different time ranges demonstrate
any common trends. To check if criminal behaviors or opportunities for committing a theft depend
on human activities during particular hours, we divided a week into time ranges based on human
activities (weekday work hours, weekday commute hours, weekday nights, weekend nights, etc.).
For each time range, we generated a map with theft rate for every street segment (Figure 2A). Visual
comparative analysis of maps reveals that thefts from motor vehicles “move” within Manhattan
depending on time range, and the intensity of theft is different depending on human activities.
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Figure 2. (A). Theft rates for street segments within different time ranges. The maps show that thefts
from motor vehicles “move” within Manhattan depending on time, while the intensity of theft is
different depending on human activities. (B). Hot spot analysis of thefts from motor vehicles. Significant
theft hot spots (with 90–95–99% confidence level) are found in the East Village, Washington Heights,
and Inwood neighborhoods, whereas significant cold spots (with 90–95–99% confidence level) are
located in the Upper East Side and Financial District of Manhattan, NY.

To narrow our search from the most opportune days and time for committing a theft to territories
where a theft is most likely to occur, we performed a hot spot analysis (Figure 2B). Hot spot analysis
demonstrates the most potentially dangerous territories located in East Village and some spots in
Uptown Manhattan, i.e., Washington Heights and Inwood, whereas the safest areas are Upper East
Side and Financial District. The reason for the latter, however, appears to be restrictions on parking a
private vehicle on many streets. In order to pinpoint the crime locations more accurately, we performed
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a correlation and regression analysis to find urban generators of thefts and, based on these generators,
to come closer to the specific street segments with high theft prediction.

3.2. Selection of the Prediction Model

We trained eight different machine learning algorithms for the regression task on the training
dataset with 12,794 samples and 10-fold cross validation with three repeats, tuning the following
parameters: (1) For the linear regression, the intercept is included; (2) for the elastic-net, we use the
tuned best-fit parameters lambda λ = 0 that corresponds to zero amount of shrinkage and the mixing
parameter alpha α = 1 that performs the lasso fit; (3) for the SVM with a radial kernel, we use the
tuned best-fit parameters cost C = 1 and gamma γ = 2.908401; (4) for the SVM with a linear kernel, we
use the tuned best-fit parameter cost C = 1; (5) for the decision tree (CART), we tune the complexity
parameter cp = 0.01185767; (6) for the bagged CART, we do not tune any hyperparameter; (7) for the
random forest, we tune the number of trees to be 500 and mtry = 2; (8) for the stochastic gradient
boosting (gbm), we tune the number of trees equal to 150, the maximum depth of variable interactions
interaction.depth = 3, the shrinkage = 0.1, and the minimum number of observations in trees terminal
nodes n.minobsinnode = 10. The number of thefts from motor vehicles committed in a street segment is
the target variable (dependent variable). The number of subways, restaurants, graffiti, street pavement
rating, and street segment width and length are the features (independent variables) used for the
model selection by applying different machine learning methods. We computed RMSE and R2 for all
built models and compared them in order to select the best prediction model. From the comparison
results presented in the Table 2, it is obvious that linear models perform better on our data (linear
regression, elastic-net), as well as the random forest. For the best regression model, we want to have
the low error (close to zero) and the high variability of a target variable explained by the features (close
to one). Although the lowest value of RMSEmin and the highest value of R2

max are observed while
using the random forest regression, we proceed with the mean values of RMSE and R2 obtained from
the 10-fold cross validation with three repeats procedure. Therefore, we consider linear regression
and elastic-net as candidate models having the lowest RMSEmean and the highest R2

mean. Because the
elastic-net increases bias to reduce overfitting (and, accordingly, to achieve lower variance) and none
of our models suffer from overfitting, we choose linear regression as the final prediction model for
thefts from motor vehicles. With linear regression, the model produces less bias, and preserves the
same RMSE and R2.

Table 2. Comparison of prediction models using root mean square error (RMSE) and coefficient of
determination (R2).

Model RMSEmin RMSEmean R2
mean R2

max

Linear regression 0.4407129 0.6049274 0.6303150 0.8730436
Elastic-net 0.4407129 0.6049274 0.6303150 0.8730436
SVMRadial 0.4548175 0.6387557 0.5693278 0.7638390
SVMLinear 0.4486161 0.6281775 0.6133442 0.8739586
Decision tree (CART) 0.4470269 0.6164779 0.6024365 0.8418731
BaggedCART 0.4393015 0.6114266 0.6154108 0.8664760
Random forest 0.4404932 0.6053636 0.6258950 0.9007527
Stochastic Gradient Boosting 0.4446763 0.6102181 0.6194829 0.8680953

3.3. Prediction Model Using Multiple Linear Regression

The Pearson correlation coefficient demonstrates a moderate positive linear relation between thefts
and subway entrances (s_rho = 0.49, p-value < 2.2× 10−16, a weak positive linear relation between thefts
and restaurants, as well as thefts and graffiti (for both relations s_rho = 0.19, p-value < 2.2 × 10−16), a very
weak positive linear relation between thefts and street pavement rating (s_rho = 0.02, p-value = 0.02153),
and a very weak negative positive relation between thefts and street segment length (s_rho = −0.02,
p-value = 0.01068), as well as thefts and street width (s_rho = −0.02, p-value = 0.005803). Variables
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having very weak relations with thefts are excluded from the regression (street pavement rating, street
segment length, and street segment width).

During the building of the linear regression model, we considered the significant variables (subway
entrances, restaurants, and graffiti). Then, if necessary, we dropped the one with the highest p-value
until all p = values were reasonable (p-value < 0.05). The output of the multiple linear regression is
presented in the Table 3.

Table 3. Multiple linear regression for prediction of thefts from motor vehicles.

Estimate Std. Error t Value Pr (>|t|)

Intercept 0.051844 0.002463 21.05 <2 × 10−16***
Subway 1.158844 0.018242 63.52 <2 × 10−16***
Graffiti 0.125207 0.007937 15.77 <2 × 10−16***

Restaurant 0.054781 0.004021 13.62 <2 × 10−16***

In the Table 3 *** corresponds to the significance level 0.000.
With p-values < 0.05 for all variables, we conclude there is strong evidence against the null

hypothesis, H0 that the predictors have no effect on the mean level of the response variable (thefts from
motor vehicles). To examine if the prediction model is correct, we checked the following assumptions:

Assumption 1, “Mean of residuals is zero:” In our case, the assumption is met with mean of
residuals equal to −2.278831 × 10−16.

Assumption 2, “Homoscedasticity of residuals or equal variance” (by checking residuals vs. fitted
values): In our case, the assumption is met because the data is not evenly dispersed and does not form
clusters on the residual vs. fitted graph.

Assumption 3, “No autocorrelation of residuals:” The assumption is met since the residuals are
not autocorrelated. The computed Durbin-Watson statistic = 2.0326, p-value < 0.9717, and therefore,
we accept the null hypothesis H0: Autocorrelation is not greater than 0.

Assumption 4, “The X variables and residuals are uncorrelatedL” The assumption is met, as all
three variables are uncorrelated with residuals. For subways and residuals cor = 2.440349 × 10−16

with p-value = 1, for graffiti and residuals cor = 1.01497 × 10−15 with p-value = 1, for restaurants and
residuals cor = −2.225019 × 10−16 with p-value = 1.

Assumption 5, “No multicollinearity:” Assumption is met for subways, restaurants, and graffiti
VIF = 1. If VIF of a variable is high, the information in that variable is explained by other X variables
present in the given model and the variable is redundant. Therefore, the lower VIF (<2) the better.

Assumption 6, “Normality of residuals:” Assumption is not met, as residuals are not
normally distributed.

Since five of six assumptions are met, the prediction model is built correctly. However, the
accuracy of the model is 77% (R-squared = 0.77), which implies that not all variables generating
thefts from motor vehicles are considered in this research. Nonetheless, the test of this model on the
test set demonstrates a good fit regarding error mean (Actual thefts—Predicted theft = 0.04692426)
and correlation between actual and predicted thefts (cor = 0.8999567), even though residuals are not
normally distributed.

3.4. Application of Research Results to Safer Parking

Using Shiny package for R, we developed the prototype of the application of our research results
for safer parking that can be used by city dwellers, police, and insurance companies (Figure 3). City
dwellers can find safety information for the selected street segment for the available parking. The
developed Android App would take users’ provided street address or a current location into account
and provide information about the parking safety in that location. It will also guide users to safe
parking streets nearby. Police officers can use the application to allocate forces in risky areas. Insurance
companies can tailor insurance prices for different cases based on users’ parking behavior. For instance,
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if a client lives and parks his motor vehicle on weekday nights and weekend days in Upper East Side,
his motor vehicle is safe. If he works at daytime during weekdays and parks his vehicle close to his
office in Midtown, he is safe too, as no significant hot spots of thefts are identified here. However, if he
drives on weekend nights to East Village and parks his car there, this is where the trouble begins, as
this area is identified as a hot spot of thefts from motor vehicles (with 99–95% confidence). Thus, an
insurance company can offer a client the price regarding his parking behavior and locations during
the week.
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Figure 3. Application of the research results for safer parking. When a user chooses a street segment
of his interest, he sees information about dependent variables there (number of subway entrances,
graffiti, and restaurants as Subway, Restaurant, and Graffiti accordingly on the picture above), and
the predicted value of thefts from motor vehicles is computed (based on the data and the prediction
model) and displayed—as Predict theft on the picture above. Also, a user can choose how to display
the location—using a street address or a zip code, and the level of theft rate to display—a high (red
color), medium (yellow), or low (green).

The application is based on the prediction model, where the predicted theft rate increases with
the increase of number of subway entrances, graffiti, and restaurants. Therefore, all the variables
with their values are mapped. Each street segment is associated with number of subway entrances,
graffiti, and restaurants currently located on that segment. When a user chooses a street segment of his
interest, he sees information about dependent variables there (number of subway entrances, graffiti,
and restaurants), and the predicted value of thefts from motor vehicles is computed (based on data
and prediction model) and displayed.

4. Discussion

The comparison of similar studies with our research results demonstrates that the biggest part of
research is performed toward predicting hot sport or areas or neighborhoods, while predicting the
exact location of crime to happen still remains the target for many researchers, data scientists, and
crime analysts. Moreover, the majority of crime prediction models are built using data classification
methods [42–45], differing from our research using regression methods. For instance, Bogomolov
et al. [42] applied decision tree classifier based on the Breiman’s random forest and achieved accuracy
of 70% while predicting if a specific urban area will be a crime hotspot or not using mobile phone
and demographic data of London, UK. Antolos et al. [43] achieved accuracy of 74–83% while using
the logistic regression to predict burglary based on the day of the week, time of the day, repeated
victimization, connectors and barriers, id est., and historical crime data from 2010. Other machine
learning approaches demonstrate reasonable accuracy when applying support vector machines (SVM)
to predict crime hot spots [44], as well as Bayesian approach to predict the neighborhood where the
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next crime will happen [45]. The prediction model of homicides, a regression approach developed by
Alves et al. [46] while using the random forest regression, achieves 97% accuracy.

The most unsafe street segments are revealed by applying the search algorithm in ArcGIS. It is
clear from the photographs (Figure 4A–C) that the urban reasons of these places being unsafe lay in
not meeting the main principles of CPTED (Crime Prevention Through Environmental Design): Lack
of natural surveillance (almost no observation from windows, no entrance doors, i.e., no “eyes on the
street”), the nearest windows are too far to observe the environment or do not exist at all (walls and
fences with no windows, i.e., ‘blind walls’), no inter-visibility of constructions (for instance, the fence is
not inter-visible on Figure 4A), spaces are not frequently used by pedestrians, spaces are dark, and
there is no lighting (Figure 4C), etc. In all the above-mentioned cases, the urban environment should
be redesigned to make parking safer. If redesign of urban spaces is not possible, signs preventing
parking should be placed on unsafe street segments.
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Figure 4. (A). Street segments with the highest theft rate in Manhattan: Department of Vascular
Surgery. Urban reasons of unsafety: Lack of natural surveillance (no “eyes on the street”), nearest
windows are far, fence is not inter-visible, and blind wall (wall with no windows or doors). (B) Street
segments with the highest theft rate in Manhattan: Morningside Church & Sakura park. Urban reasons
of unsafety: Pedestrians rarely use this space, no natural surveillance (almost no observation from
windows, no entrance doors) with a church on one side and park on another. (C). Street segment
with the third highest theft rate in Manhattan: West 138th Street. Urban reasons of unsafety: No
natural surveillance, no lighting, no pedestrian flows, no closed-circuit television (CCTV) cameras, etc.
Nothing meets CPTED (Crime Prevention Through Environmental Design) requirements for safety
and security. Moreover, there is a sign in this tunnel permitting parking, and therefore, contributing to
the availability of motor vehicles as targets for theft.

The limitations of this research include an unsatisfactory determination coefficient of the prediction
model (only 77% of variance in thefts from motor vehicles is explained by the independent variables),
as well as automation of loading the updated data into the pipeline for making predictions up-to-date.
The first limitation could be improved by adding more datasets and features in order to find other
important variables that contribute to the theft rate increase or decrease. The second limitation requires
to constantly obtain the newest data about the city and crime, to update the database, to load the
new data into the pipeline, that includes data preprocessing, model building, testing, validation, and
deployment, and to produce the predicted theft rates together with important factors. Moreover,
continuing this research we would like to try other units for data aggregation—such as a square area
within the city (for instance, 3 × 3 m, 10 × 10, or similar), instead of the street segment that we were
using for this current research. As per the most recent research in machine learning/deep learning
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and urban science [42,47–51], we assume that using a square area of small granularity will bring our
prediction closer to the exact location where and when a crime can happen.

Despite using several machine learning methods, we were not able to identify other significant
urban factors using geospatial data analysis and machine learning tools because the open datasets on
urban factors are limited or nonexistent. Therefore, in the future, we might implement more complex
machine learning tools, such as object recognition, deep learning, etc., to detect urban factors in street
views, and record, process, and extract knowledge from streetscape photo or video data. However, the
methods we developed thus far should be useful in a general context for insurance companies and
crime prevention in urban areas and have applications in risk management strategies for insurers.

5. Conclusions

The geospatial data of thefts from motor vehicles reveal some interesting patterns that suggest
that human activity, as well as features of the urban environment, contribute to the frequency of crime.
Time series analysis reveals a common theft pattern for Tuesdays, Wednesdays, and Thursdays with
theft rates increasing from 4 p.m. to between 7 p.m. and 8 p.m., and the lowest theft rates being
between 2 a.m. and 6 a.m. A plausible explanation for these observations is that while thefts might
occur throughout the day, most are discovered and reported when people return to their vehicles after
leaving their places of work. Similarly, when commuters leave the city during evenings and weekends,
the number of cars exposed to theft decreases and crime reporting drops. Clearly, other explanations
might also be possible.

The geospatial analysis of theft data demonstrates a spatial pattern of locations where thefts were
committed on Tuesdays, Wednesdays, and Thursdays as well. It suggests that during the middle
of the week, criminals’ behavior regarding thefts from motor vehicles has the same pattern, with
similar opportunities for committing theft dictated by the urban environment, location of vulnerable
motor vehicles, and other factors, such as the presence of witnesses and cameras. Moreover, visual
comparative analysis of theft rates mapped on street segments demonstrates “movement” of thefts
within Manhattan varying over time, such as the shifting intensity of theft, which diminishes during
morning and evening commute hours. It demonstrates the dynamic nature of crime.

Hot spot analysis reveals the most crime-ridden areas are located in the East Village and some
areas in Uptown Manhattan: Washington Heights and Inwood. The East Village has become more
gentrified in recent years after previously being a bohemian neighborhood. Nowadays, it is known
for a large variety of nightlife and is home to artists and diverse communities. Washington Heights
used to be a territory for drug dealers with high crime rates, and Inwood is still one of the most unsafe
neighborhoods in Manhattan, having many aging multifamily five- to eight-story buildings and almost
no new construction. Comparing these results with theft rates for street segments within different time
ranges might explain the hot spots of thefts: Once residents leave their apartments for work (around
7 a.m. to 8 a.m.), thefts begin to happen. The safest areas for car theft appear to be the Upper East Side
and Financial District. In the Financial District, this may simply be a result of parking restrictions on
private vehicles on many streets. However, there also appears to be a socioeconomic divide where
thefts occur: Thefts are lower on the Upper East Side, where incomes are higher. This may reflect
a greater concentration of crime prevention resources in these areas, such as the presence of police,
private security, cameras, and doormen on duty. One practical result of these observations is that
crime prevention resources can be concentrated in the appropriate areas at specific times and thereby
increase the efficiency of resource utilization.

Applying eight different machine learning methods on the training set data with 10-fold cross
validation with three repeats reveals that linear models perform better on our data (linear regression,
elastic-net), as well as the random forest does. Though, due to random forest’s good performance on
RMSEmin and R2

max (but not on mean values of RMSE and R2), and because the elastic-net produces
bias to reduce overfitting (though, overfitting does not occur in our case), we chose a linear regression
to build the final prediction model. Multiple linear regression was useful in unveiling the following
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urban generators of thefts from motor vehicles: A higher number of subway entrances, graffiti, and
restaurants on streets contributes to higher theft rates. Subway entrances, for example, might provide
easy access and escape from an area after a crime is committed, as well as a greater flow of people
who are not resident in the neighborhood. Although the prediction model for thefts meets almost
all assumptions (five of six), its accuracy is not very high (only 77%), suggesting that there are other
undiscovered factors making a contribution to the generation of thefts.
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