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THE LIST OF ABBREVIATIONS  

AMISE - asymptotic mean integrated squared error  

GMM - Gausian mixture model 

MAPE - mean absolute percentage error  

PRESS - prediction sum of squares  

EM - expectation – maximization algorithm 

ROC - receiver operating characteristics  

MLE - maximum likelihood estimation 

MCM - Monte Carlo method  

PDF - Probability density function  

GUM - Guide to the Expression of Uncertainty in Measurement  
TOF - Time of flight 
𝑘 - space frequency of wave 

T -  period of time 

c - speed of ultrasound 

𝜌 - density 

pi - amplitude of wave moving through the interface  

pr - amplitude of reflected wave 

pt - amplitude of transmitted wave  

𝜃 - angle  

Wkr - energy of moving wave 

Wat - energy of the reflected wave 

Wpr energy of transmitted wave 

Jkr - intensity of moving wave 

Jat - intensity of reflected wave 

Jpr - intensity of transmitted wave 

Z1 - acoustic impedance of the first environment 

Z2 - acoustic impedance of the second environment 

𝑉𝑟𝑒𝑓 - voltage output due to the reflective wave at the transducer 

𝑉𝑠 - received voltage signal from the scattering volume 

𝐷𝑟𝑒𝑓 - acoustic coupling function from the transducer surface to the reference plane 

and back to the transducer surface 

𝐷𝑠 - mean diffraction correction coefficient for backscattering 

𝑧𝑟𝑒𝑓 - acoustic axis 

w - angular frequency 

𝜂
𝑠
 - coefficient of shear viscosity  

𝜂
𝐵
- coefficient of bulk viscosity 

𝛾 - ratio of specific heats 

𝐶𝑝 - heat capacity  

𝐵 - thermal conductivity 



 
 

8 

 

q - number of components in the mixture model 

pk - priori probability 

fk(x) - distribution density function 

n - size of sample 

Ω - volume of area is histogram 

K - kernel function  

h - fixed (global) bandwidth 

𝑓̂(𝑥) - kernel estimator  

X̅ - empirical mean 

SϵRd×d - empirical covariance matrix 

Z = (Z(1), …, Z(n)) - sample of standardized data  

𝑉𝑑 - volume of the d-dimensional unit sphere 

KNew - new proposed kernel function 

φ(x) - distribution of normal  

𝑅(𝑔) = ∫ 𝑔(𝑢)2𝑑𝑢
∞

−∞
 is the roughness of a function.  

v - order of a kernel 

𝜅𝑗(𝐾) = ∫ 𝑢𝑗𝐾(𝑢)𝑑𝑢 
∞

−∞
– non-zero moment  

g
0
 - reference density  

𝜎̂ - sample standard deviation 

𝜖𝑔(𝑥) - arbitrary distribution 

𝜎2
𝑓 - variance of distribution f 

U - density of ultrasonic thicknesses distribution of the skin tumours 

H - density of histological thicknesses distribution of the skin tumours  

N - Normal distribution density  

𝑅𝑡 - particular region  

𝑞
𝑡
 - group-specific densities  

𝐷𝑡
2(𝑥) - generalized squared distance from x to group   

r - fixed radius  

Γ - Gamma function 

z - p-dimensional vector 

𝜈𝑟(𝑡) - volume of a -dimensional ellipsoid  

s - smoothing parameter  

𝐴(𝐾𝑡) - optimal constant for kernel  

𝑚𝑖 - matrix  

α - intercept parameter  

𝛽 = (𝛽1 … 𝛽𝑠)′  - vector of s slope parameters 

𝜇 - mean  

𝜎 - variance. 

T - global threshold.  
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𝑂̂ - maximum likelihood estimator  

𝐼𝑛(𝑂̂) - expected Fisher information 

l - rank of the parameter.  

∆𝑑𝑝 - difference between results of measurements of the two methods 

∆𝑑̅̅ ̅ - mean of the differences of two methods 

𝑑1,𝑝 - thickness of an application of proposed automatic statistical post – processing 

method 

𝑑2,𝑝 - thickness of non – invasive ultrasound examination (made by dermatologist)  

𝑑3,𝑝 - thickness of invasive histological analysis examination 

𝑑𝑖̅ - average thickness of one of the 4 indexed groups  

𝑑𝑖,𝑝 - thickness of the invasive histological examination (i = 1,...,4) 

∆𝑐 - difference between the maximum and minimum ultrasound velocities 

Δtd - discretisation time interval 

𝑢∆𝑡𝑑 - uncertainty of ultrasonic signal sampling frequency 

W - sensitivity coefficient 

d - value of measured thickness 

m - coverage factor  
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INTRODUCTION 

Research object 

Application of a newly developed automatic statistical post–processing method 

in order to analyse the characteristics and improve the classification of skin tumours 

from ultrasonic and digital dermatoscopy images. 

 

Relevance of research and scientific problem 

The number of people who are diseased by skin melanoma has been increasing 

faster and faster during the last three decades. When comparing the numbers of skin 

melanoma during the period of 2005 – 2014, it has shown that the number is increasing 

by 3% every year. The most vulnerable group are people are 50 years old or older. 

Skin melanoma rates are quite low and account for just 1% of all skin cancers, 

however it influences a high number of skin cancer deaths [1]. The most significant 

factors that strongly influence skin cancer are genetics and the health history of family, 

as well as other environmental factors [2, 3, 4]. A focus on the selection of the features 

and characteristics of lesions of skin tissue provides the possibility to achieve a faster 

diagnosis, to have a more accurate prediction of the disease, to save more people lives 

and to select an appropriate method of treatment, along with the possibility to diminish 

the cost of treatment. The first attempts of diagnosing melanoma in dermatology were 

introduced by Spitz in 1948. Spitz nevus received a name of “melanoma of childhood” 

due to the lack of technologies and undisturbed histopathologic features at that time 

[5]. 

Accurate data ensures the higher accuracy of analysis, which is one of the tools 

used for diagnosing and decision making. The storage of medical information and its 

statistical analysis have been carried out since the middle ages. The first known 

statistical journal of medicine was published in London, in 1662 [6]. In 1863, F. 

Nightingale, the pioneer of todays nursing, raised the problem regarding the lack of 

medical statistical records and non-systematic storage in hospitals, as a consequence 

of treatment effectiveness and costs limited analysis. In 1977 the US Congress 

published a study “Medical information systems practitioner’s consequences” [7]. It 

states that medical information systems can be a useful tool for training, also to help 

medicine and health care specialists leading to a higher quality of facilities and 

optimization of health care institution activity. The authors of this study also 

confirmed that a medical information system would be a useful tool for researchers 

and health governing institutions. From 2000, an active global implementation of 

regional and national electronic health records systems started. The aim of these 

systems is to save all important patients medical records. The Lithuanian health sector 

also applies information technologies, creating a national electronic health services 

and information system for a cooperation infrastructure, in addition to a subsystem 

for national medical image archiving and exchange. Health care institutions 

implement and improve the information systems of hospitals, along with systems for 

radiological images preview and archiving, with information systems of laboratories 
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[8]. An information system of health care records structured information about the 

patient; such as diagnosis, demographic patient data, vital functions, test results and 

etc. The data analysis and mining are very important for all patients, especially when 

visiting various medical facilities. The smart analysis of patient records helps to faster 

diagnose an ailment, consequently choosing the optimal treatment, prediction of 

treatment periods and results, identifying the risk of complications and side effects, 

along with resource optimization of the health care institutions. In the last decade, data 

mining research in biomedicine has been highly considered [9, 10]. Data mining 

methods and algorithms can be useful if researchers clearly understand the scopes, 

types of data and peculiarities. The most common tasks mentioned in literature are 

classification, clustering, prediction, association, visualization, identification of 

deviations and analysis of internal links. For these data mining tasks, researchers need 

to choose a suitable algorithm. Choosing a method or an optimal algorithm depends 

on the aims of the task analysis and data characteristics. Over the last decade, many 

methods of data mining application in medicine have been identified. In diagnosis 

there are widely applied neural networks, decision trees, decision rules [11], methods 

for search of associative rules (for costs analysis) [12], prediction of patient health and 

treatment probability, also it is very popular to use assesment based on synergy of 

prediction algorithms [10]. In 2014, N. Esfandiari et al. [9], carried out a literature 

review, where there are examples of described applications of data mining in medicine 

based on analysis of the structured data. It is stated that classification (neural 

networks, decision trees, decision rules, support vector machine), clustering (k-means, 

hierarchical clustering) and associative search (a priori associative rules search) 

models are the most popular in medicine. Lalayants et al. [13] wrote that the solution 

of successful medical data mining is to identify the right activity of the health care 

institution or to find the clinical problem. Data mining methods are usually used in 

biomedical data analysis and visualization tasks in order to facilitate decision-making 

[14]. If the data mining process could be simple enough, the management of 

information problems would have been solved a long time ago (R. Bellazzi, B. Zupan 

[10]). Practical data mining application in medicine has some obvious barriers, such 

as technological problems, trans-disciplinary communication, ethics and patient data 

security [12, 14, 15]. Medical research leads to a lot of data characterizing the 

condition of a patient. However, all this data is dynamically changing and depends on 

the patient’s illness, patient’s biological condition, environment, the quality of life, 

related diseases and other actual reasons, which can be described as a random factor. 

The change of medical statistic observations is described by primary statistics 

analysis. The results lead to further ideas of medical research and affect the application 

of the appropriate statistical method. The reliability of the above mentioned methods 

usually depends on the assumption of data distribution – normal, binomial and etc. 

This study will present a simple, effective method of nonparametric statistics and a 

hypothesis criteria about the variable distribution and identity checking of two 

distributions. These hypotheses are called goodness of fit test hypotheses. Therefore, 

the purpose of this research is to determine the connection between the thicknesses of 

the skin tumours measured by non-invasive ultrasonic technique and after a surgical 
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intervention measured histologically by optical microscope. In addition, the research 

will compare the compatibility of the likely density of histological thicknesses 

distribution of the skin tumours and Normal distribution density. Conseuently, this 

method is effective for a structured large data matrix and simple to use. There is no 

reason to check the sample that is distributed by well-known theoretical distribution, 

because these cases have already been examined both theoretically as well as 

empirically. The greatest challenge is to check the identity between two samples. As 

a solution, the most commonly used techniques relies on the differences of density 

distribution. Even in todays data analysis there are a lot of evaluation methods of 

density distribution, but in practice it is not easy to find an effective evaluation 

procedure if the data distribution is multimodal and the volume of the sample is small. 

Kernel smoothing is the most frequently used nonparametric estimation method (see 

Jones, et al., 1996 [16], Marron and Wand, 1992 [17]; Silverman, 1986 [18]). Thus 

far, there is no generally accepted method for kernel estimation, which outperforms 

the other in all cases. Although many adaptive selection procedures have been 

proposed (Bashtannyk and Hyndman, 1998 [19]; Jones, 1992 [20]; Zhang et al., 2004 

[21]), their efficiency has not yet been well established, especially for samples of a 

moderate size.  

On the basis of Lithuanian cancer registered data, Lithuania diagnosed more 

than 250 melanomas cases every year. Although Lithuania is not included in the list 

of the largest melanomas risk countries, the statistics show that the number of 

melanomas cases in Lithuania is increasing every year. The main reason is that 

diagnosis occurs too late. The mortality of melanoma in Lithuania is larger than in 

other Europe countries [22, 23]. Melanoma is a rapidly growing and spreading 

malignant tumour, rarely amenable to treat through the spread of time. Usually 

melanoma is diagnosed in 2 – 4 stages, however in the absence of effective treatment 

of metastatic melanoma, a patients survival chance decreases. A key factor of survival 

of melanoma is early diagnosis and urgent surgical removal of the primary tumour. 

The late diagnosis of melanoma can be prevented by regular checks of nevus and 

disposal nevus, which could also be malignant. Surgical removal of melanoma that 

has a thickness of 1 mm increases the probability of survival for 10 years by 90 – 97 

percent [24, 25].  

Ultrasound technologies allow medical staff to capture high accuracy images of 

the human skin. Scanning the human body by ultrasound, echo and its differences are 

captured, because bones, fat and muscles reflect differently. Reflected ultrasound 

waves are translated to electric impulses, which help to shape an image and to analyze 

the surface of lesion. Images of deeper skin layers can identify very informative data 

related to the analysis of diagnosing the early stage of melanoma, but most of the 

published research is based only on the analysis of the thickness measurements of 

malignant skin tumours [26, 27] and not on the other characteristics of skin layers. 

This research presents a newly developed automatic algorithm by enabling the 

analysis and estimate of more features of skin tumours.  
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The question that will be answered at the end of this research is, can the 

accuracy of ultrasonic B-scan and digital dermatoscopy measurements be improved 

by using an automatic measurement technique based on the assessment of synergy of 

these different technologiesand can the proposed method be used in the field of 

dermatology as a decision support tool? 

 

The working hypothesis of the thesis is whether the assessment of synergy of 

the ultrasonic B-scan and digital dermatoscopy imaging based on an automatic post-

processing method can increase the accuracy of measurements of skin lesion tumours. 

Additionally, whether the proposed automatic post-processing method can be used as 

a reliable decision support tool in the field of dermatology, and help to reduce the 

numbers of invasive histological examinations and surgeries in such a way to save 

more people’s lives. 

 

The aim of the research is to develop an automatic analysis and measurement 

technique based on the application of a set of statistical post – processing methods and 

the synergy of different imaging technologies; in order to estimate the parameters of 

human skin lesions and increase the accuracy of ultrasonic B-scan and digital 

dermatoscopy measurements. 

 

Goals of the research 

The following goals were formulated in order to achieve the objective: 

1. The development of an automatic statistical post–processing measurement 

technique based on the different technologies of ultrasonic and digital dermatoscopy 

imaging in order to estimate the multimodal set of the most informative parameters of 

lesions, as well as to identify benign and malignant nevus and increase the accuracy 

of measurements.  

2. The simulation and application of the proposed automatic statistical post–

processing measurement technique based on the different technologies of ultrasonic 

and digital dermatoscopy imaging in order to identify the features of lesions of human 

tissue and to assess the results.   

3. To compare the results of the proposed automatic analysis and measurement 

technique with other data mining and data processing methods. 

4. To estimate the precision and reliability of the proposed automatic statistical 

post–processing based measurement technique by using metrology evaluation.  

 

Scientific novelty 

According to the literature review, there is no proposed method of enabling the 

possibility to process images of skin tumours that are captured by using different 

imaging technologies (ultrasound and digital dermatoscopy). In addition, there are no 

currently published research results that have been identified. A newly developed 

automatic algorithm based on the synergy of data captured by using two different 
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imaging technologies (ultrasound and digital dermatoscopy) is presented. A proposed 

new method is used for the analysis of clinical decision making of malignant skin 

tumours. As a result, the automatic post-processing statistical method can supplement 

well-known decision support tools in clinical practice and help to reduce the number 

of histological examinations and provide important information about the thickness 

of a skin tumour before planning any surgery.  

Practical value of the work 

The thickness of skin tumours measured by high frequency ultrasound strongly 

influences the forecasting and planning of medical treatment. The reliability of the 

ultrasonic thickness measurement of the skin tumour is completely covered by the 

high similarity to the histological thickness measurement and has a practical value in 

diagnosing skin melanoma. A newly developed and proposed statistical automatic 

ultrasonic B-scan and digital dermatoscopy images post-processing, characterising 

quantitave tissue parameters method, can be used for the classification of benign and 

malignant skin tumours and therefore used as a decision support tool in the field of 

dermatology. The newly proposed method does not depend on the experience of the 

dermatologist and due to the low price of the medical technique (ultrasound system 

and digital dermatoscope), it can additionally be used in smaller medical centres.  

The results of the research were presented in the following projects 

“Ultrasonic, optical and spectrophotometric data fusion technology for the 

diagnosis of superficial tissue lesions (ImageFusion)”. Work sponsored by the Kaunas 

University of Technology and Lithuanian University of Health Sciences under a joint 

grant. 

Statements under defence 

• The evaluation of ultrasonic thickness measurements by applying a 

newly developed statistical method is completely covered by the high similarity 

to the histological thickness measurements, which are known as a golden standard 

in the field of dermatology. The proposed technique is appropriate to use for the 

classification of skin tumours. 

• The classification of skin tumours based on the assessment of synergy 

of two different imaging technologies (ultrasound and digital dermatoscopy) was 

improved by 9%. This means that the proposed automatic statistical post–

processing method could be used as a decision support tool in the field of 

dermatology in order to identify a malignant tumour and benign nevus. The 

reliability of classification is proved by the estimated area under the ROC curve 

of 0,908.  

• The newly developed automatic statistical post–processing method 

has shown similar uncertainty results when compared with non-invasive 

ultrasound examination (made by dermatologist) and proved that the proposed 

fully automatic method is constructed under the necessary requirements and can 

be used for the estimation of the thickness of skin tumours. 
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Approbation 

The results of the research are presented in 6 published articles: 2 papers are 

published in the periodic journals (Journals of the Master List of Thomson Reuters 

Web of Science, with impact factor), two in reviewed proceedings of international 

scientific conferences and two in reviewed proceedings of national scientific 

conferences. The results have also been presented at 5 scientific conferences, 2 of 

them at international scientific conferences held in Valmiera, Latvia and 

Druskininkai, Lithuania and 3 have been presented in national scientific conferences 

held in Kaunas, Lithuania. 

Structure and contents of the thesis 

The dissertation consists of an introduction, 5 general chapters, general 

conclusions, a list of the references, list of publications of the author and an appendix. 

The sequence of presentment of the doctoral thesis is defined below: 

1. An overview of the main features, characteristics, structure and classification 

of lesions of human skin tissue is presented in chapter 1. Chapter 1 also includes a 

review and comparison of the morbidity and mortality rates among Lithuanians. The 

comparison of the expansion level of skin tumour diseases between Lithuanians and 

Europe citizens; Lithuanian and World statistics is also introduced in chapter 1. 

2. The main characteristics and specification of ultrasound wave are presented 

in chapter 2. Chapter 2 also includes a theory of ultrasound imaging, methods used in 

digital dermatoscopy and the basics of spectrophotometric intracutaneous analysis. 

The comparison of the three different techniques mentioned above is also presented 

in chapter 2. 

3. Assessment and comparison of likely density distributions in the cases of the 

thickness measurement of skin tumours by ultrasound examination and histological 

analysis are presented in chapter 3. As the assesment is based on the kernel density 

estimator, methods and analysis of estimation accuracy are presented in chapter 3. 

Chapter 3 also includes an application of goodness of fit test in order to prove that the 

reliability of the ultrasonic thickness measurement of the skin tumour is completely 

covered by a high similarity to the histological thickness measurement, which is 

known as a “golden standard” in the field of dermatology. 

4. Theory of parametric and nonparametric methods used in the estimation of 

the parameters of human tissue are presented in chapter 4. As the discriminant analysis 

and logistic regression were the models used in research, a comparison of these two 

models is also presented in chapter 4. Gaussian smoothing, and expectation 

maximisation adopted to the thresholding procedure and used for skin tumour 

segmentation from ultrasonic and digital dermatoscopy images are defined in chapter 

4. The selection of parameters of skin tumours, including estimation of significant and 

not significant parameters used in automatic classification, are presented in chapter 4. 
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Results of the automatic classification run by the two models defined above are shown 

in chapter 4. Diagnostic accuracy, sensitivity and specificity rates, as well as ROC 

analysis are also presented in chapter 4. 

5. Chapter 5 includes the metrology evaluation of the skin tumours 

measurements. Uncertainty due to the measurements of thickness, as well as 

combined and expanded uncertainties, are presented in chapter 5. 

6. General conclusions are presented in the 6 chapter. 

 

The overall dissertation volume is 150 pages, including 29 figures, 34 tables, 58 

formulas and 314 bibliographic references. 
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1. REVIEW OF SKIN STRUCTURE AND FACTS OF CANCER RATES  

Human skin is an external body layer that is responsible for the protection of 

deeper layers and helps to interact with harmful environmental rakes. Unfortunately, 

unprotected skin can cause serious damage, which can lead to skin cancer. This is why 

people should also take as many preventative measures as possible. The collection of 

statistics of skin cancer rates is an important aspect of data collection, helping to 

monitor the pervasion and other phenomena of malignant tumours. 

This chapter introduces a review of the structure of human superficial tissue 

(skin) and facts of cancer rates. Structure and classification of lesions of human skin 

tissue are presented in section 1.1. A review and comparison of the morbidity and 

mortality rates based on international and national levels are presented in section 1.2. 

Section 1.3. introduces the summarized outcomes of chapter 1. 

 

1.1. Structure and classification of lesions of human skin tissue 

 

Skin is the largest organ of the human body and approximately accounts for up 

to 10 percent of the body mass [28]. Skin is one of the human organs that allows 

people to interact with the environment and has many important other functions, such 

as prevention from the changes of temperature and other natural physical 

phenomenon, as wind, cold, rain and etc. In addition, skin also helps to protect deeper 

human body organs from environmental dangers, such as chemicals, bacteria’s, 

allergies, radiation and etc. Skin is also a sensor that enables people to feel heat, cold, 

pain, micro-organisms’ bites and etc. Skin also helps to control heat, blood pressure 

and production of excretory. Skin is an organ that is in a continual state of regeneration 

and repair. Skin is also responsible for a lot of chemical reactions, such as melanin 

absorption and etc. [29].  

Skin consists of epithelial and mesenchymal tissues, which has a structure of 

multi-layered stratified epidermis, adnexal structures such as hair follicles, sweat 

glands and sebaceous glands, in addition to dermis containing collagen and elastic 

fibres and underlying subcutaneous fat [30].  

Skin consists of three main layers called the dermis, epidermis and hypodermis 

(also known as subcutaneous tissue). The structure of human body skin is presented 

in Fig. 1.  
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Fig. 1. Structure of human skin [30] 

Consequently, skin also has a lot of different cell types, which can easily become 

cancerous cells. The epidermis is the external skin tissue that has a lot of layers and 

many more cell types, such as keratinocytes and melanocytes, Merkel cells and 

Langerhans cells [31]. The structure of the epidermis is presented in Fig. 2. 

Keratinocytes are the main part of the epidermis layer and are responsible of the 

formation of the barrier of the body. In the deeper layer of the epidermis, keratinocytes 

are called basal cells, which can also become cancerous and as a result, a human can 

get sick off basal cell carcinoma cancer. Melanocytes are the cells responsible of the 

protein called melanin. Melanin influences the colour of the skin, i.e. it means the 

more melanin the darker the skin is.  Melanin also helps to prevent other skin cells 

from the harmful ultraviolet sun rays. Merkel cells are known as neuroendocrine cells 

and have some features of hormone cells. Langerhans cells are partly responsible for 

the immune system and can also be found in other skin layers, such as the dermis, 

lymph nodes and etc.  
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Fig. 2. Structure of the epidermis [30] 

The dermis is the thickest layer of the skin and consists of blood vessels, hair 

follicles, sweat glands, lymph, oil glands, nerves ending etc.  The dermis has two main 

layers, called the papillary are reticular dermis. Structure of the dermis is shown in 

Fig. 3. 

 

Fig. 3. Structure of the dermis [30] 

The third skin layer is a subcutaneous layer, which consists of fat cells, as well 

as collagen cells and larger blood vessels.  
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1.2. Review of the morbidity and mortality rates compared to international and 

national levels 

 

Analysing data of the overall morbidity of skin cancer in Lithuania, it is clear 

that the sickness rate during the period 1978 – 2009 has increased more than 3.5 times. 

Meanwhile, sickness of melanoma has increased more than 4 times [32]. The trend 

line of morbidity rate is presented in Fig. 4. 

 

Fig. 4. Morbidity rates of skin cancer in Lithuania during the period of 1978 – 2009 

years. Blue circles show an overall number of non-melanoma cancer, yellow circles show an 

overall number of skin cancer, red circles show an overall number of melanoma [32] 

During the period 1978 – 2009 in Lithuania, the largest sickness rate of 

melanoma is diagnosed in women. The morbidity rate for men is 1.5 times less.  The 

sickness rate of melanoma between genders is presented in Fig. 5.  
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Fig. 5. Morbidity rates of skin cancer between genders in Lithuania, during the period 

of 1978 – 2009 years. Blue circles show an overall number of melanoma, yellow circles 

show a number of melanoma diagnosed in women, red circles show a number of melanoma 

diagnosed in men [32] 

The latest study of skin cancer in Lithuania has shown that in 2011 there were 

351 melanoma cases diagnosed, from them; 121 were diagnosed in men and the 

remaining 230 cases in women. Other types of malignant skin cancer have reached 

2484 cases, where 65% of skin cancers were diagnosed in women. Comparing these 

results with the standards of melanoma rates in Europe and the rest of the world, 

Lithuania has exceeded the European standard by 30% and the world standard by 

around 75%. Analysing the results of other malignant skin cancer rates, Lithuanian 

has exceeded the European standard by 45% and the world standard more than 2 

times. Another important observation is the differences of morbidity rates between 

genders. Women in Lithuanian, who are diseased by melanoma, have exceeded the 

European standards more than 35% and the world standard around 85%. Meanwhile, 

men in Lithuanian who are diseased by melanoma, have only exceeded the European 

standards by approximately 15% and the world standard by around 60%. The results 

of other malignant skin cancer rates have shown that Lithuanian women have 

exceeded the European standard by 60% and the world standard more than 2 times, 

while men have only exceeded the European standard by 15% and the world standard 

by 75%. Analysing 2011 the statistics of the stages of men’s skin melanoma and other 

malignant skin cancer types, it is obvious that the most melanoma skin cancer was 

diagnosed in stage II (39.7%) and in stage I (37%). Other types of skin cancer were 

mostly diagnosed in stage I, i.e. more than 70%, which leads to a faster diagnosis of 

the early stage and a higher rate of morbidity. Comparing data of diseased women, 

the highest number of cases of melanoma was diagnosed in the early stage (41.7%), 
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as well as the highest number of cases of other types of skin cancer being diagnosed 

in the early stage (73.9%) [33,34]. 

 

1.3. Conclusions of 1st chapter 

1. Skin is one of the most important human body parts that protects our deeper 

organs from a negative environment impact and also helps to monitor a lot of vital 

processes, such as control of temperature and renewal of old or damaged cells. 

2. Skin consists of three main layers, called the dermis, epidermis and 

subcutaneous tissue. All these layers consist of various cells, which are responsible 

for the normal human body condition, such an immunity, balance of hormones, 

production of proteins.  

3. Analysing data of morbidity and mortality statistics during the period 1978 – 

2009, it has shown that Lithuania has exceeded the European standard by more than 

35% and the world standard by more than 85% when comparing rates of skin 

melanoma from around the world. This means that Lithuanians are classed as an 

exposed nation.  

4. Analysis also shows that women are the more vulnerable group when 

compared with the results of the statistical male group. In fact, there is no proven 

reason why the non-aligned existence between the two groups is so large, however 

prevention and a proper cure is required.  

5. Modern developed diagnostic medical equipment strongly influences the 

higher number of diagnosed diseases and helps identify more malignant tumours in 

the early stages, which leads to more saved lives.  

6. Social media is also a prevention tool, which motivates people to visit a 

dermatologist regularly in order to get a prophylactic examination and to preclude any 

skin cancer.  
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2. ULTRASOUND, DIGITAL DERMATOSCOPY AND 

SPECTROPHOTOMETRIC TECHNIQUES  

These days’, dermatology can offer various techniques to be used in order to 

improve the accuracy of diagnosing diseases. The most popular techniques are 

ultrasound, digital dermatoscopy and spectrophotometric intracutaneous analysis. All 

these non-invasive techniques allow dermatologist to look into the deepest skin 

lesions and get an accurate estimation of the skin diseases and also helps to select an 

appropriate treatment if needed. 

This chapter presents a review and main features of the different techniques used 

in dermatology for the purposes of accurate identification of skin cancer at an early 

stage. A review of ultrasound and the main ultrasound characteristics are presented in 

section 2.1. Review of the ultrasound imaging in dermatology that is a popular 

technique between researchers is presented in section 2.2. Section 2.3. and section 2.4.  

introduce the basics and methods used for the analysis of digital dermatoscopy and 

spectrophotometric intracutaneous. Section 2.5. introduces the summarized outcomes 

of chapter 2. 

2.1. Ultrasound and main ultrasound characteristics  

Ultrasound is a sound wave, which has a frequency higher than the frequency 

of human hearing and can reach 20 kHz. Ultrasound cannot identify objects that are 

smaller than the length of an ultrasound wave. This means that the higher the 

frequency of the ultrasound, the higher the resolution of images. On the other hand, 

the higher frequency of ultrasound emits shorter length waves, which can easily be 

absorbed. This strongly affects the high frequency ultrasound that is used to scan 

lesions that are near the surface of the human body and the low frequency ultrasound 

that is used to scan deeper body parts. An ultrasound wave is mostly shown as a 

sinusoid wave, where the peaks and nadirs show a compression and a rarefaction [35 

- 37]. A wavelength that is denoted as λ, is showing the distance between the two 

nearest peaks or troughs of the periodic waves and this also is a length unit. In medical 

ultrasound, it is acceptable to use a 0.1 – 1 mm scale [38]. The wavelength can be 

defined as: 

  𝜆 = 2𝜋/𝑘;                                                   (1) 

Here 𝑘 is the space frequency of wave. 

Due to medical examinations, the ultrasound wave frequency, which is denoted 

as f, varies between 1 and 50 MHz, therefore it is acceptable to use a frequency which 

varies between 1 - 15 MHz [38, 39]. If the periodical structure propagates, therefore 

a rate where the peak reaches a fixed point – number of peaks passing per second – is 

named a frequency of wave. Frequency can be defined as:  

𝑓 =
1

𝑇
;                                                          (2) 

Here T is period of time. 

 



 
 

24 

 

Circular or corner frequency, which is denote as 𝜔, and is the number of radians 

per second, can be expressed as follows: 

   𝜔 = 2𝜋𝑓.                                                           (3) 

Space frequency of the wave is denoted as k and is defined as 𝑘 = 2𝜋/𝜆. The 

measurement unit of frequency is the number of radians per meter, i.e. rad/m [38]. 

 

There are two types of ultrasound waves, transversal and longitudinal and the 

speed depends on the properties of density of the environment and tension.  

 

The speed of sound in various materials are defined as: 

 

𝑐 = √
𝜅

𝜌
 .                                                         (4) 

 

The speed of ultrasound in soft tissues of the human body varies between 1445 

- 1600 m/s, while in water it is approximately equal to 1500 m/s [40]. 

The comparison of ultrasound speed between different materials is presented in 

Table 1.  

 

                 Table 1. The comparison of ultrasound speed [40] 

Material      Speed of ultrasound wave 

Fat 1470 m/s 

Muscles 1500 m/s 

Heart 1570 m/s 

Kidneys stones 1400-2200 m/s 

Cornea 1640 m/s 

Bones 3370 m/s 

  

Characteristic acoustic impedance is a feature of the environment where a wave 

is moving. Acoustic impedance is very important in order to calculate the coefficients 

of reflection and transmission in the limit of two environments and to estimate an 

absorption of ultrasound.  

Impedance can be in form as follows [41]: 

𝑍𝑒𝑙 =
𝑉̃

𝐼
,                                                        (5) 

𝑍𝑎𝑘 = 𝜌𝑐.                                                      (6) 
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Fig. 6. presents a scheme of the interactions within the materials affected by 

ultrasound [42]. 

 

Fig. 6. A scheme of the interactions within the materials affected by ultrasound [42] 

          Coefficients of reflection and transmission 

When the acoustic pressure wave with the amplitude of pi is moving through the 

interface, therefore a wave with the amplitude pr will be reflected, and another wave 

with the amplitude pt will be transmitted. The coefficients R and T of these waves can 

be expressed as [36]: 

 

𝑅 =
𝑝𝑟

𝑝𝑖
                                                         (7)  

𝑇 =
𝑝𝑡

𝑝𝑖
. 

 
 

The coefficient of reflection of moving pressure can be defined as follows [36]: 

 

𝑅 =
𝜌2𝑐2−𝜌1𝑐1

𝜌2𝑐2+𝜌1𝑐1
=

𝑍2−𝑍1

𝑍2+𝑍1
.                                            (8) 
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Therefore, the coefficient of transmission under the equality of 1+R=T, can be 

expressed as [36]: 

 

𝑇 =
2𝜌2𝑐2

𝜌2𝑐2+𝜌1𝑐1
+

2𝑍2

𝑍2+𝑍1
.                                           (9) 

 

Coefficients of reflection and transmission by angle can be expressed as a 

function of movement by angle [36]: 

𝑅 =
𝜌2𝑐2 cos(𝜃𝑖)−𝜌1𝑐1 cos(𝜃𝑡)

𝜌2𝑐2 cos(𝜃𝑖)+𝜌1𝑐1 cos(𝜃𝑡)
,                                        (10) 

𝑇 =
2𝜌2𝑐2 cos(𝜃𝑖)

𝜌2𝑐2 cos(𝜃𝑖)+𝜌1𝑐1 cos(𝜃𝑡)
.                                        (11) 

 

The coefficients of the intensity reflection and transmission 

 

Coefficient of reflection [36]:  

𝑅𝑡 =
𝑊𝑎𝑡

𝑊𝑘𝑟
=

𝐽𝑎𝑡

𝐽𝑘𝑟
= (

𝑍2−𝑍1

𝑍2+𝑍1
)2;                                     (12) 

 

where Wkr – energy of moving wave, Wat – energy of the reflected wave, Jkr  - intensity 

of moving wave, Jat – intensity of reflected wave, Z1 – acoustic impedance of the first 

environment, Z2 – acoustic impedance of the second environment. 

Therefore, the coefficient of transmission will be equal to [36]: 

 

𝑇𝑡 =
𝑊𝑝𝑟

𝑊𝑘𝑟
=

𝐽𝑝𝑟

𝐽𝑘𝑟
=

4𝑍1𝑍2

(𝑍2+𝑍1)2 ;                                        (13) 

where Wpr – energy of transmitted wave, Wkr – energy of the moving wave, Jpr  - 

intensity of transmitted wave, Jkr – intensity of moving wave, Z1 – acoustic impedance 

of the first environment, Z2 – acoustic impedance of the second environment. 

Refraction 

Refraction is a phenomenon that allows a distorted stick view to be seen in 

water. This occurs because of the changed direction of light speed differences when 

it comes through the boundary of water and air [36]. 

Scattering and Diffraction 
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Scattering is a non-linear phenomenon, when a wave which is spread from one 

scatter can be spread from another scatter and again from the first and so on. 

Sometimes it is useful in order to scatter the whole pressure field to a self-moving 

field. i.e. a component made of waves, which were scattered one time, two times and 

so on. Scattering and diffraction are related and also overlapping incidences, but 

having different definitions.  Scattering depends on the reflection of the speed from 

the surfaces or on the heterogeneity of the environment [43]. 

In analysing tissues, a backscatter coefficient is a parameter that shows an 

efficiency that is used in the scattering of ultrasound energy [43]:  

 

𝜂(𝑤) =
〈|𝑉𝑠(𝑟𝜖𝑉,𝑤)|2〉

|𝑉𝑟𝑒𝑓(2𝑧𝑟𝑒𝑓,𝑤)|
2 ∗

|𝐷𝑟𝑒𝑓(2𝑧𝑟𝑒𝑓,𝑤)|
2

𝑙∗𝐷𝑠̅̅̅̅ (𝑟𝜖𝑉,𝑤)
;                                (14) 

 

here 𝑉𝑟𝑒𝑓 is the voltage output due to the reflective wave at the transducer, 𝑉𝑠 is the 

received voltage signal from the scattering volume, 𝐷𝑟𝑒𝑓 is the acoustic coupling 

function from the transducer surface to the reference plane and back to the transducer 

surface, 𝐷𝑠 is the mean diffraction correction coefficient for backscattering, 𝑧𝑟𝑒𝑓 is an 

acoustic axis [43]. 

Analysing lesions of human skin tissue, ultrasound backscattering helps to 

identify the lesions and to classify various skin damage. An addiction of the frequency 

from ultrasound backscattering can be used in order to improve the resolution of B-

scan images.  The ultrasound backscattering technique is used to identify the 

differences of the parameters of microstructure of biological tissues.  

Diffraction is mostly used in order to define a leak of sound to areas of shadows. 

Diffraction allows hearing a sound from another room, even though we cannot see the 

people who are speaking. Sound waves “wrap” the corner more than light waves.  

Acoustic absorption 

All moving ultrasound waves are partly absorbed, i.e. some energy is 

transformed to heat, and therefore an amplitude becomes higher. Absorption depends 

on the transformation of acoustic energy to heat [44]. Therefore, Stokes-Kirchhoff 

classical absorption coefficient can be expressed as follows [45]: 

𝛼 =
𝑤2

2𝜌0𝑣3 (
4

3
𝜂𝑠 + 𝜂𝐵 +

𝛾−1

𝐶𝑝
𝐾) ;                                       (15) 

Here w is an angular frequency, 𝜂𝑠 is the coefficient of shear viscosity and 𝜂𝐵 is 

the coefficient of bulk viscosity, 𝛾 is the ratio of specific heats, 𝐶𝑝 is the heat capacity 

and 𝐵 is the thermal conductivity.  
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2.2. Ultrasound imaging in dermatology 

An application of ultrasonography was first described in 1979, by Alexander 

and Miller [46]. The idea was that a high frequency wave propagated by a transducer 

pulsates into the human skin and detects returned echoes by a backscattering technique 

in an appropriate time delay. This method identified a lot of different advantages, such 

as determination of an incident signal, depth and thicknesses of the skin object, scatter 

properties, as well as the absorption characteristics of the lesion [47]. Echoes are also 

useful for capturing information about absorption and reflection of the lesion in the 

human skin tissue.  

For example, Harland et al. used 20-MHz ultrasound B-scan imaging, including 

acoustic shadowing and entry echo line enhancement, in order to classify melanomas 

and basal cell papilloma. Researchers have found that the sensitivity to classify 

melanomas and basal cell papilloma is equal to 100%, while a specificity is equal to 

79% [48]. ROC analysis has also shown reliable results of classification, i.e. 

coefficient in the case of quantitative estimation of shadowing areas was equal to 0,93 

and for semi-quantitative estimation was equal to 0,97 [48]. 

In 2011, Machet et al. presented an overview of high resolution ultrasound 

imaging of pigmented skin damage, such as melanoma, nevi and basal cell carcinoma 

[49]. The group of researchers used a prototype based on the technique presented by 

Berson et al. in 1992s. This proposed solid ultrasonic tool was processing at 17 MHz 

and had an easy to use probe with an acoustic window that was covered by a thin 

membrane. This enabled the separation of the skin tumours on the epidermis of the 

face, where they are founded more frequent than on other parts of the human body 
[50]. The main focus of the research made by Machet et. al was to identify melanoma 

that is less than 0,5 mm thick and remove it before it becomes malignant. In previous 

research it was shown that a high-resolution ultrasound technique is able to determine 

melanoma and non-melanoma from ultrasound thickness and allow the patient to be 

operated on in a single operation in nearly 75% of cases. [51]. High resolution 

ultrasound imaging may also help in diagnosing the other most common skin cancer, 

i.e. basal cell carcinoma, which is a consequence of extreme sunbathing [52,53]. 

In 2010, Wortsman and Wortsman presented a study on an application of 

ultrasound imaging in order to identify different skin damage, such as melanoma, 

basal cell carcinoma, skin cyst and nail damage [54]. However, one of the 

disadvantages of the used technique was the lack of sensitivity to detect epidermis 

lesions that are around 0,1 mm of thickness. Even though all the diagnoses were 

confirmed independently by a single observer, it was stated that the ultrasound can 

affect the accuracy during the diagnostic stages by up to 17% [54]. As a result, the 

percent of correct classification of the lesions was equal to 73%, while sensitivity was 

equal to 99%, specificity - 100%, and statistical diagnostic certainty was 99% [54].  

Rallan et al. presented a paper of the classification of benign nevus, melanoma 

and SKs by using a three-dimensional high-resolution ultrasound in order to capture 

images using a reflex transfer [55]. An ambient skin was used as a test, therefore 

digital ultrasonography parameters have been captured for all the significant 
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measurements of lesions of total sound attenuation, intra-lesion sound reflection, 

surface sound reflectance and the relative uniformity of each parameter across the 

tumour [55]. As a result, reliable differences between benign and malignant 

parameters of tumours were identified in order to reduce the accuracy of classification 

of benign tumours by 65% without missing melanoma [55]. 

Ultrasound technique allows the capture of a lot of different and significant 

parameters of malignant skin damage when compared with invasive methods. This 

includes significant anatomical data on the extension, exact location, vascularity, 

activity, and severity of common cutaneous abnormalities [56]. Information like this 

can help to manage the planning of surgeries, prevent a relapsing of the same disease 

and clearly determine the origin of lesions and endogenous or exogenous components. 

An additional stated fact is that sonography can be used as a way of saving the 

environment, without the use of contrast fluid, radiation and can be done in isolated 

areas [57 - 59]. These arguments should also be aligned to the fact that patients are 

seeking to get the best cosmetic results during the treatment stages [56]. More 

applications of ultrasonography in medicine can be found in research conducted by 

Kreitz,: Rallan and Harland;  and Kleinerman et al. [60 - 62].  
 

 

2.3. Digital dermatoscopy  

Dermoscopy is one of the non-invasive clinical methods that is based on the 

evaluation of the morphological features of lesions of skin tissue. Digital dermoscopy 

uses an optical magnification in order to estimate the properties of skin lesions in situ. 

This method allows a detailed observation analysis of the pigmented and non–

pigmented structures of the epidermis, dermo-epidermal junction and, to a lesser 

extent, the dermis. Digital dermoscopy is a widely used technique for analysis of 

features of those skin lesion tissues that cannot be clearly seen by the naked eye [63 – 

73]. 

Typical dermoscopic features of melanoma are presented in Table 2 and for a 

visualization perspective in Fig. 7. These features can also be found for benign nevus 

[74 - 82]. 

             Table 2. Dermoscopic features of melanoma [74 - 82] 

                    Feature 

Atypical network – 1 

Dots - 2,5 

Globules - 3,7 

Blue – white veil – 4 

Regression area – 6 

Linear irregular vessels – 8 

Blotch – 9 

Streaks – 10 
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Fig. 7. Dermoscopic melanoma view [74 - 82] 

Typical dermoscopic features of pigmented BCC are presented in Table 3. and 

for visualization purpose in Fig. 8. 

                Table 3. Dermoscopic features of pigmented BCC [83] 

Feature 

Maple leaf – like pattern – 1 

Large grey – blue ovoid nests – 2 

Arborizing telangiectasia – 3 

Spoke wheel – 4 

 

 

Fig. 8.  Dermoscopic pigmented basal cell carcinoma views [83] 

One of the most common methods for monitoring changes of benign and 

malignant tumours is the ABCD rule. The ABCD rule method was first proposed by 

Stolz et al. and can be easily applied in the analysis of skin damage changes. It is 

proven that this method is very reliable and can be used in cases for the diagnosis of 

melanoma [84].  
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ABCD rule method is based on the scoring process by using a formula [84]: 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 =  𝐴 𝑠𝑐𝑜𝑟𝑒 ∙ 1.3 + 𝐵 𝑠𝑐𝑜𝑟𝑒 ∙ 0.1 + 𝐶 𝑠𝑐𝑜𝑟𝑒 ∙ 0.5 + 𝐷 𝑠𝑐𝑜𝑟𝑒 ∙ 0.5.      (16) 

Ranges of total score are defined as: 

 

{

𝑖𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 < 4.75, 𝑡ℎ𝑒𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑛𝑒𝑣𝑢𝑠 
𝑖𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 4.75 𝑎𝑛𝑑 5.45, 𝑡ℎ𝑒𝑛 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑎𝑏𝑙𝑒 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠

𝑖𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 > 5.45, 𝑡ℎ𝑒𝑛 𝑣𝑒𝑟𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑙𝑒𝑠𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑒𝑒𝑝𝑒𝑟 𝑒𝑥𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
 

Definitions and scores of ABCD rule features are presented in Table 4 [84]. 

    

  Table 4.  Features, definitions and scores of ABCD rule 

Feature      Definition Score 

A – skewness Need to look at the 0, 1 or 2 

perpendicular axes. 

0 – 2 

B – borders Estimation of ending of the 

pigmented lesion. 

0 – 8 

C – colour Colour variation – white, 

red, light brown, dark 

brown, grey – blue, black 

1 – 6 

D – dermoscopic structure View of the globules, dots, 

network, structure 

(homogeneous), branched 

streaks. 

1 – 5 

 

In 2000, Menzies et al. presented a simple dermoscopy technique in order to 

diagnose pigmented basal cell carcinoma disease [85]. This method has showed 

reliable results, where sensitivity for diagnosing of basal cell carcinomas was equal to 

93%, specificity in comparing with melanoma was equal to 89% and comparing with 

benign lesion was equal to 92%. Details of the principle of using the Menzies methods 

are presented in Table 5 [85].  

Menzies method depends on the counting of negative and positive features of a 

skin lesion. In the case of melanoma, no negative features should be satisfied and at 

least one of the positive features should be satisfied [85].  
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Table 5. Negative and positive features for identification of melanoma [85] 

Negative feature Positive feature 

Symmetry of lesion along all the axes Blue – white veil 

Colour of lesion does not include white 

colour 

Multiple brown dots 

 Pseudopods 

 Radial steaming 

 Scar – like depigmentation 

 Peripheral black dots or globules 

 Multiple colours (more than 5) 

 Multiple blue or grey dots 

 Broadened network 

 

A new method named as the 7 point’s check list method was presented in 1998 

by Argenziano et al. [86]. This method depends on the evaluation of the overall score 

of dermoscopic features. If the score is higher than 3, there is a high risk of melanoma 

disease and if the score is less than 3, then the tissue is not malignant. The evaluated 

features are presented in Table 6.  

        Table 6. Features and score used in 7 point’s check list method [86] 

Feature Score 

Atypical pigment network 2 

Blue whitish veil 2 

Atypical vascular pattern 2 

Irregular streaks 1 

Irregular dots/ globules 1 

Irregular blotches 1 

Regression structures 1 

 

One other method to check the infusion of skin cancer is the methodology of 

Clark levels [87]. This system was developed by Wallace H. Clark Jr. in the 1960’s 

and is widely used among dermatologists. The levels and definitions are presented in 

Table 7 and shown in Fig. 9.  
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Table 7. Clark’s levels definitions [87] 

Level Definition 

I Skin cancer is placed in epidermis. 

II Skin cancer is placed in epidermis and started to spread into papillary 

dermis. 

III Skin cancer is full placed in papillary dermis, but does not reach the 

reticular dermis.  

IV Skin cancer is placed in reticular dermis.  

V Skin cancer is placed in subcutaneous tissue.  

 

 

Fig. 9. Skin cancer infusion by Clark levels [88] 

2.4. Spectrophotometric intracutaneous analysis 

Spectrophotometric intracutaneous analysis, also known as SIA, is a new 

method to identify pigmented skin lesions and to diagnose various skin diseases. SIA 

allows the capture of different layers of pigmented skin lesions as collagen, dermal 

melanin, melanin and blood, which leads to faster and more reliable diagnosis. The 

establishment of these features depends on the translation of the colourful view of 

dermatoscopic images. Therefore, it depends on the reflection and absorption by 

chromophores within the superficial skin according to their depth and concentration 

and also upon the wavelength of incident light interacting with them [89 - 91].   

The mainly used SIAscope features are presented in Table 8. Examples of 

melanoma SIAscope views are presented in the Fig. 10 [92].   

 

                     Table 8. Determination of SIAscope features [92] 

Feature SIAscope view 

Melanin globules Total melanin 

Blood globules Blood 

Blood displacement Blood 

Erythematous blush Blood 

Dermal melanin Dermal melanin 

Dermal melanin globules Dermal melanin 
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Collagen holes Collagen 

Biaxial symmetry Total melanin 

Skewness Total melanin 

 

 

 
 
Fig. 10. Example of melanoma SIAscope views. (a) image presents an optical view of 

the melanoma disease. This tumour is 1.22 mm thickness and belongs to II stage by Breslow 

depth’s scale. (b) image presents collagen of the tissue. Collagen is shown as a white colour 

and is placed in the centre and above the centre of the image, while clearly collagen holes are 

placed above the centre of image. (c) image presents blood displacement of the melanoma. 

Blood displacement is widely spread in the centre of the image and presented in a white 

colour. Images (d) and (e) present dermal melanin and total melanin. Dermal melanin, which 

is shown in a blue colour, allows to separate pigmented and non-pigmented lesions. Total 

melanin is shown in a black colour and allows to evaluate the symmetry of the tumour, 

which in this case seems to be skewness for melanoma disease. 

The SIA algorithm first utilizes the infrared wavebands to ascertain the quantity 

of collagen within the papillary dermis for every point over the skin lesion. This 

affects a necessary transformation on the wavebands, allowing accurate extraction of 

total melanin and blood. The impact of these chromophores on the wavebands is then 

eliminate, allowing to identify the existence of melanin below the dermoepidermal 

junction, which provides the most significant diagnostic information. This is likely 

because of the spectral remittance of melanin depends on the position in the superficial 

anatomical layers of the skin, which are named as epidermis and papillary dermis [92]. 

In 2002, SIA was used by Moncrief et al. and has shown very significant results, 

i.e. specificity was equal to 80,1% and sensitivity was equal to 82,7% for melanoma 

[92]. As a conclusion, this study proved that SIA can be used as an extra tool in the 

case of melanoma disease.  
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SIA is also used as a valuable tool in the case of non - melanoma skin cancer. 

In 2006, Tehrani et al. presented a paper and showed incredible results of the analysis. 

Authors have found that the sensitivity of the mode is equal to 98,0% and specificity 

is equal to of 95,7%, while overall accuracy of the model is equal to 98,2% [93]. To 

construct a predictive model for non-melanoma skin cancer diagnosis, a logistic 

regression model was used. For the estimation of overall accuracy, receiver operator 

characteristic curves were used. In this case, the authors proposed that to use the 

SIAscope is a useful adjunct in the diagnosis of non-melanoma skin cancer. 

For non – melanoma skin cancer, features strongly related to the traceable 

features in histopathology can be extracted. These features are presented in Table 9 

[93]. 

 

Table 9. SIA features of non – melanoma skin cancer [93] 

Histopathology SIA features SIAscope view 

Microcirculatory changes: 

angiogenesis 

Branched vessels - Wide, branched 

vessels coursing towards/into the 

lesion  

Blood 

Microcirculatory changes: 

ischaemia or tumour regression 

Paleness - Large focal area of absent 

blood within the lesion 

Blood 

Microcirculatory changes: 

Angiogenesis, inflammation. 

Flare - Uniform dark red appearance 

throughout at least 2/3 of the lesion 

Blood 

Collagen disturbance, possible 

invasion through basement 

membrane 

Collagen disturbance - Paler or 

darker collagen areas where 

invasion is occurring 

Collagen 

 

Example of basal cell carcinoma (BBC) SIAscope views are presented in Fig. 

11.  

 

 
Fig. 11. Example of non – melanoma (BCC) skin cancer SIAscope views. (a) image 

presents an optical view of basal cell carcinoma which is in a bright colour and has a net of 

branched vessels. (b) image presents a collagen disturbance. (c) image shows a vascular 

flare. 

Reviewing the types of possibly skin tumours, there is one more important area 

in analysing pigmented non – melanoma skin cancer. A pigmented basal cell 
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carcinoma is also an aggressive skin tumour the same as melanoma and is hard to 

identify whether it is a nevus or not. In 2007, Terstappen et al. stated that SIAscope 

has no advantages over dermoscopy when diagnosing pigmented basal cell carcinoma 

[94]. It was stated based on the facts that pigmented basal cell carcinomas have mostly 

the same characteristics as the melanomas, as they are both pigmented tumours 

invading the dermis with pigmented tumour masses, giving findings of dermal 

melanin, and sometimes erythematous blush with blood displacement and collagen 

holes [92]. Pigmented BCCs are included in the different methods of diagnosing 

invasive melanoma, due to the growth patterns and skewness of pigmentation keeping 

in mind that they can be confused with other benign pigmented skin lesions [94].  

 

Example of pigmented basal cell carcinoma (BBC) SIAscope views are 

presented in the Fig. 12. 

 

 
 

Fig. 12. Example of pigmented basal cell carcinoma SIAscope views. (a) image shows 

an optical view of the basal cell carcinoma (BCC). It is clearly seen that the tumour is 

pigmented and has a maple leaf like form and a net of branched vessels, which are one of the 

BCC common features. (b) image represents collagen disturbance of lesion. Paler areas are 

visible and show the area where invasion is occurring. (c) image represents a vascular flare. 

2.5. Conclusions of 2nd chapter 

 

1. Ultrasound is high frequency sound waves that can reach the skin lesions near 

the surface and scan deeper parts of the body, such as bones and soft lesions. 

Ultrasound can be defined by a lot of positive characteristics, such as refraction, 

scattering, absorption. In this way, ultrasound is a flexible technique allowing to scan 

in various positions by different exploratory objects. Due to the advantages, the 

ultrasound technique used in skin image processing helps to capture a lot of 

parameters of the investigative object and to identify the level and malignancy of skin 

damage. The relevance of ultrasound technique can be proved based on the published 

research results which are defined above. 
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2. Another widely used technique is digital dermatoscopy, which allows the 

smallest skin surface properties and damage to be seen that cannot be seen by the 

naked eye. Digital dermatoscopy can help to monitor the changes of the pigmented 

and non-pigmented skin lesions damage. Digital dermatoscopy analysis can be 

assessed by different methods, such as the ABCD rule, 7 point’s check list and others.  

3. The third proposed technique is a spectrophotometric intracutaneous analysis 

(SIA), which is also a non-invasive technique allowing the analysis of skin damage 

by different aspects, such blood, melanin, collagen, dermal melanin. As the SIA 

technique captures different layers of the pigmented and non-pigmented skin lesions 

it can be used in order to identify benign and malignant nevus.  

4. Ultrasound, digital dermatoscopy and spectrophotometric intracutaneous 

analysis can be used as decision support tools that seek to identify skin damage from 

small benign nevus to basal cell carcinoma and to malignant skin tumours.  
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3. ASSESSMENT AND COMPARISON OF LIKELY DENSITY 

DISTRIBUTIONS IN THE CASES OF THICKNESS MEASUREMENT 

OF SKIN TUMOURS BY ULTRASOUND EXAMINATION AND 

HISTOLOGICAL ANALYSIS 

A comparison of compatibility of likely density to prove that the reliability of 

the ultrasonic thickness of skin tumours measured by a newly developed and proposed 

automatic algorithm is completely covered by a high similarity to the histological 

thickness measurement is presented. Histological thickness is known as a “golden 

standard” in the field of dermatology but is invinsible. To prove this statement, the 

measurements of 43 tumours under a non-invasive ultrasound examination and 

invasive histological analysis was undertaken. The comparison of histological and 

non-invasive histological examination measurements is made by using kernel density 

functions and a hypothesis allowing to estimate the deviation between the density 

functions of different types of measurements. 

This chapter presents an assessment and comparison of likely density 

distributions in the cases of the thickness measurement of skin tumours by ultrasound 

examination and histological analysis. Section 3.1. and section 3.2. introduce how to 

construct a kernel density estimator and how to select an optimal bandwith used for 

analysis, with estimation accuracy presented in section 3.3. Results of estimation of 

kernel densities are presented in section 3.4. An application of goodness-fit of test for 

the set of real clinical data is presented in section 3.5. Section 3.6. introduces the 

summarized outcomes of chapter 3. 

3.1. Kernel density estimator   

 

A d-dimensional random vector XϵRd satisfies a mixture model if its distribution 

density function f(x) is given by equality: 

 

                                       𝑓(𝑥) = ∑ 𝑝𝑘 𝑓𝑘
𝑞
𝑘=1 (𝑥) = 𝑓(𝑥, 𝑄).              (17)                                      

 

The parameter q is the number of components in the mixture. The component 

weights pk are called a priori probabilities and satisfy the conditions: 

 

                      𝑝𝑘 > 0, ∑ 𝑝𝑘
𝑞
𝑘=1 = 1.                                      (18) 

Function fk(x) is the distribution density function of the kth component and 𝑝𝑘  is 

the vector of parameters of the mixture model. Assuming that a sample 

X= (X(1), …, X(n)) of size n from X is known, therefore the evaluation of the 
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distribution density of a defined random vector is one of the common statistical 

objects [18].  

A histogram is one of the oldest and most popular density estimators. Histogram 

and its representation were first introduced in 1891 by Karl Pearson [95]. For the 

approximation of density f(x), the number of observations X(t) falling within the range 

of Ω is calculated and divided by n and the volume of area Ω. The histogram is based 

on a step function. Derivatives, which can be equal to zero or not defined, strongly 

affects the futher histogram analysis. For eaxmple, it can cause problems when trying 

to maximize a likelihood function which is defined in terms of the densities of the 

distributions [95]. 

It is imporatant to mention that the histogram was kept as the only 

nonparametric density estimator until the 1950’s, while substantial and simultaneous 

progress was made in density and spectral density evaluations. Later in 1951, Fix and 

Hodges, in a little-known publication, presented the basics algorithm of 

nonparametric density evaluation [96]. This previously not published technical report 

was formally presented to the public only in 1989, as a review made by Silverman and 

Jones [97]. Researchers have focussed on the problem of statistical discrimination and 

did their investigations when the parametric form of the sampling density was not 

originally known. Later, several common algorithms and alternatives in theoretical 

modeling were introduced by Rosenblatt in 1956 [98], Parzen in 1962 [99], and 

Cencov in 1962 [100]. Then followed the second wave of important and primarily 

theoretical papers by Watson and Leadbetter in 1963 [101], Loftsgaarden and 

Quesenberry in 1965 [102], Schwartz in 1967 [103], Epanechnikov in 1969 [104], 

Tarter and Kronmal in 1970 [105] and Kimeldorf and Wahba in 1971 [106]. The 

natural multivariate generalization was introduced by Cacoullos in 1966 [107]. 

Finally, in the 1970’s the first papers focusing on the practical application of these 

methods were published by Scott et al. in 1978 [108] and Silverman in 1978 [109]. 

These and later multivariate applications awaited the computing revolution. 

The basic kernel estimator 𝑓(𝑥) with a kernel function K and a fixed (global) 

bandwidth h for multivariate data XϵRd may be written compactly as [18]: 

 

𝑓(𝑥) =  
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑥−𝑋(𝑡)

ℎ
)𝑛

𝑡=1 .
                             (19) 

  

The kernel function K(u) should satisfy the condition: 

 

∫ 𝐾(𝑢)
+∞

−∞
𝑑𝑢 = 1.                                        (20) 

  

Usually, but not always, K(u) will be a symmetric probability density function 

𝐾(𝑢) = 𝐾(−𝑢) for all values of u [18]. 
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At first, the data is usually prescaled in order to avoid large differences in data 

spread. A new application by Fukunaga was presented in 1972 [110]. The logic of this 

approach is first to standardize the data by using a linear transformation providing 

data with unit variance and zero mean. As a result, equation (3) is applied to the 

standardized data. Let Z denote the sphered values of  

𝑍 = 𝑆
−1

2 ∗ (𝑋 − 𝑋̅);                                       (21) 

  

where X̅ means the empirical mean, and SϵRd×d means the empirical covariance matrix. 

Invoking the kernel density estimator to the standardized data Z = (Z(1), …, Z(n)) 

obtains an estimator of density function f(x) [110]: 

 

𝑓𝑧(𝑧) =  
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑧−𝑍(𝑡)

ℎ
)𝑛

𝑡=1 ,
                                 (22) 

 

𝑓(𝑥) =  
(det 𝑆)

−1
2

𝑛ℎ𝑑
∑ 𝐾 (𝑆

−1

2
𝑥−𝑋(𝑡)

ℎ
)𝑛

𝑡=1 .
                         (23) 

  

A comparative analysis of estimation accuracy was made for four different types 

of kernels. The first three kernels are classical, whereas the last one is new. 

The Gaussian kernel is consistent with the distribution of normal φ(x) (see 

Gasser et al., 1985 [111], Marron and Nolan, 1988 [112]) selection: 

 

𝐾𝐺(𝑥) = 𝜑(𝑥) =
1

(2𝜋)
𝑑
2

𝑒 (
−𝑥𝑇𝑥

2
).                                (24) 

 

The Epanechnikov kernel is the second order polynomial, corrected to satisfy 

the properties of the density function (see Epanechnikov, 1969 [104], Sacks and 

Ylvisaker, 1981 [113]): 

 

𝐾𝐸(𝑥) =
𝑑+2

2𝑉𝑑
(1 − 𝑥𝑇𝑥)𝟏{|𝑥𝑇𝑥≤1|};                              (25) 

 

where 𝑉𝑑 =
𝜋𝑑/2

Γ(
𝑑

2
+1)

 is the volume of the d-dimensional unit sphere, and Γ(𝑢) =

∫ 𝑦𝑢−𝑖∞

0
𝑒−𝑦𝑑𝑦. 
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The Triweight kernel proposed by Tapia and Thompson in 1978 [114] has better 

smoothness properties and finite support. It was investigated in detail by Hall in 1985 

[115]: 

 

𝐾𝑇(𝑥) =
(𝑑+4)(𝑑+6)

24

(𝑑+2)

2𝑉𝑑
(1 − 𝑥𝑇𝑥)3𝟏{|𝑥𝑇𝑥≤1|}.              (26) 

 

The new kernel KNew has lighter tails than the Gaussian distribution density and 

was introduced by the authors of this article [116]: 

 

𝐾𝑁𝑒𝑤(𝑥) = 𝜑(|𝑢|
1

𝛼)
1

𝛼𝑑 (|∏ 𝑥𝑖
𝑑
𝑖=1 |

1/𝑑
)1−𝛼.                    (27) 

 

This kernel function depends on parameter α. In simulations, the chosen values 

of the parameter were 0.25, 0.5, and 0.75. The first two values produce the worse 

accuracy results in comparison with the value of 0.75. Therefore, only the results 

obtained for α  =  0.75 are reported here [116]. 

 

3.2. Optimal bandwidth selection 

 

The main three parameters in a kernel density estimator are: the kernel function 

K(∙), the sample size n, and the bandwidth h. The sample size is quite a tricky 

parameter and is not easily adaptable, but there is little that can be done about it. This 

research task is to get the most significant results by selecting a suitable bandwidth 

and an appropriate kernel for analysis. The selection of an optimal bandwith is the 

most decisive step in order to get a good evaluation [117] On the other hand, the 

selection of an optimal bandwith is one the greatest problems in kernel density 

estimation and a finite technique of how to acheive it does not exist. It can look 

surprising that the most effectual method of kernel bandwidth selection is a visual 

assesment and relies on the researcher. Usually, the researcher compares different 

density evaluations, which have a variety of bandwidths and then the bandwdith that 

corresponds to the optimal assesment is choosen. It is important to note, that the above 

bandwidths selection method will give different badwidths in the selection made by 

two diffrenets researchers. This method is also a time consuming method.      

The application based on mathematical analysis is to figure out the inadequacy 

between the assesment and the target density by an estiated error criterion. In this case, 

an optimal bandwidth will then be the bandwidth value that minimizes the error 

measured by the error criterion. A method like this is objective and can be time-

effective, as computers can now solve it numerically. 
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A global measure of precision is the asymptotic mean integrated squared error 

(AMISE) [117]: 

 

𝐴𝑀𝐼𝑆𝐸 (𝑓(𝑥)) =
𝐾𝜈

2(𝐾)

(𝜈!)2 𝑅(∇𝜈𝑓)ℎ2𝜈 +
𝑅(𝐾)𝑑

𝑛ℎ𝑑 ;                        (28) 

 

where ∇𝜈𝑓(𝑥) = ∑
𝜕𝜈

𝜕𝑥𝑘
𝜈 𝑓(𝑥)𝑑

𝑘=1  and 𝑅(𝑔) = ∫ 𝑔(𝑢)2𝑑𝑢
∞

−∞
 is the roughness of a 

function. The order of a kernel, v, is defined as the order of the first non-zero moment 

𝜅𝑗(𝐾) = ∫ 𝑢𝑗𝐾(𝑢)𝑑𝑢.
∞

−∞
 For example, if 𝜅1(𝐾) = 0 and 𝜅2(𝐾) > 0 then K is a 

second-order kernel and v = 2. If 𝜅1(𝐾) = 𝜅2(𝐾) = 𝜅3(𝐾) = 0 but 𝜅4(𝐾) > 0 then 

K is a fourth-order kernel and v = 4.The order of a symmetric kernel is always even. 

Symmetric non-negative kernels are second-order kernels. A kernel is a higher-order 

kernel if v > 2. These kernels will have negative parts and are not probability densities. 

 

The optimal bandwidth is [117]: 

 

ℎ0 = (
(𝜈!)2𝑑𝑅(𝐾)𝑑

2𝜈𝐾𝜈
2(𝐾)𝑅(∇𝜈𝑓)

)1/(2𝜈+𝑑)𝑛−1/(2𝜈+𝑑).                        (29) 

 

The optimal bandwidth depends on the unknown quantity 𝑅(∇(𝜈)𝑓). For a rule-

of-thumb bandwidth, Silverman proposed that it is possible to try the bandwidth 

computed by replacing f in the optimal formula by 𝑔0, where g0 is a reference density 

– a plausible candidate for f, and 𝜎̂ is the sample standard deviation (see Bruce E. 

Hansen, 2009 [118]). The standard choice is a multivariate normal density. The 

optimal bandwidth depends on the normality of the true density, i.e. if the true density 

is close to the normal distribution, so then the bandwidth will be close to optimal. 

Calculation of this is proceeded according to  

 

𝑅(∇𝜈𝜑) =
𝑑

𝜋
𝑑
22𝑑+𝜈

((2𝜈 − 1)‼ + (𝑑 − 1)((𝜈 − 1)‼)
2

);        (30) 

 

where the double factorial means (2s + 1)!! = (2s + 1) (2s – 1) ... 5 ∙ 3 ∙ 1. Making this 

substitution, the following is obtained 

 

ℎ0 = 𝐶𝜈(𝐾, 𝑑)𝑛−1/(2𝜈+𝑑);                                  (31) 
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where 𝐶𝜈(𝐾, 𝑑) = (
𝜋

𝑑
22𝑑+𝜈−1(𝜈!)2𝑅(𝐾)𝑑

𝜈𝐾𝜈
2(𝐾)((2𝜈−1)‼+(𝑑−1)((𝜈−1)‼)

2
)
)1/(2𝜈+𝑑). and this assumed that 

variance is equal to 1. Rescaling the bandwidths by the standard deviation of each 

variable, the rule-of-thumb bandwidth for the ith variable is obtained 

 

ℎ𝑖 = 𝜎̂𝑖 𝐶𝜈(𝐾, 𝑑)𝑛−
1

2𝜈+𝑑.                                     (32) 

 

Table 10 provides the normal reference rule-of-thumb constants (Cv(K,d) in (Eq. 

50)) for the second-order d-variate kernel density estimator. First, in the general 

setting of a second order kernel, where v = 2, the rule-of-thumb constants decrease as 

d increases. In 1992, Scott noted that it reaches a minimum when d = 11 [95]. The 

v = 2 case is the only one Scott has considered. When v > 2, it is possible to prove that 

the rule-of-thumb constants increase in the dimensionality of the problem. The main 

focus behind it is that the higher-order kernels reduce bias, larger bandwidths are 

needed to minimize AMISE. However, note that the increase is not uniform over v 

[95]. 

 

Table 10. Normal reference rule-of-thumb constants (Cv(K,d)) for the multivariate 

second-order kernel density estimator [116] 

Kernel d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 

Gaussian 1.059 1.000 0.969 0.951 0.9340 0.933 0.929 0.927 0.925 0.925 

Epanechnikov 2.345 2.191 2.120 2.073 2.044 2.025 2.012 2.004 1.998 1.995 

Triweight 3.155 2.964 2.861 2.800 2.762 2.738 2.723 2.712 2.706 2.702 

New 1.142 1.079 1.045 1.025 1.014 1.007 1.002 1.000 0.998 0.998 

3.3. The analysis of estimation accuracy 

A comprehensive simulation study was conducted with the aim to compare the 

kernel functions described before. The main attention is paid to the case where the 

density of independent d-dimensional observations are Gausian mixture models 

(GMM) [17]: 

 

𝑓(𝑥) = ∑ 𝑝𝑖 𝜑𝑖
𝑞
𝑖=1 (𝑥) = 𝑓(𝑥, 𝑄), 𝑥𝜖𝑅𝑑;                        (33) 

 

where Q = (pi, Mi, Ri, i=1, 2, … , q). Univariate, bi-variate, and quinta-variate GMMs, 

from a suggested collection was used in a comparative analysis as the benchmark 

densities: 
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1) Gaussian  

p1 = 1, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

2) skewed unimodal  

p1 = 1/5, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

p2 = 1/5, M2 = (1/2, 0, …, 0), R2 = diag([(2/3)2, …, (2/3)2]) 

p3 = 3/5, M3 = (13/12, 0, …, 0), R3 = diag([(5/9)2, …, (5/9)2]) 

3) strongly skewed  

pn = 1/8, Mn = (3((2/3)n-1), 0, …, 0), Rn = diag([(2/3)2n, …, (2/3)2n]), n = 0,…, 7 

4) kurtotic unimodal  

p1 = 2/3, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

p2 = 1/3, M2 = (0, …, 0), R2 = diag([(1/10)2, …, (1/10)2]) 

5) outlier  

p1 = 1/10, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

p2 = 9/10, M2 = (0, …, 0), R2 = diag([(1/10)2, …, (1/10)2]) 

6) bimodal  

p1 = 1/2, M1 = (-1, 0, …, 0), R1 = diag([(2/3)2, …, (2/3)2]) 

p2 = 1/2, M2 = (1, 0, …, 0), R2 = diag([(2/3)2, …, (2/3)2]) 

7) separated bimodal  

p1 = 1/2, M1 = (-3/2, 0, …, 0), R1 = diag([(1/2)2, …, (1/2)2]) 

p2 = 1/2, M2 = (3/2, 0, …, 0), R2 = diag([(1/2)2, …, (1/2)2]) 

8) skewed bimodal  

p1 = 3/4, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

p2 = 1/4, M2 = (3/2, 0, …, 0), R2 = diag([(1/3)2, …, (1/3)2]) 

9) trimodal  

p1 = 9/20, M1 = (-6/5, 0, …, 0), R1 = diag([(3/5)2, …, (3/5)2]) 

p2 = 9/20, M2 = (6/5, 0, …, 0), R2 = diag([(3/5)2, …, (3/5)2]) 

p3 = 1/10, M3 = (0, …, 0), R3 = diag([(1/4)2, …, (1/4)2]) 

10) claw  

p1 = 1/2, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

pn = 1/10, Mn = (n/2-1, 0, …, 0), Rn = diag([(1/10)2, …, (1/10)2]), n = 0, …, 4 

11) double claw  

p1 = 49/100, M1 = (-1, 0, …, 0), R1 = diag([(2/3)2, …, (2/3)2]) 

p2 = 49/100, M2 = (1, 0, …, 0), R2 = diag([(2/3)2, …, (2/3)2]) 

pn = 1/350, Mn = ((n-3)/2, 0, …, 0), Rn = diag([(1/100)2, …, (1/100)2]), n = 0, …, 

6 

12) asymmetric claw  

p1 = 1/2, M1 = (0, …, 0), R1 = I = diag([1, …, 1]) 

pn = 21-n/31, Mn = (n+1/2, 0, …, 0), Rn = diag([(2-n/10)2, …, (2-n/10)2]), n = -2, 

…, 2 

13) asymmetric double claw  

pj = 46/100, Mj = (2j-1, 0, …, 0), Rj = diag([(2/3)2, …, (2/3)2]), j = 0, 1 

pn = 1/100, Mn = (-n/2, 0, …, 0), Rn = diag([(1/100)2, …, (1/100)2]), n = 1, 2, 3 

pk = 1/100, Mk = (k/2, 0, …, 0), Rk= diag([(1/100)2, …, (1/100)2]), k = 1, 2, 3 
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14) smooth comb  

pn = 25-n/63, Mn = (65-96(1/2)n/21, 0, …, 0), Rn = diag([(32/63)/22n, 

…,(32/63)/22n]), n= 0, …, 5 

15) discrete comb  

pn = 2/7, Mn = ((12n-15)/7, 0, …, 0), Rn = diag([(2/7)2, …,(2/7)2]), n = 0, 1, 2 

pk = 1/21, Mk = (2k/7, 0, …, 0), Rk = diag([(1/21)2, …,(1/21)2]), k = 8, 9, 10 

 

The above densities have been selected because they introduce a large amount 

of different types of challenges to curve estimators. The first five densities introduce 

different types of problems that can appear for unimodal densities. All other densities 

are multimodal. Densities from six to nine are mildly multimodal and can be estimated 

by using a data set of a moderate volume. 

The remaining densities are strongly multimodal and consequnetly for moderate 

sizes it is difficult to recover even their shape. Yet, they are well worth studying 

because the issue of just how many of them can be recovered is an important factor. 

The claw density, number 10, is of special interest; as this is where the surprising 

result of local minimum in the mean of an integrated square error is occuring. The 

double claw density, noted as 11, is essentially the same as sixth, except that 

approximately 2% of the probability mass is appearing in the spikes. The asymmetric 

claw and double claw densities, numbered as 12 and 13, are modifications of the 10th  

and 11th , respectively. The smooth and discrete comb densities, numbered as 14 and 

15, are enhancements of the basic idea of the separated bimodal mixture model 

numbered as 7. Both of these are shown because they have many different Fourier 

transform properties, since 14 has essentially no periodic tendencies, while 15 has two 

strong periodic components. 

Note that the univariate case of this set of models is similar to the collection 

suggested by Marron and Wand in 1992 [17]. 

In the simulation study, low-size and moderate-size samples (16, 32, 64, 128, 

256, 512, 1024) were used [116]. 10000 replications were generated in each case. The 

conclusions presented below are based on the analysis of these medians and 

minimums. The estimation accuracy is measured by the mean absolute percentage 

error (MAPE) [119]: 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑓(𝑋(𝑡))−𝑓̂(𝑋(𝑡))

𝑓(𝑋(𝑡))
|𝑛

𝑡=1 ≅ ∫|𝑓(𝑥) − 𝑓(𝑥)|𝑑𝑥.                (34) 

 

3.4. Results of estimations of kernel densities 

The results of the univariate kernel density estimation are examined in detail by 

Ruzgas and Drulyte, 2013 [6]. The experimental research showed that some of the 

kernel density functions used with multiple distributions mixtures lead to particularly 

good results. For example, the Triweight kernel density function is characterized as 

one of the most effective when the study is done by using “Discrete comb“ mixture 
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with a sample size larger than 256, and dimension equal to 2. The results obtained 

with the Epanechnikov kernel density function have shown that this function is 

appropriate to be used when the calculations are carried out with the average sample 

size by using “Bimodal”, “Separated bimodal” and “Smooth comb” mixtures with 

dimension equal to 2. In addition, the new kernel density function proposed by the 

authors of this research has also shown unexpected results. The smallest median errors 

for all sample sizes when the dimension is equal to 2, are obtained by using the mean 

average percentage error (MAPE), even at five different mixtures: “Gaussian”, 

“Skewed unimodal”, “Strongly skewed”, “Kurtotic unimodal” and “Outlier”. 

Meanwhile, when the sample size is less or equal to 256, the smallest median errors 

are obtained with “Bimodal”, “Separated bimodal”, “Smooth comb” and “Discrete 

comb” mixtures [116]. Another important point is that the new kernel density function 

gives the smallest median errors with all mixtures of Gaussian distribution and all 

sample sizes when the dimension is equal to five. The second effective function is 

Gaussian kernel density function.  

The results of errors dependence on sample size and selected dimension by using 

the “Skewed bimodal” mixture and different dimensions are shown in Fig. 13. Here, 

the Gaussian, Epanechnikov, Triweight and new kernel density functions are marked 

as G, E, T and N show the results of estimation accuracy [116]. Medians and 

minimums of mean average percentage errors are marked by solid and dashed lines. 

The results of errors dependence on the sample size results acheived by using 

“Skewed bimodal” mixture and different dimensions are shown below in Fig. 13 

[116]. 

 

 
Fig. 13. Estimation accuracy based on MAPE for skewed bimodal bi-variate and 

quinta-variate densities (here MAPE means the mean absolute percentage error; n is the 

sample size; the Gaussian, Epanechnikov, Triweight and new kernel bi-variate density 

functions are marked as G, E, T and N in dashed lines, quinta-variate density functions for 

the same kernels are marked as G, E, T and N in solid lines) [116]. 

When the dimension is increasing, the smallest errors are acheived by using the 

new kernel density function [116]. Meanwhile, the Gaussian kernel density function 

is respectively appropriate to be used when the dimension is smaller or equal to 4 and 
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smaller than 3 in the case of the Epanechnikov and Triweight functions. The 

effectiveness of the Gaussian kernel density function is shown in Fig. 14. 

 

 
Fig. 14. The relationship between number of dimension and MAPE (Gaussian 

densities with sample sizes 512 on the left picture and 1024 on the right picture). Here 

MAPE means the mean absolute percentage error; d is the dimension; the Gaussian, 

Epanechnikov, Triweight and new kernel density functions are marked as G, E, T and N in 

solid lines [116]. 

 

3.5. The application of goodness fit of test  

During the non-invasive ultrasonic measurements of human skin DUB-USB 

ultrasound system (“Taberna pro medicum”)of 22 MHz’s was used for transmission 

and reception of ultrasonic waves. The immersion experimental set-up with a 

mechanically scanned ultrasonic transducer was employed. The transducer was 

focused at the surface of the skin. In addition, the system was used for acquisition, 

digitization and transfer to a personal computer and received A-scan ultrasonic 

signals. The set of acquired A-scan signals were used for reconstruction of the B-scan 

image. Finally, the maximal thickness of the skin lesion was manually evaluated by a 

well-experienced dermatologist, measuring the distance between the lower edge of 

the entry echo and the deepest point of the posterior margin of the hypoechoic zone. 

During the evaluation of thickness, the value of ultrasound velocity was assumed to 

be 1580 m/s. 

The principle of investigation of human skin lesions using an ultrasonic pulse-

echo technique is presented in Fig. 15 [120]. 
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Fig. 15. The principle of investigation of human skin lesions using ultrasonic pulse-echo 

technique [120] 

The set of real clinical data presented in Fig. 16 was used as an empirical 

example [116]. Within this section, a set of values (the sample size was equal to 52 

observations) of the skin lesions previously used for clinical decision support by non-

invasive ultrasonic measurements in vivo and the histological evaluation ex vivo of 

their thickness and malignancy after surgical excision has been obtained and 

compared. The analysis was performed retrospectively in an empirical context in 

order to estimate the goodness of fit tests.  

Histological and ultrasonic data has been collected at the Department of Skin 

and Venereal Diseases at the Lithuanian University of Health Sciences (LUHS). The 

study was approved by the regional ethics committee; the collection of all data was 

approved by the institutional review board after the patients’ informed consent was 

obtained in accordance with the Declaration of Helsinki Protocols. The data sets used 

in the empirical example were acquired on 52 suspicious melanocytic skin tumours 

(MST), which included 46 melanocytic nevi and 6 melanomas. Inclusion criteria of 

the study covered the size of the tumour up to 1 cm in diameter and histological 

thickness of ≤1.5 mm. 
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Fig. 16. The results of histological measurements and measurements made by 

ultrasonic diagnosis [116] 

After a surgical excision and during the routine histopathology, the vertical 

distance from the uppermost level of the stratum granulosum in the epidermis to the 

lowest point of the lesion without infiltrate (histological tumour thickness, Breslow 

index) was independently evaluated by two pathologists and averaged. 

More details about ultrasonic examinations in dermatology and comparison with 

histological data are provided by Jasaitiene et al. in 2011 [121] and Kučinskienė et al. 

in 2014 [122]. 

For the goodness of fit test, this research is using tests based on kernel density 

estimators described above. Let 𝑋1, … , 𝑋𝑛 be a sample of independent observations of 

a random variable X with unknown probability density function 𝑓(𝑥), 𝑥 ∈ 𝑅. For the 

given sample, it is required to test the hypothesis mentioned in the publication made 

by Rudzkis and Bakshaev in 2013 [123]: 

𝐻0: 𝑓(𝑥) = 𝑓0(𝑥), against alternative 𝐻1: 𝑓(𝑥) = (1 − 𝜖)𝑓0(𝑥) + 𝜖𝑔(𝑥). 

Here 𝑓0(𝑥) is a given probability density function, 𝜖 is negligible and 𝜖𝑔(𝑥) is 

an arbitrary distribution, where 𝜎2
𝑔 ≤ 𝜎2

𝑓0
 and 𝜎2

𝑓 is a variance of distribution f. 

In this study, five tests of goodness of fit have been evaluated: Pearson's chi-

squared test, Rudzkis-Bakshaev’s test, Kolmogorov–Smirnov test, Cramer von Mises 

test and Kuiper's test for four different kernel functions. One of the steps leading to 

the main result was to check the goodness of fit between the density of ultrasonic 

thicknesses distribution and density of histological thicknesses distribution of the skin 

tumours. The next step was to compare the compatibility of likely density of 

histological thicknesses distribution of the skin tumours and Normal distribution 

density. If two mentioned checked conditions are satisfied, as a result it is clear that 

the density of ultrasonic thicknesses distribution and Normal distribution density are 

interconnected [116]. All results of the goodness of fit between the density of 

ultrasonic thicknesses distribution and density of histological thicknesses distribution 

of the skin tumours (denoted as U H) and the goodness of fit between the density of 



 
 

50 

 

histological thicknesses distribution and Normal distribution density (denoted as H 

and N) are shown in Table 11. 

 

Table 11. The results of goodness fit of test based on kernel functions [116] 

Goodness of Fit Test 

 

Kernel Function 

 Normal Epanechnikov Triweight New proposed 

Pearson's chi-squared χ2 
U H ~1 ~1 ~1 ~1 

H N 0.447 0.006 0.122 0.009 

Rudzkis-Bakshaev 
U H 0.993 0.997 0.997 0.990 

H N 0.973 0.967 0.978 0.899 

Kolmogorov–Smirnov 
H N 0.883 0.925 0.908 0.912 

H N 0.999 0.999 0.999 0.999 

Cramer von Mises 
U H 0.685 0.725 0.704 0.719 

H N 0.897 0.891 0.898 0.886 

Kuiper's 
U H 0.999 0.999 0.999 0.999 

H N ~1 ~1 ~1 ~1 

 

3.6. Conclusions of 3rd chapter 

1. Within the performed study, a check of the goodness of fit test for thicknesses 

of the skin tumours measured in two different ways was conducted (non-invasive 

ultrasound examination and invasive histological analysis).  

2. The performed simulation study leads to the kernel K which has shown a 

better performance for Gaussian mixtures with considerably overlapping components 

and multiple peaks (double claw distribution). In addition, its accuracy decreases more 

slowly than the other kernels, when the random vector dimension increases.  

3. The empirical study has shown that Pearson's chi-squared test is the most 

sensitive of all used tests. The main reason is the differences between empirical and 

theoretical distributions due to heavy tails of the empirical distributions.  

Subsequently, Kuiper’s test has the lowest sensitivity criteria and was the most 

powerful in the performed comparative analysis.  

4. The obtained results have shown that the density of ultrasonic thicknesses 

distribution is similar to the Normal distribution density by more than 90 percent. 

Hence, the reliability of ultrasonic thickness measurement of the skin tumour is 

completely covered by a high similarity to the histological thickness measurement, 

which is known as a “golden standard” in the field of dermatology.  

5. The application of goodness fit of test has shown that p-value of all criteria’s 

with all kernel functions are approximately 2 times greater than Pearson's chi-squared 

test. Therefore, it proves that the application of a non-invasive ultrasonic technique 

(at least of 22 MHz) for thickness estimation of the melanocytic skin lesions (tumours 
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and nevus) possesses high reliability and is suitable to be used in daily clinical 

practise. 

4. THE NONPARAMETRIC APPROACH IN ORDER TO ESTIMATE THE 

PARAMETERS OF LESIONS OF THE HUMAN TISSUE 

Nowadays, accurate measurements are very important for the early diagnosis of 

skin cancer and can help to prevent skin cancer and increase survival rate. A newly 

developed and proposed automatic algorithm based on the synergy of digital 

dermatoscopy and ultrasonic B-scan images that is used to estimate the parameters of 

lesions of human tissue and can improve the accuracy are further discussed. The 
experimental study has been conducted with 31 ultrasonic and 31 digital 

dermatoscopy images.  

This chapter presents a nonparametric approach in order to estimate the 

parameters of lesions of human tissue. Sections 4.1. –  4.4. consist of a review and 

comparison of two different classification models (discriminant analysis and logistic 

regression). The procedure of segmentation of ultrasonic and digital dermatoscopy 

medical images is presented in section 4.5. The results of automatic classification of 

melanoma and benign melanocytic nevi, analysing ultrasonic B-scan images and in 

combination with the analysis of digital dermatoscopy images are described in section 

4.6. Section 4.6 also includes the diagnostic accuracy, as well as sensitivity and 

specificity rates of the proposed automated statistical method. The analysis of the 

separation significant and not relevant parameters in order to increase the 

classification accuracy of ultrasonic and digital dermatoscopy images is presented in 

section 4.7. Section 4.8. includes an overview of results of the different techniques 

used in the field of dermatology and results of a newly developed and proposed 

automated algorithm. Section 4.9. contains the summarized outcomes of chapter 4.  

 

4.1. Discriminant analysis 

The discriminant analysis method is simple and one of the most widely used 

methods in different research areas. It has been used for a long time in order to 

estimate the differences between observations. For example, in 1968, Peter A. 

Lachenbruch et al. presented a number of new methods in order to minimize the error 

rates and to improve the classification [124]. After 9 years, Peter A. Lachenbruch et 

al. were involved and analysed problems such as robustness, nonparametric rules, 

contamination, density estimation and mixture of variable, which leads to a more 

reliable result of classification tasks [125]. Later, in 1999, Jerome H. Friedman 

showed that the proposed method of regulation can increase the impact of discriminant 

analysis when the sample volume is small, and the quantity of measurement variables 

is high [126]. More research from 20th century can be found here [127 – 134]. 

Reviewing the last decade, discriminant analysis is still one of the popular 

methods that helps to achieve reliable results in the case of differentiation purposes 

between groups. It has been used in various fields, such as medicine, gene science, 
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agriculture, veterinary, food science, human physics, electrical engineering, remote 

sensing, neuro science, finance and many others. In 2011, some of the authors have 

used discriminant analysis for face recognition and achieved results that clearly show 

the superiority of the proposed stochastic discriminant analysis (SDA) over state-of-

the-art methods [135]. Meisam Khalil Arjmandi et al. have published a paper that 

presents an algorithm based on discriminant analysis and used in the identification of 

different voice disorders, with their origin in the vocal folds [136]. R. Romo Vazquez 

et al. have shown that the discriminant analysis application is one of the best 

approaches, using it for artefact removal and noise elimination from scalp 

electroencephalogram recordings (EEG) [137].  In addition, a number of Indian 

researchers shared their experience of using the discriminant analysis for brain tumour 

magnetic resonance image (MRI) classification, with feature selection and extraction 

[138]. In 2012, Ahmet Alkan et. al also used discriminant analysis (DA) for the 

identification of electromyography (EMG) signals [139]. Discriminant analysis is also 

used in the classification of glioma grading tasks and as Rishi Awasthi et. al stated, ‘a 

non-invasive DCE-MRI can be used in order to separate high-grade and low-grade 

brain tumours and can help to prepare a plan of treatment, as well as control the 

progress of the disease’ [140].  In 2010, research was presented regarding applying 

discriminant analysis in schizophrenia and healthy subjects, which showed significant 

results and could be applied to differentiate patients with schizophrenia from healthy 

subjects [141]. In 2011, as a remedy, Benjamin Blankertz et al. proposed an idea to 

use an estimation based on shrinkage and showed that the proper regulation of linear 

discriminant analysis (LDA) by shrinkage is providing incredible results on the 

classification of a single-trial ERP of brain images and is more preeminent than a well-

known LDA classification [142]. K.J. Deluzio et al. have done research in the case of 

knee osteoarthritis (OA) and focused on three features, such as the knee flexion angle, 

flexion moment, and adduction moment; stating that “The discriminant analysis was 

able to rank these features from the gait measures in terms of their power to separate 

normal and OA gait patterns” [143]. In 2009, Yun-Chi Yeh et al. presented a method 

for Cardiac arrhythmia diagnosis, which showed incredible accuracy with regards to 

the correct diagnosis [144]. Another field where discriminant analysis was used also 

showed good results in the case of persons who have dementia [145]. In addition, 

discriminant analysis has been proven as being helpful when it is used in classifying 

and identifying brain tumours [135] and for automated differentiation of pre-diagnosis 

Huntington's disease [146].  Furthermore, DA has been used in gene science and also 

gave significant results in the case of the identification of clusters and graphical 

representation of between-group structures, which allow to unravel complex 

population structures by analysing microsatellite polymorphism in worldwide human 

populations and hemagglutinin gene sequence variation in seasonal influenza [147]. 

In 2015, Ivashchenko O.V. et al.  presented a paper related to the human physics, 

where it used a discriminant analysis in order to determinate the classification model 

of senior forms’ pupils’ motor and functional fitness [134].  

Suppose that the prior probabilities of group observations are labelled and the 

group-specific densities at x are easily assessed, therefore the probability 
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of x belonging to group t, in the case of discriminant analysis can be calculated by 

using Bayes’ theorem: 

𝑝(𝑡|𝑥) =
𝑞𝑡𝑓𝑡(𝑥)

𝑓(𝑥)
.                                                 (35) 

The discriminant analysis method allows to divide the p-dim vector space into 

regions 𝑅𝑡, where the particular region 𝑅𝑡 is the subspace including all p-dim 

vectors y so that 𝑝(𝑡|𝑦) is the largest of all groups. If observation is in the region 𝑅𝑡 

then it can be classified as coming from group t [148]. 

4.1.1. Parametric Methods  

To have ideal conditions and assuming that all of samples have a multivariate 

normal distribution, means that they are distributed by a Gaussian curve. In this case, 

discriminant analysis is generating a classification criteria or discriminant function by 

applying a computation of generalized squared distance. The classification criterion 

is based on the individual within-group covariance matrices or pooled covariance 

matrix with respect to the prior probabilities of the classes. All observations are placed 

in the class depending on the smallest generalized squared distance [148]. The 

generalized squared distance from x to group  can be defined as the form below 

[148]: 

𝐷𝑡
2(𝑥) = 𝑑𝑡

2(𝑥) + 𝑔1(𝑡) + 𝑔2(𝑡); 

where 

𝑔1(𝑡) = {
𝑙𝑛|𝑆𝑡| 𝑖𝑓 𝑡ℎ𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑎𝑟𝑒 𝑢𝑠𝑒𝑑

0 𝑖𝑡 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙𝑒𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑢𝑠𝑒𝑑
 

and 

𝑔2(𝑡) = {
−2 ln(𝑞𝑡) 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙

0 𝑖𝑡 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙
 

 

Another important aspect is that discriminant analysis can be used in order to 

estimate the posterior probability of an observation belonging to each class of samples 

and has a form as detailed below [148]: 

𝑝(𝑡|𝑥) =
exp(−0.5𝐷𝑡

2(𝑥))

∑ 𝑒𝑥𝑝𝑢 (−0.5𝐷𝑢
2(𝑥))

;                                       (36) 
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here −0.5𝐷𝑢
2(𝑥) shows scores of discriminants. An observation is classified into 

group u if setting t = u produces the largest value of 𝑝(𝑡|𝑥) or the smallest value 

of 𝐷𝑡
2(𝑥). 

 

4.1.2. Nonparametric Methods  

Nonparametric methods are well known methodology used by many researchers 

between different research fields. For example, nonparametric methods are used in 

medicine, gene science, agriculture, veterinary, food science, human physics, 

electrical engineering, remote sensing, neuro science, finance and many others. 

Lifeng Shang et al. [149] and N.M. Khan et al. [150] have presented how to use 

a nonparametric discriminant approach and apply it to facial expression recognition. 

Xiaodan Xie et al. have prepared research to show how the nonparametric methods 

can be useful in satellite imaging and aerial reconnaissance areas [151]. In addition, 

Tanvir Islam [152] et al. used it in the remote sensing area.  In 2011, another 

publication was published about the nonparametric method application to 

amyotrophic lateral sclerosis, which showed excellent classification results (i.e. the 

area under the ROC curve reached more than 85%) [153]. In 2012, Allan R. Brasier 

M.D. showed how the nonparametric method can help in developing a biomarker for 

Dengue Hemorrhagic Fever [154]. In 2014, Loredana Murino et al. [155] published 

high accuracy results of classifying the multispectral brain MR images.  

Nonparametric models are also used in toxicology and pharmacology [156, 157, 158], 

as well as for the detection of rheumatic arthritis [159], clinical immunology [160] 

and in the field of chemometrics [161]. In 2013, Yan Cui et al. presented a paper that 

includes a nonparametric application to gene science [162, 163]. William G. Finn et 

al. showed in 2009 that the nonparametric approach can give significant results in 

Clinical flow cytometry [164]. Katie M. Hallahan [165] et al. used the nonparametric 

approach in research about the eye disease, named as Keratoconus and achieved high 

accuracy results, which reached over 96 percent. In 2008, Lukas Käll et al. also used 

the non-parametric approach for the estimation of posterior error probabilities 

associated with peptides [166]. In 2013 an application was presented in the field of 

agriculture [167] for the detection of immature peach fruits, which can help growers 

to create yield maps for adjusting management practices during the fruit maturing 

stages. More applications of nonparametric methods can be found in [168, 169, 170, 

171, 172, 173, 174]. 

One of the methods is a nonparametric discriminant method, which is based on 

nonparametric estimates of group-specific probability densities. The estimation of 

nonparametric density is generated by using a kernel method or, for example the k-

nearest-neighbour method and could be used to define classification criteria.  There 

are various kernels that can be used in order to estimate densities, for example 

Gaussian, Epanechnikov, uniform, biweight, triweight and many others. 
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The classification of observations depends on the group of specific densities, 

which are computed by using a training set. After the assessment of the group 

densities, the posterior probabilities of group membership at x are also evaluated. 

Therefore, the sample x is included to group u if t = u provides the largest value 

of 𝑝(𝑡|𝑥) [148]. 

For the computation of density to group t for observations vector x, a fixed 

radius r and a specified kernel 𝐾𝑡 are used. Suppose, that z is a p-dimensional vector, 

therefore a volume of a p-dimensional unit sphere bounded by 𝑧′𝑧 = 1 can be defined 

as [148]: 

𝜈0 =
𝜋𝑝/2

Γ(
𝑝

2
+1)

.                                                    (37) 

Gamma function is represented by Γ. 

In group t, the volume of a -dimensional ellipsoid bounded by {𝑧|𝑧′𝑉𝑡
−1

𝑧 =
𝑟2}  can be expressed as: 

𝜈𝑟(𝑡) = 𝑟𝑝|𝑉𝑡|1/2𝜈0.                                          (38) 

In this research, Normal kernel with mean zero and variance 𝑟2𝑉𝑡 was used. 

Normal kernel, also known as Gaussian kernel, and has the form [148]: 

𝐾𝑡(𝑧) =
1

𝑐0(𝑡)
𝑒

(−
1

2𝑟2𝑧′𝑉𝑡
−1𝑧)

;                                (39) 

here 𝑐0(𝑡) = (2𝜋) 
𝑝/2𝑟𝑝|𝑉𝑡|1/2.   

The density of group t at x was estimated by using [148]: 

𝑓𝑡(𝑥) =
1

𝑛𝑡
∑ 𝐾𝑡𝑦 (𝑥 − 𝑦)                                    (40) 

The above depends on the summation of all observations and the chosen kernel 

function 𝐾𝑡. Therefore, the calculation of posterior probability of membership in 

group t is calculated by using a form: 

𝑝(𝑡|𝑥) =
𝑞𝑡𝑓𝑡(𝑥)

𝑓(𝑥)
                                                    (41) 

and depends on the estimated unconditional density that can be described as the 

function, 𝑓(𝑥) = ∑ 𝑞𝑢𝑓𝑢(𝑥).𝑢  

In the case of a fixed kernel shape, the smoothing parameter s is chosen by 

plotting the estimated densities with different values of s and selecting the estimate 

depending on the prior information about the density.  

Another method of selecting the smoothing parameter s is to find an optimal 

value for a given criterion. The optimal value strongly depends on the group 
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probability density function. Assuming that the kernel has a symmetry form of 

probability density function and the unknown density has bounded and continuous 

second derivatives. One of the goals is to minimize an approximate mean integrated 

square error of the estimated density [148]. Optimal value of smoothing parameter, s 

is based on the kernel and its density function. Optimizing criteria with the 

presumption of normal group t distribution together with the covariance matrix 𝑉𝑡 

allows choosing the optimal smoothing parameter r.  

 

 

Therefore, the smoothing parameter s in group t, can be described as [148]:  

𝑠 = (
𝐴(𝐾𝑡)

𝑛𝑡
)1/(𝑝+4);                                              (42) 

 

here an optimal constant 𝐴(𝐾𝑡) depends on the kernel 𝐾𝑡 [104]. In this research, a 

constant 𝐴(𝐾𝑡) for a Gaussian kernel is expressed as: 

 

𝐴(𝐾𝑡) =  
4

2𝑝+1
, 𝑤𝑖𝑡ℎ 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙.                        (43) 

 

As a rule, there is no singular method that is the best when compared with other 

methods used in classification. The parametric discriminant technique is the oldest 

method for classification, firstly presented by Fisher in 1936 with the purpose to solve 

the problems arising from the biological measurements, and became widely used due 

to the simplicity and robustness, but linear discriminant analysis is not able to cope 

with highly collinear data [175]. The discussion about the advantages and 

disadvantages of the parametric and nonparametric models started long time ago. In 

1984, E. Francis Cook et al. distinguished that it may depend on the sample size and 

the ability to construct an appropriate parametric model. If the size is small, then the 

nonparametric model is able to perform a few initial partitions, but may fail to identify 

other predictive factors. It has also been stated that the nonparametric model should 

be considered to assist in the identification of interaction terms that may then be used 

in the construction of a parametric model [176]. 

For example, in 2005, Zhifeng Li et al. stated that even the linear discriminant 

analysis is a popular face recognition technique, but a problem arises because of the 

parametric nature where in each group distribution of the sample should be normal 

and this causes issues when the distribution is non-normal. Due to the problem stated 

before, a nonparametric approach was used and showed the effectiveness of the used 

technique with extremely high accuracy (99.7%) [177]. Xipeng Qiu et al. have noticed 

that the results of face recognition research also depend on the volume of observations, 
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which is increasing for the case of high dimensional image data. It cannot be 

guaranteeing to get the best directions when the density is not a Gaussian density, so 

the nonparametric approach was used and outperformed the linear discriminant 

method [178]. Bor-Chen Kuo et al. have also noticed that there are two main 

advantages of using the nonparametric approach in order to solve problems related to 

face recognition. In this case, nonparametric scatter matrices provide the ability to 

select the exact number of features needed for the investigation and to reduce the 

effect of the singularity problem. Meanwhile, a parametric discriminant analysis, can 

only usually extract a number of classes minus one feature. Another advantage is that 

the nonparametric nature of scatter matrices reduces the effects of outliers and works 

well, even for non-normal data sets. As a result, this method strongly affects the 

accuracy of classification [179]. Many authors who are interested in the application 

of face recognition have shown that the nonparametric models are more effective than 

well-known parametric models. This statement is also proved by Zhifeng Li et al. 

[180], where the accuracy of classification is higher than 10 percent when comparing 

nonparametric and parametric results. 

In 2010, Jinn-Min Yang et al. proved that the nonparametric methods are more 

useful than the parametric in regards with features extraction. In addition, they are 

much more suitable for data that is not distributed by Gaussian distribution [181]. As 

per M. Bressan et al. publication, it has been stated that the nonparametric models 

allow to extract the features that preserve relevant structures for classification which 

strongly affects the classification results [182]. 

In 2012, Nicolas Garcia-Pedrajas et al. separated two main disadvantages of 

parametric methods. The first one is the Gaussian presumption over the group 

distribution of the data samples, and secondly; the dimensionality of the subspaces 

depends on the number of analysed classes, mostly L-1 dimensions for a dataset with 

L classes.  In this case, a nonparametric discriminant analysis is the best choice [183]. 

It is obvious that none of these methods is the best and should only be used in unique 

situations depending on the data. Discussing the disadvantages of nonparametric 

methods, there can also be excluded two main disadvantages.  The first one arises 

when the values of parameters k and q are defined by the rules of thumb. This means 

that, for example, if k = 1 and q = 1 so then within-class scatter matrix in 

nonparametric discriminant analysis the form still is parametric, and the volume of 

the training set is not large enough. The second observation is that the nonparametric 

discriminant analysis still has a singularity problem [183]. 

On the other hand, Federico Marini [175] showed that the nonparametric 

methods also have disadvantages related with the noise reduction, irrelevant or 

wrongly scaled features, which can seriously affect its performances.  

As stated above, nonparametric methods are used in many different research 

fields. Seyed Omid Sadjadi et al. have presented some of the results in the field of 

language recognition and stated that the nonparametric discriminant analysis is more 

effective when compared with the linear discriminant analysis. The main advantage 

of nonparametric discriminant analysis is that it is suitable for a limited number of 

speech applications because of the full rank [184]. 
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4.2. Cross validation 

Another important step is to choose the method that will be used for the selection 

of prognostic model. One of the greatest challenges in the case of correct classification 

is to assign the independently random observation to one of the selected groups. An 

important note is that all of the observations could be assigned just to one group. This 

means that it can be done by using predictable parameters or other factors that could 

describe those observations according to the attributes of each specified classification 

group. The other challenge is to minimize the rate of error probability as much as is 

possible. Also, after the classification procedure it should be a significant choice to 

estimate the proportion of correct prediction or wrong classification. Fisher has 

suggested finding a linear combination of observations that would maximize the 

difference between groups relative to the standard deviation within groups [185].  

Assuming there are two samples 𝑋1 and 𝑋2from two different classes, where 

𝑋 = 𝑋1 ∪ 𝑋2. Then Fisher’s linear discriminant is: 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
.                                                 (44) 

and 𝑆𝐵 = (𝑚1 − 𝑚2)(𝑚1 − 𝑚2)𝑇, 𝑆𝑤 = ∑ ∑ (𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)𝑇
∞∈𝑋𝑖𝑖=1,2 . 

Meanwhile, the matrix 𝑚𝑖 =
1

𝑙𝑖
∑ 𝑥𝑗

𝑖.
𝑙1
𝑗=1   

The point of maximizing J(w) is to detect the method that maximizes the 

numerator (projected class mean) and minimizes the denominator (the classes 

variance in this vector). 

Lachenbruch [186] presented a paper on error rate estimation for discriminant 

analysis. The techniques of error rates estimation could be separate from each other: 

firstly, where it is using a sample to evaluate a given discriminant function and 

secondly where it is using the properties of the normal distribution. The former may 

be considered empirical methods, while the latter are dependent on the normality of 

the distribution for their validity.  

The refinement of this type of assessment that gives a cross-validation criterion 

appears to have been developed by Lachenbruch, following a suggestion in Mosteller 

and Wallace [187, 188]. 

Lachenbruch and Mickey [189] have popularized this method and noted that the 

estimates of the probabilities of misclassification are computed by summing the 

number of cases that were misclassified from each group and dividing by the number 

in each group. To use the U (identified as named; leave - one - out or Jackknife 

method) method, the value of the discriminant function based on n - 1 observations 

for each observation should be found. This technique allows to eliminate most of the 

bias of the assumed error rate in a way of calculating the number of evaluations of 

training vectors of the discriminant functions, denoted by n, defined by leaving out 
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one training vector each time. These discriminant functions are used for classification 

of the training vectors left out. Therefore, an assessment is made by counting the 

number misclassified and dividing by the number of evaluations of trainings vectors. 

Meanwhile, Allen [190] has shown that the reliability of prediction, called 

Prediction Sum of Squares, could be described as:  

𝑃𝑅𝐸𝑆𝑆 (𝐷) =  ∑ (𝑌 − 𝑌̂(𝑖))2𝑛
𝑗=1 .                                    (45) 

Where 𝑌̂(𝑖) is the estimator of 𝐸(𝑌𝑖) except i-th observation. In other words, 

𝑌̂(𝑖) = (𝑋′𝑋 −  𝑥𝑖𝑥𝑖
′ + 𝐷)−1(𝑋′𝑌 − 𝑥𝑖𝑌𝑖). 

The point is that each contemplation is envisaged by using the rest of the sample 

of n-1 contemplations. As a result, errors of prediction are squared and summed, then 

to the above form called of prediction sum of squares (PRESS).  PRESS is referring 

because it imitates the prediction avoiding the use of an observation to contribute in 

the prediction of itself [190].   

Stone [188] developed the method of cross - validatory choice of alpha (alpha 

used to form a predictive value) and the method of cross - validatory assessment of 

this choice as follows. This leads to the conclusion that the realistic priors should be 

separated from the unrealistic priors, because presumably a realistic prior is one that 

would not give its user any cross - validatory shocks [188]. Commenting on Stones, 

in 1966 Hills et al. described a conundrum of an appropriate evaluation of the error 

rates of a discriminant when the form of it is well-known and fully detailed. In 

literature, an application of cross-validation has a prescription of type j (x; S), with no 

a to be chosen, and the evaluation is a computation of Hills [188]. More detailed 

information about the cross - validatory choice and cross - validatory assessment of 

this choice could be found in the paper presented by Stone [191]. In addition, these 

developed methods were based on leave-one-out cross validation in a regression 

context. 

Meanwhile, Geisser presented the differences of cross – validation methods. 

This was based on the V-fold cross validation [192]. Comparing these two methods, 

the main difference is that Geisser developed a method for multiple observations, not 

even for the single, which leads to much greater flexibility and reliability of the 

prediction function.  

Wahba has also applied the methodology of cross – validatory in his procedure 

of determining the degree of smoothing [193]. The cross validation mean square error 

technique is very significant in order to obtain an optimal degree of smoothing. Less 

value of the cross – validation mean square error corresponds to a model 

representation of the data where the model gives the best prediction.  

In 1984, Picard talked about the random splitting of large sets of observations 

by using a cross – validation method in order to estimate the prediction function [194]. 

In the case of data splitting, it impacts that the selection of the model should be kept 

for the analysis of the evaluation data and that the validation data should be allocated 

exclusively for the estimation. He showed that data splitting could also be used in 
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regression procedures and brings the value back. It is said that the examination of 

competing regression models, with respect to how well they predict validation data, 

can aid in model selection. 

The method of cross – validation determines the selection of the model with the 

best average predictive ability estimated by different methods of data splitting [195]. 

The sample of observation is split into training and validation sets. Let the 𝑛𝑡 – be the 

training sample and 𝑛𝑣 –  the validation sample, where 𝑛𝑡 + 𝑛𝑣 = 𝑛. There are a lot 

of different ways of how to split the sample. The larger the nv, the more complex the 

selection of model. This explains why the previous research results published by other 

researchers were carried out by setting 𝑛𝑣 = 1. In this case, an author has noticed that 

the linear model cross-validation with 𝑛𝑣  =1 is asymptotically incorrect (inconsistent) 

and is too conservative in the sense that it tends to select an unnecessarily large model 

[195]. This problem could be solved by changing 𝑛𝑣 = 1 to larger 𝑛𝑣, depending on 

how large the sample n is. However, this procedure requires to select nv as having the 

same rate of divergence to infinity as n, in other words:  

 
𝑛𝑣

𝑛
→ 1, 𝑎𝑠 𝑛 → ∞. 

 

In 2008, Alain Celisse proved the optimality of leave - one - out  among a cross 

– validation  algorithm in the context of risk estimation [196].  She also confirmed the 

results in the regression framework of previous research done by Burman [197, 198].  

However, the cross – validation optimality in the risk estimation context does 

not always mean that it is necessarily the best for model selection. The main aspects 

of model selection are the estimation and identification. The proof and further 

information can be found in Alain Celisse [196].  

In order to decrease the variance in an error-count evaluation, a smoothed error-

rate evaluation is proposed [199]. Avoiding totalizing those which are either zero or 

one as in the error-count evaluator, a smoothed evaluator that is based on a continuum 

of values in ranges of 0 and 1 are summarized. As a result, a proposed evaluator will 

have a lower variance compared with the error-count evaluate. The posterior 

probability of each assessed class depends on the posterior probabilities of the 

observations that are assigned to the same class. The evaluations of posterior 

probability impact the high value assessments of the error rate when they are precise. 

In the case of parametric classification criteria, linear and/or quadratic discriminant 

function, which is gained from a non-normal population, the evaluations of posterior 

probability error-rate might not be relevant [199]. 

Weighted average of the specific group error rate evaluations is used for the 

calculation of the overall error rate. In this case, weights are the prior probabilities. In 

order to decrease variance and bias of the evaluator, the estimation of posterior 

probability based on cross validation should be calculated [200]. As a result, using a 

posterior probability based on cross validation, lower variance and bias are derived. 

The procedure is based on the Monte Carlo method, applying it on two-group 

multivariate normal distributions and then cross validation posterior probability 
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evaluations are likened the with assessments such as, posterior probability and cross 

validation evaluators the apparent error rate. The conclusion of the application 

detailed above is that the posterior probability estimation based on cross validation 

has a lower MSE (mean squared error).  

Obviously, there are other alternative methods for prognostic model selection. 

For instance, Akaike presented the Akaike information criterion (AIC) [201]. 

Meanwhile, Stone, presented acomparison method based on Akaike information 

criterion and cross – validation [202].  In 1973, Mallows proposed another method of 

model selection, named Cp [203]. Herzberg presented the Monte – Carlo methodology 

for model selection [204].  Efron proposed an improvement on cross – validation and 

presented bootstrap-type procedures as an alternative [205].  Rob Kohavi, after his 

research about the accuracy estimation of different procedures, recommended to use 

10-folds cross – validation procedure instead of bootstrapping, due to a large bias of 

this method [206].  

 

4.3. Logistic regression  

Logistic regression is one of the most popular and well-known prognostic 

models, where the observations for binary response (Y) models of an experimental 

and/or an individual observation can gain one of two possible values. For example, 

𝑌 = 1 if it is true and 𝑌 = 0 if it is false. Assume that x is a vector of explanatory 

variables and 𝜋 = Pr (𝑌 = 1|𝑥) is the response probability that should be estimated. 

The linear logistic model could be described as follows and is used by many 

researches [207 - 212]: 

𝑙𝑜𝑔𝑖𝑡(𝜋) = log (
𝜋

1−𝜋
) = 𝛼 + 𝛽′𝑥;                                   (46) 

here α represents the intercept parameter and 𝛽 = (𝛽1 … 𝛽𝑠)′  is the vector of s slope 

parameters.  

In cases where nominal response logistic models are being used, with the 𝑘 + 1 

maximum number of likely responses that have no natural ordering, then the logistic 

model can be expanded to a multinomial model following the below [213]:  

log (
Pr(𝑌 = 𝑖|𝑥)

Pr(𝑌 = 𝑡 + 1|𝑥)
) = 𝛼𝑖 + 𝛽′𝑖𝑥, 𝑖 = 1, . . , 𝑡;                     (47) 

where 𝛼1 … 𝛼𝑡 are intercept parameters, and the 𝛽1 … 𝛽𝑡are t vectors of slope 

parameters. More about the discrete choice or conditional logic models could be found 

in McFadden [213].  

4.4. Comparison of the discriminant analysis and logistic regression models 

The reliability of the causal prognostic model usually depends on the selection 

of probabilities in the discriminant analysis. This means that the posterior distributions 
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expressed by the selection of probabilities and the prior distribution could be useful 

in the estimation of the selection of probability parameters, but this procedure does 

not lead to being robust due to the prior probability misspecification. Discussing the 

conjoint models, the selection of probabilities and posterior distribution could be a 

multiple–choice in the conjoint distribution described. One approach is to use a logit 

model, which determines that the actual responses are defined from the multinomial 

distributions with the selection probabilities that depend on the subsequent values of 

individual characteristics and attributes of alternatives. Meanwhile, discriminant 

analysis leads to the conclusion that the subsequent values of individual characteristics 

and attributes of alternatives are obtained from the posterior distributions that depend 

in actual responses. Additional information about the causal and conjoint models’ 

comparison and application examples about the logit or the discriminant analysis 

models can be found in Daniel McFadden’s publication [214]. 

Efron has raised the issue of why it is useful to use the logistic regression if it 

less efficient and more difficult to calculate than the normal discriminant analysis 

[215]. The answer depends on the robustness in both aspects, theoretically and 

practically in comparison with the discriminant analysis. 

S. James Press and Sandra Wilson have also noticed that one of the advantages 

to using the logistic regression model instead of discriminant analysis is that it is 

relatively robust; i.e., many types of underlying assumptions lead to the same logistic 

formulation [216]. 

Another advantage of using logistic regression modelling is that it is closely 

related to the contingency table analysis and could be a good alternatively choice. For 

example, Gordon argued that logistic regression models are significantly more 

important in the case of medical and biological applications, because of the cross-

classified tables that include large numbers of cells and logistic (log-linear) models 

that can be used as alternative by removing a need to use those original tables [217]. 

Reviewing the estimation in comparison of maximum likelihood estimation and 

linear discriminant function estimation (for a logistic regression), Halperin et al. have 

found that in terms of timings needed for execution and compilation of the modelling 

programs, the maximum likelihood method need much more time than the 

discriminant function method, approximately from 1.3 to 2 time. [218]. 

“Efron has shown that logistic regression estimators are between one-half and 

two-thirds as efficient as discriminant function estimators when the data is 

multivariate normal with equal covariance matrices.” This means that while the data 

is strictly normal, and the covariance matrices are equal, the discriminant function 

estimator is more economical in time scales and cost, and also more efficient than the 

logistic regression [215].  

However, there are more arguments, both for and against, of using the 

discriminant function and the logistic regression detailed in S. James Press and Sandra 

Wilson [216]. 
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4.5. The segmentation of ultrasonic and digital dermatoscopy medical images  

Whilst researching medical images, a lot of techniques that allow the capture of 

different biomedical images in different ways have been identified. The common 

techniques are such as magnetic resonance imaging, X-ray computed tomography, 

ultrasound imaging, X-ray projection radiography, digital dermatoscopy imaging and 

etc. All of these techniques can give valuable information, but one of the greatest 

challenges is to find a tool that will provide better outputs, such as high accuracy, 

precision and speed. Regarding the challenges stated above, a more accurate 

estimation can help achieve a faster diagnosis, dependable prediction of the illness, in 

addition to reducing the cost of possible treatment and to save as many lives as is 

feasible. Nowadays, many segmentation methods, which could be split into different 

categories, are widely used, for example: thresholding approaches, region growing 

approaches, classifiers, clustering approaches, Markov random field models, artificial 

neural networks, deformable models or atlas guided approaches [219]. In addition, 

image segmentation tools such as active contours and snakes, edge detection and 

clustering techniques based on thresholding were used [220]. The edge detection 

technique is not effective when applied on skin images, because of the additional 

details, such as hair. The active contours and snake’s method [221] is less attractive 

due to the complex shape of the melanoma suspicious lesions. However, thresholding 

does not present any of these disadvantages [222] and it could be used in order to get 

more reliable results. 

The thresholding approach is the most common procedure used in different 

applications. For example, in biomedical image analysis [223], handwritten character 

identification [224], automatic target recognition [225], change-detection applications 

[226 - 228], reconstruction of a map of interference fringes [229] and segmentation 

based on colour images [230]. Colour is one of the most significant low-level features 

that can be used to extract homogeneous regions, which most of the time are related 

to; objects or part of objects, multilevel thresholding technique approaches [231, 232, 

233], thresholding approach in Otsu algorithm [234], threshold approach in 

segmentation of satellite images [235] and other applications [236, 237].  

For example, the segmentation of ovarian cysts research is done under the 

thresholding process [208] concentrating the intensity and texture from ultrasound 

images. In 1997, A. Sebbahi et al. have shown good results of deformable models in 

order to classify echocardiograms images by applying ultrasound examination [210]. 

Deformable models were also used to estimate the contours of the fetus and the fetus 

head [207]. Furthermore, a later technique was also used in segmentation of breast 

cysts from ultrasound images [209].   

Automatic thresholding techniques are mostly assigned to one of two main 

groups. Common groups are local methods and global methods. The group of local 

methods are mostly used when object classes and the background do not have 

stationary statistical properties of the different parts of image which is analysed. This 

can be explained by the property that allows the use of threshold values which are 

dynamically changing. Meanwhile, global methods are used for receiving fixed 

threshold values [238]. In this research, borders of melanocytic skin tumours in 



 
 

64 

 

ultrasonic and dermatoscopic images are identified by using Gaussian smoothing and 

a global thresholding technique. The Gaussian smoothing technique is based on a 

mathematical convolution operation of a two-dimensional Gaussian kernel function. 

Generally, this could be translated as a mean filter, however in this case the kernel 

clearly represents the shape of a Gaussian distribution. The degree of Gaussian 

smoothing is based on the standard deviation of the distribution [239]. In this research, 

the standard deviation is chosen to be wide enough and is equal to 5. 

Gaussian smoothing - spatial filtering was implemented according to equation 

[239]: 

 

                                    𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−𝑥2+𝑦2

2𝜎2 ;                                         (48) 

 

here 𝜇 is the mean and 𝜎 is the variance. 

 

Meanwhile, thresholding: 

                                       𝑔(𝑥, 𝑦) = {
1 𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
;                                  (49)                                 

 

here T is the global threshold.  

The thresholding technique allows the arrangement of scalar images by creating 

a binary partitioning of the image intensities. The procedure of thresholding enables 

the defining of an intensity value, which is known as a threshold. A threshold is like 

a boundary that can exclude the desirable groups. The classification is based on 

grouping pixels that have higher intensity than the threshold into one group, and the 

other group of pixels that have a lower intensity than the threshold to another group. 

The thresholding technique is an effective application for images segmentation 

purposes, where different structures have contrasting intensities or other quantifiable 

features [240]. Values which are equal or below the applied threshold are named as a 

background and all the grey level values which are higher are named as an object 

[212]. 

An application of thresholding procedure, presented in this study, is done by 

using an expectation–maximization (EM) algorithm and depends on the maximum 

likelihood estimation which can be expressed as 𝑂∗ = arg 𝑚𝑎𝑥𝑂𝐿(𝑂), where 

 

    𝐿(𝑂) = ∏ 𝑓(𝑋(𝑡), 𝑂)𝑛
𝑡=1 .                                       (50) 

 

The methodology of the EM algorithm operation is based on random values 

computations. The procedure of values convergence takes from several to hundreds 
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of iterations, which means that the assessment of tumour contour is based on the initial 

values [241]. After this cycle, a skin tumour with the contour of the largest area is 

selected [212]. Many research studies are made by using this particular approach of 

EM algorithm and could be found in references [242 – 249]. 

Dermatoscopic, ultrasonic and histological, along with images have been 

collected at the Department of Skin and Venereal Diseases of the Lithuanian 

University of Health Sciences (LUHS). The study was approved by the regional ethics 

committee. The cases of 31 suspicious melanocytic skin tumours, which included 19 

melanomas and 12 benign nevi, were analysed. Inclusion criteria of images within the 

study covered the size of the tumour (up to 1 cm in diameter) and a histological 

thickness of ≤ 2.5 mm [250]. 

Ultrasonic data was acquired during non-invasive examination of human skin 

using the DUB-USB ultrasound system (“Taberna pro medicum”, Germany) with a 

mechanically scanned single element focused transducer with centre frequency of 22 

MHz’s. The received A-scan ultrasonic signals were digitized and transferred to a 

personal computer in order to reconstruct the B-scan image. Optical dermatoscopic 

images were acquired using a spectrophotometer SimSys© (MedX Health Corp., 

Canada) operating in dermatoscopy mode and transferred to a personal computer for 

further analysis. The radius of informative area of optical images was 11 mm. The 

principle of the set-up of non-invasive ultrasonic and digital dermatoscopy imaging 

systems is visualized in Fig. 17 [120].  

 

 
Fig. 17. The set-up of non-invasive ultrasonic and digital dermatoscopy imaging systems 

(No.1 and No.2) [120] 
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After surgical excision and during the routine histopathology, the diagnosis of 

skin lesions was confirmed [58]. The outcomes of the application of the thresholding 

procedure used for different types of skin tumour images are presented below [250]. 

Examples of primary ultrasonic raw B-scan images of malignant and benign skin 

tumours are presented in Fig. 18 a) and Fig. 20 a). The results of transformation of 

raw ultrasound B-scan and digital dermatoscopy example images to the binary images 

are shown in Fig. 18. – Fig. 21. This is made by using the procedure of equalization 

for all the values of matrix amplitude of every image. Equalization is based on the 

closest neighbours of that value which is not placed more than 40 pixels (steps, 

values). Bending, which is equal to 20 pixels for two sides, is made by using cross – 

validation. Smoothing of the images are made by using absolute magnitude 

amplitudes that are generated with the help of Gaussian kernel. Before the procedure 

of smoothing, all the absolute magnitude data of ultrasound images matrix was 

transformed using a logarithmic scale. Example images after transformation are 

presented in Fig. 18. b) – Fig. 21. b). After transforming the views, the Gaussian 

smoothing, and thresholding procedure defined above was applied in order to detect 

informative regions. Example images of detected informative regions are shown in 

Fig. 18. c)- Fig. 21. c) images. 

 

 

Fig. 18. Ultrasonic B-scan images (raw and processed) of skin melanoma, axes are in 

millimetres (1-pixel value for length is 0.033 mm, for depth – 0.0079 mm): a – ultrasonic 

raw B-scan image, b – binary B-scan image, c – detected informative region [250] 
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Fig. 19. Digital Dermatoscopy Images (raw and processed) of skin melanoma, axes are 

in millimetres (1-pixel value 0.0071 mm):  a – raw optical image, b - binary optical image, c 

- detected informative region [250] 

 

   
 

Fig. 20. Ultrasonic B-scan images (raw and processed) of benign nevus, axes are in 

millimetres (1-pixel value for length is 0.033 mm, for depth – 0.0079 mm): a – ultrasonic 

raw B-scan image, b – binary B-scan image, c – detected informative region [250] 

 

 

 
Fig. 21. Digital Dermatoscopy Images (raw and processed) of benign nevus, axes are 

in millimetres (1-pixel value 0.0071 mm):  a – raw optical image, b - binary optical image, c 

- detected informative region [250] 

All the examined 31 ultrasonic and 31 digital dermatoscopy raw and processed 

images are presented in Appendix 1.  The first nineteen images present ultrasonic B-

scan images of skin melanoma. In a sequence from 20 to 38 images, images of digital 
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dermatoscopy of skin melanoma are shown. The ultrasonic B-scan images for benign 

nevus are shown in a position starting from 39 to 50 images. The last twelve images 

present digital dermatoscopy images of benign nevus.  
 

4.6. The estimation of diagnostic performance rate by applying ROC curve 

analysis  

The diagnostic performance rate can be defined in terms of diagnostic accuracy, 

or the ability to classify subjects into clinically relevant groups. The accuracy of the 

estimation depends on the quality of the outcomes of the classification results and 

should be separated from the actual practical value or usefulness of the estimated data.  

A receiver operating characteristic (further - ROC) graph is a technique for 

visualizing, organizing and selecting classifiers based on their performance [251]. The 

ROC curve informs about the degree of accuracy by showing the limits of an ability 

to discriminate between alternative states of health over the disease possibility. ROC 

methodology is based on statistical decision theory and was developed in the context 

of electronic signal detection and problems of radar in the early 1950s, and has been 

used in experimental psychology and psychophysics [252]. In 1993, Mark H. Zweig 

and Gregory Campbell stated that the diagnostic accuracy is the most fundamental 

characteristic of the test itself as a classification device, because it can measure a test’s 

ability to discriminate among alternative states of health [253].  It also involves 

distinguishing between health and disease, benign and malignant disease, responders 

and non-responders to therapy and etc. Therefore, the accuracy could be defined as 

the tool to separate two different groups of variables, when there are some clinically 

relevant reasons to do it. This also leads to the quality of the data concept of accuracy, 

which refers to the quality of the classification provided by the test and should be 

distinguished from the practical usefulness of the information. These two concepts are 

the key to the estimation of the diagnostic performance rate and affect the quality of 

patient care management [253]. The ROC graph is representing the ratio of sensitivity 

and specificity regarding the classification results of the malignant and benign skin 

tumours, where the receiver operating characteristics (ROC) curve introduces the 

connections between the false - positive fraction and true - positive fraction [254]. 

The false - positive fraction is the fraction of actually-negative cases incorrectly 

classified as positive, meanwhile true - positive fraction is a fraction of actually-

positive cases correctly classified as positive. Sensitivity is the probability of correctly 

detecting the condition of interest among subjects with the condition. Specificity is 

the probability of correctly ruling out the condition among subjects without the 

condition [255]. The application of the ROC curve is simple to graph and easy to 

understand the dependencies of tumours classifications, because there are no 

requirements for selection of a particular decision threshold due to the whole spectrum 

of possible decision thresholds is included. Also, there is no dependence on 

occurrence, which means that no care need be taken to obtain samples with the 

representative prevalence [253]. Otherwise, the equal number of observations for both 

groups is promoted. The ROC curve does not require that the data would be grouped 
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or binned, as the frequency histograms do. In addition, it is not required that the plot 

should be different if the scales differ, as frequency histograms and dot diagrams do. 

The main ROC curves characteristics, specificity and sensitivity can be easily 

captured when compared with frequency histograms and dot diagrams [253]. One of 

the most preferable ways to represent the accuracy of diagnostic is to define its 

performance by a single number, rather than express it by intervals etc. In 1982, Swets 

and Pickett proposed to use an index of accuracy associated with the ROC curve [256]. 

In this case, the area under the ROC curve is a widely used technique. The area under 

the receiver operating characteristics (ROC) curve indicates that the value of the 

probability of the variable, which is randomly selected for individual from the non-

normal group and a randomly selected individual from the normal group, will be in 

positive true [257]. The area under the ROC curve could be represented with values 

varying from 0 to 1, which means that more of the performance rate is closer to 1, 

more of the classification is reliable and for the values which start from 0.5 and less 

that there is no separation between the two tested clinical groups. ROC curves are also 

popular to use in discriminant analysis and is advantageous because it provides the 

linear- or quadratic-discriminant function that defines the optimal decision rule and 

logistic regression models in order to estimate the accuracy of two different patient 

groups classification [253, 258]. 

The possibilities of using ROC curve analysis in medical decision-making tools 

was first suggested by Lusted [259 – 262]. After this, researchers started to use this 

method in medical diagnostic [263 – 276] and medical imaging [277 - 287] aspects, 

seeking to ensure faster diagnostic and save more lives. In the last two decades, ROC 

curve analysis has been widely used in the field of dermatology. Most of the research 

has been done with respect to identify skin tissue damages [288 - 297].   

ROC curve analysis is a meaningful tool to use for the estimation of model 

accuracy. A plot of ROC curve presents the ratio of sensitivity and 1-specificity, 

which are a measure of the model fit. Depending on the above, a receiving operating 

characteristics curve was chosen to use for this research [250]. The ROC curve of the 

classification of melanoma and benign melanocytic nevi analysing ultrasonic B-scan 

images only by using discriminant analysis is shown Fig. 22. The ROC curve of 

discriminant analysis classification model based on the assessment of synergy of 

digital dermatoscopy and ultrasonic B-scan images is shown in Fig. 23. The ROC 

curve of the classification of melanoma and benign melanocytic nevi analysing 

ultrasonic B-scan images only by using logistic regression is shown in Fig. 24. The 

ROC curve of logistic regression classification model based on the assessment of 

synergy of digital dermatoscopy and ultrasonic medical images is shown in Fig. 25.  
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Fig. 22. ROC curve of the classification of melanoma and benign melanocytic nevus 

analysing ultrasonic B-scan images only by using discriminant analysis [250] 

 

Fig. 23. ROC curve of discriminant analysis classification model based on the 

assessment of synergy of digital dermatoscopy and ultrasonic B-scan images [250] 
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Fig. 24. ROC curve of the classification of melanoma and benign melanocytic nevi 

analysing ultrasonic B-scan images only by using logistic regression [250] 

 

Fig. 25. ROC curve of logistic regression classification model based on the assessment 

of synergy of digital dermatoscopy and ultrasonic medical images [250] 

Detailed results of the automatic classification are presented in Table 12 below. 
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Table 12. Results of the automated classification 

True versus 

false prediction 

Results of 

classification by 

discriminant 

analysis for 

ultrasonic B-

scan images, % 

Results of 

classification by 

discriminant 

analysis 

classification 

model based on 

the assessment of 

synergy of digital 

dermatoscopy 

and ultrasonic 

medical images, 

% 

Results of 

classification 

by logistic 

regression 

for 

ultrasonic B-

scan images, 

% 

Results of 

classification by 

logistic regression 

classification 

model based on 

the assessment of 

synergy of digital 

dermatoscopy 

and ultrasonic 

medical images, 

% 

True nevus 73.68 73.78 78.95 89.47 

False nevus 26.32 26.32 21.05 10.53 

True melanoma 50.00 50.00 33.33 25.00 

False melanoma 50.00 50.00 66.67 75.00 

Total true 64.52 64.52 61.29 64.52 

Total false 35.48 35.48 38.71 35.48 

 

After the classification of malignant and benign tumours by analysis of 

quantitative parameters extracted from ultrasonic and digital dermatoscopy images, 

the results based on receiver operating characteristics curve analysis are presented in 

the Table 13 below. 

Table 13. The results of classification of melanoma and benign melanocytic nevi 

analysing ultrasonic B-scan images and in combination with analysis of digital 

dermatoscopy images based on receiver operating characteristics curve (ROC) 

analysis [250] 

Classification model 

The 

probability of 

correct 

prediction 

during the 

classification 

of ultrasonic 

images 

(parameters), 

% (ROC*) 

The probability of 

correct prediction 

during the 

classification based 

on assessment of 

synergy of digital 

dermatoscopy and 

ultrasonic medical 

images(parameters), 

% (ROC*) 

The classification 

improvement, % 

discriminant analysis 

model (approximation 

by Normal distribution 

with cross - validation) 

  

62 (0,632) 62(0,671) 0 

logistic regression 

model (stepwise method 

with cross - validation) 

73 (0,790) 82(0,908) 9 
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Assessing the results table, the probability of correct prediction during the 

classification of ultrasonic images by using a discriminant analysis classification 

model and significant parameters is equal to 62%. The probability of correct 

prediction during the classification based on assessment of synergy of digital 

dermatoscopy and ultrasonic medical images by using significant parameters is equal 

to 62%. The estimated area under the ROC curve is only 0.671, which means that the 

classification was not improved when comparing the results of the discriminant 

analysis classification models. Analysing the outcomes of an application of stepwise 

logistic regression, it is clear that the classification was improved by 9% and has 

reached 82% compared with the classification of ultrasonic B-scan analysis only. In 

addition, the area under the ROC curve is close to 1and therefore the prognostic 

features of the developed technique are accurate (in the case of <0.5 the obtained 

results are not reliable). In this case, an estimated area under the ROC curve is 0,908 

[250]. 

For all the automated classification models presented above, sensitivity and 

specificity rates of automated classification of melanoma and benign melanocytic nevi 

analysing ultrasonic B-scan images in combination with analysis of digital 

dermatoscopy images were calculated and are detailed in Table 14.  

 

Table 14. Sensitivity and specificity rates of automated classification of melanoma 

and benign melanocytic nevi analysing ultrasonic B-scan images in combination with 

analysis of digital dermatoscopy images 

Classification model Sensitivity, % Specificity, % 

Discriminant analysis classification model used for 

ultrasonic B-scan images 
74 50 

Discriminant analysis classification model based on 

assessment of synergy of digital dermatoscopy and 

ultrasonic medical images 

74 50 

Logistic regression model used for ultrasonic B-scan 

images 
79 67 

Logistic regression classification model based on 

assessment of synergy of digital dermatoscopy and 

ultrasonic medical images 

89,5 75 

 

Comparing the results of sensitivity and specificity, the discriminant analysis 

classification model used for ultrasonic B-scan images and discriminant analysis 

classification model based on assessment of synergy of digital dermatoscopy and 

ultrasonic medical images have shown the same results of sensitivity, which was equal 

to 74% and specificity which was equal to 50%. Comparing the results of the logistic 

regression model used for ultrasonic B-scan images and logistic regression 

classification model based on assessment of synergy of digital dermatoscopy and 
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ultrasonic medical images, sensitivity was 79% against 89,5% and specificity was 

67% against 75%.  

Diagnostic accuracy of automated classification of melanoma and benign 

melanocytic nevi analysing ultrasonic B-scan images in combination with analysis of 

digital dermatoscopy images for four presented classification models is shown in 

Table 15. 

 

Table 15. Diagnostic accuracy (error count) of automated classification of melanoma 

and benign melanocytic nevi analysing ultrasonic B-scan images in combination with 

analysis of digital dermatoscopy images 

Classification model 
Diagnostic accuracy 

(error count) 

Discriminant analysis classification model used for 

ultrasonic B-scan images 
0.618 (0.382) 

Discriminant analysis classification model based on 

assessment of synergy of digital dermatoscopy and 

ultrasonic medical images 

0.618 (0.382) 

Logistic regression model used for ultrasonic B-scan 

images 
0.728 (0.272) 

Logistic regression classification model based on 

assessment of synergy of digital dermatoscopy and 

ultrasonic medical images 

0.822 (0.178) 

 

The discriminant analysis classification model used for ultrasonic B-scan 

images and discriminant analysis classification model based on assessment of synergy 

of digital dermatoscopy and ultrasonic medical images have shown the same 

diagnostic accuracy. This means that the accuracy for a discriminant analysis model 

was not improved. Comparing the results of the logistic regression model used for 

ultrasonic B-scan images against the logistic regression classification model based on 

assessment of synergy of digital dermatoscopy and ultrasonic medical images, it is 

clear that the analysis based on synergy of two different technologies has improved 

the diagnostic accuracy. The proposed automatic classification algorithm based on 

data captured from two different technologies has shown better diagnostic accuracy 

than the other used models.  

 

4.7. Estimation of group of quantitative parameters describing the informative 

regions of ultrasonic and dermatoscopy images 

The purpose of this research part was to separate significant and not relevant 

parameters in order to increase the classification accuracy of ultrasonic and digital 

dermatoscopy images. For all B-scan ultrasonic and digital dermatoscopy images 

there were 46 parameters of tumour structure evaluated, i.e. 19 parameters of 

ultrasonic images and 27 parameters of digital dermatoscopy images [250].  
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After estimation of contours of informative regions (tumour or nevus) of 

ultrasonic and digital dermatoscopy images for all these detectable skin tumours, there 

were directly estimated quantitative statistic parameters, e.g. form features and values 

of various relative indexes [250]. The estimated parameters of ultrasonic and 

dermatoscopic images are presented in Table 16. 

 

Table 16. Identified surface and form parameters of the ultrasonic B-scan and digital 

dermatoscopy images [250] 

Identified surface and form parameters of the ultrasonic B-scan and digital dermatoscopy 

images 

Contour parameters of informative regions of 

ultrasonic B-scan images: 

Contour parameters of informative regions 

of digital dermatoscopy images: 

Maximum length 

Area  

Perimeter  

Average skewness (from 1000 directions) 

Maximum skewness 

The skewness of length projection 

Average kurtosis (from 1000 directions) 

Maximum kurtosis 

Minimum kurtosis 

The kurtosis of length projection 

Maximum diameter 

Minimum diameter 

Area 

Perimeter 

Average skewness (from 1000 directions) 

Maximum skewness 

Average kurtosis (from 1000 directions) 

Maximum kurtosis 

Minimum kurtosis  

 

Contour parameter(relative) of informative 

regions of ultrasonic B-scan images: 

Contour parameters (relative) of 

informative regions of digital dermatoscopy 

images: 

 

The ratio of average skewness (from 1000 

directions) and maximum skewness 

The ratio of average skewness (from 1000 

directions) and the skewness of length projection 

The ratio of maximum skewness and the skewness 

of length projection 

The ratio of average kurtosis (from 1000 

directions) and maximum kurtosis 

The ratio of average kurtosis (from 1000 

directions) and minimum kurtosis 

The ratio of average kurtosis (from 1000 

directions) and the kurtosis of length projection 

The ratio of maximum kurtosis and the kurtosis of 

length projection 

The ratio of minimum kurtosis and the kurtosis of 

length projection 

The ratio of perimeter and area 

The ratio of maximum diameter and average 

diameter 

The ratio of minimum diameter and average 

diameter 

The ratio of maximum diameter and minimum 

diameter  

The ratio of average skewness (from 1000 

directions) and maximum skewness 

The ratio of average kurtosis (from 1000 

directions) and maximum kurtosis 

The ratio of average kurtosis (from 1000 

directions) and minimum kurtosis 

The ratio of perimeter and area 

 

 

The values of mean and standard deviation of the parameters listed above are 

presented in Table 17 – Table 20. Table 17 and Table 18 represent the values of 

contour parameters of informative regions of ultrasonic B-scan images. Table 19 and 

Table 20 describe the values of contour parameters (relative) of informative regions 

of digital dermatoscopy images. 
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Table 17. Contour parameters of informative regions of ultrasonic B-scan images 

Parameter Mean of 

melanoma (n 

= 19) 

Standard 

Deviation of 

melanoma (n = 

19) 

Mean of 

benign 

nevus (n = 

12) 

Standard 

Deviation of 

benign nevus (n 

= 12) 

Maximum width 7.621 2.089 6.306 2.268 

Area  3.997 1.844 2.845 2.111 

Perimeter  18.761 5.773 15.318 7.385 

Average 

skewness (from 

1000 directions) 

0.237 0.136 0.190 0.093 

Maximum 

skewness 

0.506 0.300 0.382 0.169 

The skewness of 

length projection 

0.254 0.188 0.182 0.119 

Average kurtosis 

(from 1000 

directions) 

-0.822 0.212 -0.865 0.119 

Maximum 

kurtosis 

-0.256 0.730 -0.487 0.257 

Minimum 

kurtosis 

-1.066 0.131 -1.120 0.109 

The kurtosis of 

length projection 

-0.838 0.265 -0.848 0.157 

 

Table 18. Contour parameters (relative) of informative regions of ultrasonic B-scan 

images 

Parameter Mean of 

melanoma (n 

= 19) 

Standard 

Deviation of 

melanoma 

(n = 19) 

Mean of 

benign nevus 

(n = 12) 

Standard 

Deviation of 

benign nevus (n = 

12) 

The ratio of average 

skewness (from 1000 

directions) and 

maximum skewness 

0.495 0.174 0.506 0.178 

The ratio of average 

skewness (from 1000 
1.151 0.561 1.364 0.761 
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directions) and the 

skewness of length 

projection 

The ratio of maximum 

skewness and the 

skewness of length 

projection 

3.254 4.080 3.310 2.509 

The ratio of average 

kurtosis (from 1000 

directions) and 

maximum kurtosis 

1.711 3.562 6.463 11.962 

The ratio of average 

kurtosis (from 1000 

directions) and 

minimum kurtosis 

0.774 0.184 0.776 0.113 

The ratio of average 

kurtosis (from 1000 

directions) and the 

kurtosis of length 

projection 

1.011 0.115 1.030 0.078 

The ratio of maximum 

kurtosis and the kurtosis 

of length projection 

0.289 0.784 0.598 0.340 

The ratio of minimum 

kurtosis and the kurtosis 

of length projection 

1.470 0.821 1.359 0.252 

The ratio of perimeter 

and area 
5.290 1.962 7.670 4.048 

 

Table 19. Contour parameters of informative regions of digital dermatoscopy 

images 

Parameter Mean of 

melanoma (n = 

19) 

Standard 

Deviation of 

melanoma (n = 

19) 

Mean of benign 

nevus (n = 12) 

Standard 

Deviation of 

benign nevus (n 

= 12) 

Maximum 

diameter 

1182.300 283.108 1064.510 328.497 

Average 

diameter 

1074.410 273.421 902.885 284.260 

Minimum 

diameter 

932.058 260.188 695.872 275.939 

Area 759201.740 388217.870 470307.330 412327.460 
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Perimeter 3017.170 1886.780 2283.890 1916.600 

Average 

skewness (from 

1000 directions) 

0.092 0.074 0.240 0.492 

Maximum 

skewness 

0.176 0.153 0.452 0.941 

Average kurtosis -0.930 0.075 -0.157 2.435 

Maximum 

kurtosis 

-0.762 0.291 0.651 4.036 

Minimum 

kurtosis 

-1.069 0.081 -0.908 0.562 

 

Table 20. Contour parameters (relative) of informative regions of digital 

dermatoscopy images 
Parameter Mean of 

melanoma (n 

= 19) 

Standard 

Deviation of 

melanoma (n = 

19) 

Mean of 

benign 

nevus (n = 

12) 

Standard 

Deviation of 

benign nevus (n 

= 12) 

The ratio of maximum 

diameter and average 

diameter 

1.105 0.054 1.178 0.122 

The ratio of minimum 

diameter and average 

diameter 

0.865 0.057 0.771 0.124 

The ratio of maximum 

diameter and minimum 

diameter 

1.286 0.145 1.606 0.537 

The ratio of average 

skewness (from 1000 

directions) and 

maximum skewness 

0.543 0.058 

 

0.538 0.073 

The ratio of average 

kurtosis (from 1000 

directions) and 

maximum kurtosis 

0.982 0.881 1.053 0.394 

The ratio of average 

kurtosis (from 1000 

directions) and 

minimum kurtosis 

0.876 0.102 1.462 2.351 

The ratio of perimeter 

and area 

0.005 0.003 0.006 0.005 



79 
 

1st decile 9.158 5.833 18.083 9.258 

2nd decile 10.632 7.515 21.333 10.228 

3rd decile 12.368 9.215 24.583 10.933 

4th decile 14.474 10.637 27.667 11.881 

5th decile 17.789 11.583 31.333 13.096 

6th decile 22.000 12.987 35.083 14.761 

7th decile 27.000 14.079 39.833 16.563 

8th decile 33.632 14.720 45.833 17.309 

9th decile 42.789 15.109 54.583 16.412 

10th decile 109.000 46.489 101.333 34.054 

 

In this research, the F test was used in order to select significant parameters for 

discriminant analysis of malignant and benign skin tumours. The F test is closely 

related to the analysis of variance, named as ANOVA, which is well-known as a 

parametric statistical method for the evaluation of significances between more than 

one group [299]. In 1987, Parasurama showed that a univariate F test could be used 

to assess the significant differences between two variances [300]: 

                                         𝐹 =
variance between mean squares

variance within mean squares
                              (51)                                                              

The results of the F test are based on the degrees of freedom, which correspond 

to the numerator and the denominator and on the level of significance. If the value of 

the F test is less than the critical value, then there are no relevant differences between 

variances and the null hypothesis should be returned or otherwise the model should 

refuse it. The Univariate F-ratio test is used in order to estimate the significance of 

the discriminating power of all of the common variables, taken separately, excluding 

among and between the various sets of groups [298]. 

In the case of discriminant analysis, Fisher ‘s test known as F test was applied, 

while for the logistic regression model Chi-squared test used in order to evaluate 

parameters of the 31 lesions of the human tissue, where 19 of them were melanoma 

and 12 were benign nevus. All these parameters were clustered to informative and not 

relevant groups of quantitative parameters.  

The logistic regression model is a parametric model, because it has a finite set 

of parameters that are known as regression coefficients. Coefficients correspond to 

one for each predictor plus a constant. The Chi-Squared test, also known as Wald Chi-

Squared test, is one of tools to check if the parameters in this model are meaningful 

or not. The Chi-Squared test can be used for a multitude of different models, including 

those with continuous variables or binary variables [301]. 
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Before checking the null hypothesis, it is obvious that each parameter is equal 

to the relevant value. In the case of the null hypothesis is refused, it is acceptable that 

some of the variables can be eliminated, excluding meaningful impact to the model 

fit [301]. 

Wald test [301] is evaluated according to equation: 

                                             𝑊𝑇 =
(𝑂̂−𝑂0)2

1/𝐼𝑛(𝑂)
= 𝐼𝑛(𝑂̂)(𝑂̂ − 𝑂0)2;                        (52)                                 

here 𝑂̂ is a maximum likelihood estimator and 𝑂0 is ….,  𝐼𝑛(𝑂̂) is an expected Fisher 

information, evaluated at the MLE. WT is distributed by asymptotic Chi-square 

distribution with the number of l degrees of freedom in order to grant a null 

hypothesis. Here l represents the rank of the parameter.  

In the case of discriminant analysis, under the F test there were five informative 

parameters of ultrasonic images and 17 of digital dermatoscopy images that were 

selected. The Chi-squared test was used for the logistic regression model and as result 

two significant parameters of ultrasonic images and two of digital dermatoscopy 

images were identified [250]. The significant parameters of two different 

classification models are shown in the Table 21 below. 

 

Table 21. Significant parameters evaluated from detected skin lesion region of 

ultrasonic and dermatoscopic images [250] 

Discriminant Analysis Model (Fisher ‘s test) 

Significant parameters of 

ultrasonic images: (n=5/19) 

Significant parameters of digital dermatoscopy images: 

(n=17/27) 

maximum width, area, perimeter, the 

ratio of average kurtosis (from 1000 

directions) and maximum kurtosis, 

the ratio of perimeter and area. 

average diameter, minimum diameter, area, average kurtosis 

(from 1000 directions), maximum kurtosis, the ratio of 

maximum diameter and average diameter, the ratio of 

minimum diameter and average diameter, the ratio of 

maximum diameter and minimum diameter, 9 of 10 deciles. 

Logistic Regression Model (Chi-squared test) 

Significant parameters of 

ultrasonic images: (n=2/19) 

Significant parameters of digital dermatoscopy images: 

(n=2/27) 

the ratio of average kurtosis (from 

1000 directions) and maximum 

kurtosis, the ratio of perimeter and 

area. 

the ratio of minimum diameter and average diameter,  

2nd decile. 

 

Detailed results of all measurements of selected contours and relative 

parameters for malignant and benign tumours are presented in Tables 22 - 29. The 

measurements of significant parameters of ultrasonic images and digital 

dermatoscopy images are marked in bold. Measurements of contour parameters of 

informative regions of melanoma ultrasonic B-scan images are presented in Table 22. 
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Measurements of contour parameters of informative regions of benign nevus 

ultrasonic B-scan presented in Table 23. Measurements of contour parameters 

(relative) of informative regions of melanoma ultrasonic B-scan images are shown in 

Table 24. Measurements of contour parameters (relative) of informative regions of 

benign nevus ultrasonic B-scan images are presented in Table 25. Measurements of 

contour parameters of informative regions of melanoma digital dermatoscopy images 

are detailed in Table 26. Measurements of contour parameters of informative regions 

of benign nevus digital dermatoscopy images are presented in Table 27. 

Measurements of contour parameters (relative) of informative regions of digital 

melanoma and benign nevus dermatoscopy images are shown in Table 28 and Table 

29.  

Table 22. Measurements of contour parameters of informative regions of melanoma 

ultrasonic B-scan images in millimetres 

Maximu

m width 

Are

a 

Perimet

er 

Average 

skewnes
s (from 

1000 

direction
s) 

Maximu

m 
skewnes

s 

The 

skewne
ss of 

length 

projecti
on 

Average 

kurtosis 
(from 

1000 

direction
s) 

Maximu

m 
kurtosis 

Minimu

m 
kurtosis 

The 

kurtosis 
of 

length 

projecti
on 

5.28 3.94 11.68 0.11 0.18 0.13 -0.90 -0.82 -1.04 -0.82 

6.93 7.59 19.63 0.24 0.46 0.17 -0.81 -0.57 -1.05 -0.89 

5.02 2.64 10.61 0.10 0.25 0.06 -1.07 -0.63 -1.20 -1.19 

11.98 2.84 24.95 0.13 0.46 0.09 -1.04 -0.64 -1.08 -1.06 

10.82 8.31 28.10 0.43 0.76 0.47 -0.55 0.15 -1.21 -0.57 

5.81 2.01 11.89 0.19 0.28 0.20 -0.96 -0.75 -1.01 -0.99 

11.02 4.24 23.85 0.24 1.18 0.25 -1.01 2.05 -1.14 -1.10 

9.14 3.42 20.17 0.43 0.58 0.49 -0.30 0.17 -1.06 -0.23 

6.90 4.74 16.70 0.03 0.19 0.01 -1.01 -0.79 -1.11 -1.07 

6.67 5.08 18.45 0.20 0.30 0.26 -0.76 -0.72 -0.95 -0.72 

10.03 6.68 28.87 0.27 0.40 0.32 -0.64 -0.52 -1.02 -0.54 

10.66 2.98 22.61 0.36 1.04 0.33 -0.81 1.28 -1.34 -0.92 

8.84 3.75 25.92 0.50 1.07 0.66 -0.61 -0.18 -1.10 -0.54 

5.68 1.34 11.43 0.17 0.47 0.12 -0.83 -0.64 -0.96 -0.84 

5.61 3.93 12.73 0.11 0.15 0.13 -1.02 -0.73 -1.13 -1.11 

7.29 5.05 18.82 0.49 0.68 0.68 -0.50 -0.03 -0.71 -0.43 

8.18 3.69 16.78 0.19 0.34 0.20 -0.76 -0.58 -1.04 -0.71 

6.60 1.74 13.47 0.14 0.43 0.11 -1.03 -0.35 -1.10 -1.09 

6.14 2.82 16.13 0.20 0.44 0.16 -0.99 -0.42 -1.16 -1.08 

 

Table 23. Measurements of contour parameters of informative regions of benign 

nevus ultrasonic B-scan images in millimetres 

Maximu

m width 

Are

a 

Perimet

er 

Average 

skewnes

s (from 

1000 

direction

s) 

Maximu

m 

skewnes

s 

The 

skewne

ss of 

length 

projecti

on 

Average 

kurtosis 

(from 

1000 

direction

s) 

Maximu

m 

kurtosis 

Minimu

m 

kurtosis 

The 

kurtosis 

of 

length 

projecti

on 

4.55 5.57 19.25 0.14 0.21 0.21 -0.82 -0.54 -1.11 -0.67 

7.95 6.83 19.13 0.14 0.32 0.05 -0.90 -0.76 -0.95 -0.91 

3.23 0.55 7.19 0.15 0.26 0.14 -0.95 -0.27 -1.11 -1.00 
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5.25 0.73 10.55 0.19 0.30 0.20 -1.07 -0.60 -1.13 -1.09 

10.53 5.12 22.72 0.33 0.39 0.39 -0.67 -0.60 -1.08 -0.62 

3.50 0.90 7.68 0.05 0.17 0.03 -0.98 -0.73 -1.06 -1.00 

8.75 3.57 6.54 0.17 0.61 0.13 -0.75 -0.02 -1.00 -0.72 

6.63 1.49 14.75 0.28 0.61 0.29 -0.93 -0.05 -1.32 -0.95 

9.41 3.54 26.39 0.23 0.62 0.17 -0.86 -0.34 -1.16 -0.89 

7.79 2.88 26.94 0.35 0.56 0.36 -0.93 -0.67 -1.30 -0.89 

5.91 1.96 12.18 0.08 0.23 0.03 -0.81 -0.62 -1.18 -0.78 

5.21 1.00 10.50 0.18 0.31 0.19 -0.70 -0.64 -1.05 -0.65 

 

Table 22 and Table 23 present measurements of contour parameters of 

informative regions of ultrasonic B-scan images for melanoma and benign nevus. The 

significant parameters are maximum width, area, perimeter and measurements of 

them marked in bold.  

Table 24. Measurements of contour parameters (relative) of informative regions of 

melanoma ultrasonic B-scan images in millimetres 

The ratio 
of 

average 
skewness 

(from 

1000 
direction

s) and 

maximu
m 

skewness 

The ratio 
of 

average 
skewness 

(from 

1000 
direction

s) and 

the 
skewness 

of length 

projectio
n 

The ratio 
of 

maximu
m 

skewnes

s and the 
skewnes

s of 

length 
projectio

n 

The ratio 

of 

average 

kurtosis 

(from 

1000 

direction

s) and 

maximu

m 

kurtosis 

The ratio 
of 

average 
kurtosis 

(from 

1000 
direction

s) and 

minimu
m 

kurtosis 

The ratio 
of 

average 
kurtosis 

(from 

1000 
direction

s) and 

the 
kurtosis 

of length 

projectio
n 

The ratio 
of 

maximu
m 

kurtosis 

and the 
kurtosis 

of length 

projectio
n 

The ratio 
of 

minimu
m 

kurtosis 

and the 
kurtosis 

of length 

projectio
n 

The 

ratio of 

perimete

r and 

area 

0.59 0.81 1.38 1.09 0.87 1.09 1.00 1.26 2.97 

0.54 1.42 2.65 1.41 0.77 0.91 0.65 1.18 2.59 

0.41 1.59 3.89 1.69 0.89 0.90 0.53 1.01 4.02 

0.28 1.39 4.95 1.61 0.96 0.98 0.61 1.02 8.79 

0.57 0.92 1.63 -3.59 0.46 0.98 -0.27 2.13 3.38 

0.67 0.92 1.39 1.28 0.95 0.97 0.76 1.02 5.93 

0.20 0.96 4.72 -0.49 0.88 0.92 -1.86 1.04 5.62 

0.75 0.88 1.18 -1.81 0.29 1.32 -0.73 4.61 5.90 

0.17 3.27 19.73 1.28 0.91 0.95 0.74 1.04 3.52 

0.65 0.75 1.15 1.06 0.80 1.06 1.00 1.32 3.63 

0.67 0.85 1.26 1.23 0.63 1.19 0.97 1.88 4.32 

0.34 1.08 3.16 -0.64 0.61 0.88 -1.39 1.46 7.60 

0.47 0.75 1.61 3.31 0.55 1.13 0.34 2.05 6.92 

0.36 1.38 3.80 1.29 0.86 0.99 0.77 1.14 8.51 

0.68 0.79 1.15 1.40 0.90 0.92 0.66 1.02 3.24 

0.72 0.73 1.00 15.25 0.70 1.15 0.08 1.63 3.72 

0.56 0.98 1.75 1.29 0.73 1.06 0.82 1.46 4.55 

0.33 1.28 3.86 2.93 0.94 0.95 0.32 1.01 7.76 

0.46 1.25 2.69 2.38 0.85 0.92 0.38 1.07 5.71 
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Table 25. Measurements of contour parameters (relative) of informative regions of 

benign nevus ultrasonic B-scan images in millimetres 

The ratio 
of 

average 

skewness 
(from 

1000 

direction
s) and 

maximu

m 

skewness 

The ratio 
of 

average 

skewness 
(from 

1000 

direction
s) and 

the 

skewness 

of length 

projectio

n 

The ratio 
of 

maximu

m 
skewnes

s and the 

skewnes
s of 

length 

projectio

n 

The ratio 

of 

average 

kurtosis 

(from 

1000 

direction

s) and 

maximu

m 

kurtosis 

The ratio 
of 

average 

kurtosis 
(from 

1000 

direction
s) and 

minimu

m 

kurtosis 

The ratio 
of 

average 

kurtosis 
(from 

1000 

direction
s) and 

the 

kurtosis 

of length 

projectio

n 

The ratio 
of 

maximu

m 
kurtosis 

and the 

kurtosis 
of length 

projectio

n 

The ratio 
of 

minimu

m 
kurtosis 

and the 

kurtosis 
of length 

projectio

n 

The 

ratio of 

perimete

r and 

area 

0.65 0.66 1.01 1.51 0.74 1.23 0.81 1.67 3.46 

0.44 3.02 6.90 1.19 0.95 1.00 0.84 1.05 2.80 

0.56 1.03 1.82 3.46 0.86 0.94 0.27 1.10 13.06 

0.65 0.95 1.48 1.77 0.94 0.98 0.55 1.03 14.52 

0.86 0.86 1.00 1.12 0.63 1.10 0.98 1.75 4.44 

0.28 1.56 5.68 1.34 0.93 0.98 0.73 1.06 8.57 

0.28 1.28 4.58 40.23 0.75 1.03 0.03 1.38 1.83 

0.46 0.97 2.12 20.57 0.71 0.98 0.05 1.38 9.87 

0.37 1.32 3.54 2.57 0.74 0.96 0.38 1.30 7.46 

0.63 0.97 1.55 1.39 0.72 1.05 0.76 1.46 9.36 

0.33 2.80 8.38 1.30 0.69 1.04 0.80 1.50 6.22 

0.57 0.95 1.65 1.09 0.66 1.07 0.99 1.61 10.45 

 

Table 24 and Table 25 present measurements of contour parameters (relative) 

of informative regions of ultrasonic B-scan images for melanoma and benign nevus. 

The significant parameters are the ratio of average kurtosis (from 1000 directions) and 

maximum kurtosis, the ratio of perimeter and area and measurements of them marked 

in bold.  

Table 26. Measurements of contour parameters of informative regions of melanoma 

digital dermatoscopy images in millimetres 

Maxim

um 
diamete

r 

Avera

ge 

diamet

er 

Minim

um 

diamete

r 

Area Perimet

er 

Average 

skewnes
s (from 

1000 

directio
ns) 

Maxim

um 
skewne

ss 

Avera

ge 

kurtos

is 

Maxim

um 

kurtosis 

Minim

um 
kurtosis 

842.45 772.08 693.19 423223.0

0 

2778.5

6 

0.07 0.13 -0.97 -0.91 -1.01 

964.27 809.20 670.49 397556.0

0 
3846.0
6 

0.12 0.20 -0.92 -0.88 -0.98 

968.82 870.96 760.85 385450.0

0 

23.31 0.13 0.30 -0.89 -0.48 -1.16 

1444.00 1433.1

5 

1357.42 1533583.

00 

2801.1

7 

0.05 0.09 -0.99 -0.92 -1.06 

1435.64 1158.8

6 

917.61 820520.0

0 

4546.6

6 

0.03 0.06 -0.94 -0.80 -1.10 

979.10 859.62 705.78 518490.0

0 

3247.3

2 

0.06 0.10 -0.99 -0.95 -1.02 



 
 

84 

 

1398.13 1294.3

1 

1126.80 1144288.

00 

5531.2

9 

0.06 0.11 -0.96 -0.88 -1.03 

585.44 540.70 476.84 196687.0

0 
2139.0
6 

0.06 0.12 -0.96 -0.86 -1.07 

1338.08 1241.2

0 

1040.94 672284.0

0 

6426.9

7 

0.18 0.36 -0.80 -0.62 -1.10 

1443.98 1350.4

7 

1195.25 668781.0

0 

2379.9

1 

0.35 0.71 -0.75 0.29 -1.35 

1443.99 1353.1

7 

1151.50 1306833.

00 

4367.7

5 

0.08 0.14 -0.97 -0.90 -1.04 

1443.99 1330.1

6 

1220.01 1186502.

00 

356.48 0.06 0.13 -0.95 -0.81 -1.08 

1327.53 1260.4

7 

1155.82 1027794.

00 

139.15 0.04 0.07 -0.99 -0.92 -1.04 

936.07 843.64 713.00 468496.0

0 

3190.1

5 

0.11 0.17 -0.95 -0.85 -1.04 

1058.66 897.87 656.84 485109.0

0 

3381.4

8 

0.06 0.12 -0.96 -0.83 -1.07 

1436.54 1307.8

5 

1182.93 1256586.

00 

4672.2

1 

0.07 0.13 -0.98 -0.88 -1.09 

1349.43 1248.5

6 

1140.20 693971.0

0 

25.24 0.12 0.23 -0.76 -0.48 -0.98 

1345.21 1174.9

2 

917.86 921524.0

0 

4905.6

3 

0.06 0.11 -0.96 -0.88 -1.04 

722.42 666.67 625.76 317156.0

0 

2567.8

0 

0.03 0.05 -0.98 -0.91 -1.05 

 

Table 27. Measurements of contour parameters of informative regions of benign 

nevus digital dermatoscopy images in millimetres 

Maxim

um 

diamete
r 

Avera

ge 

diamet

er 

Minim

um 

diamete

r 

Area Perimet

er 

Average 

skewnes

s (from 
1000 

directio

ns) 

Maxim

um 

skewne
ss 

Avera

ge 

kurtos

is 

Maxim

um 

kurtosis 

Minim

um 

kurtosis 

1222.73 918.61 589.28 22984.00 34.14 1.78 3.41 7.51 13.03 0.85 

646.58 604.27 495.84 105715.0

0 

48.38 0.29 0.46 0.09 2.80 -0.87 

399.71 370.48 332.11 87239.00 1587.3

7 

0.03 0.07 -0.94 -0.75 -1.06 

1108.49 907.54 671.31 521003.0

0 

4593.4

3 

0.02 0.05 -0.97 -0.89 -1.04 

1301.18 1119.7

9 

929.95 694467.0

0 

3488.1

1 

0.14 0.26 -0.96 -0.67 -1.25 

1443.99 1223.8

5 

872.74 735826.0

0 

7.00 0.13 0.34 -0.91 -0.61 -1.24 

1444.00 1428.3

2 

1362.83 1551867.

00 
5201.6
8 

0.04 0.07 -0.99 -0.95 -1.04 

734.21 646.99 536.73 252000.0

0 

2503.8

6 

0.16 0.27 -0.88 -0.69 -1.09 

1015.89 893.05 708.74 519221.0

0 
3620.5
1 

0.06 0.12 -0.95 -0.81 -1.07 

1296.27 882.99 417.43 257434.0

0 

2507.3

6 

0.12 0.19 -0.93 -0.85 -1.05 

1210.32 1027.2

6 

812.84 469566.0

0 
8.41 0.06 0.10 -0.97 -0.90 -1.01 
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950.71 811.47 620.65 426366.0

0 

3806.4

6 

0.04 0.07 -0.98 -0.91 -1.03 

 

Table 26 and Table 27 present measurements of contour parameters of 

informative regions of digital dermatoscopy images for melanoma and benign nevus. 

The significant parameters are average diameter, minimum diameter, area, average 

kurtosis (from 1000 directions), maximum kurtosis and measurements of them 

marked in bold.  

Table 28. Measurements of contour parameters (relative) of informative regions of 

melanoma digital dermatoscopy images in millimetres 

 
The ratio 

of 

maximum 

diameter 

and 

average 

diameter 

The ratio 

of 

minimum 

diameter 

and 

average 

diameter 

The ratio 

of 

maximum 

diameter 

and 

minimum 

diameter 

The ratio of 
average 

skewness 

(from 1000 
directions) 

and 

maximum 
skewness 

The ratio 
of average 

kurtosis 

(from 
1000 

directions) 

and 
maximum 

kurtosis 

The ratio 
of average 

kurtosis 

(from 
1000 

directions) 

and 
minimum 

kurtosis 

The ratio 
of 

perimeter 

and area 

1.09 0.90 1.22 0.54 1.06 0.96 0.01 

1.19 0.83 1.44 0.61 1.05 0.94 0.01 

1.11 0.87 1.27 0.42 1.85 0.76 0.00 

1.01 0.95 1.06 0.60 1.07 0.93 0.00 

1.24 0.79 1.56 0.60 1.18 0.85 0.01 

1.14 0.82 1.39 0.60 1.03 0.97 0.01 

1.08 0.87 1.24 0.55 1.09 0.93 0.00 

1.08 0.88 1.23 0.49 1.12 0.90 0.01 

1.08 0.84 1.29 0.51 1.30 0.73 0.01 

1.07 0.89 1.21 0.49 -2.56 0.56 0.00 

1.07 0.85 1.25 0.58 1.07 0.93 0.00 

1.09 0.92 1.18 0.43 1.17 0.88 0.00 

1.05 0.92 1.15 0.60 1.07 0.95 0.00 

1.11 0.85 1.31 0.62 1.11 0.91 0.01 

1.18 0.73 1.61 0.51 1.17 0.91 0.01 

1.10 0.90 1.21 0.51 1.12 0.90 0.00 

1.08 0.91 1.18 0.55 1.58 0.78 0.00 

1.14 0.78 1.47 0.57 1.09 0.93 0.01 

1.08 0.94 1.15 0.55 1.07 0.93 0.01 
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Table 29. Measurements of contour parameters (relative) of informative regions of 

benign nevus digital dermatoscopy images in millimetres 

 
The ratio 

of 

maximum 

diameter 

and 

average 

diameter 

The ratio 

of 

minimum 

diameter 

and 

average 

diameter 

The ratio 

of 

maximum 

diameter 

and 

minimum 

diameter 

The ratio of 

average 

skewness 
(from 1000 

directions) 

and 
maximum 

skewness 

The ratio 

of average 

kurtosis 
(from 

1000 

directions) 
and 

maximum 

kurtosis 

The ratio 

of average 

kurtosis 
(from 

1000 

directions) 
and 

minimum 

kurtosis 

The ratio 

of 

perimeter 
and area 

1.33 0.64 2.07 0.52 0.58 8.87 0.00 

1.07 0.82 1.30 0.62 0.03 -0.11 0.00 

1.08 0.90 1.20 0.45 1.25 0.89 0.02 

1.22 0.74 1.65 0.45 1.09 0.94 0.01 

1.16 0.83 1.40 0.54 1.44 0.77 0.01 

1.18 0.71 1.65 0.39 1.48 0.74 0.00 

1.01 0.95 1.06 0.58 1.05 0.96 0.00 

1.13 0.83 1.37 0.58 1.28 0.81 0.01 

1.14 0.79 1.43 0.52 1.17 0.89 0.01 

1.47 0.47 3.11 0.60 1.09 0.88 0.01 

1.18 0.79 1.49 0.59 1.08 0.96 0.00 

1.17 0.76 1.53 0.60 1.08 0.95 0.01 

 

Table 28 and Table 29 present measurements of contour parameters (relative) 

of informative regions of digital dermatoscopy images for melanoma and benign 

nevus. The significant parameters are the ratio of maximum diameter and average 

diameter, the ratio of minimum diameter and average diameter, the ratio of maximum 

diameter and minimum diameter and measurements of them marked in bold.  

For the significant parameters and their measurements detailed above, the plots 

of distributions of significant parameters of ultrasonic and digital dermatoscopy 

images are presented in Appendix 2. Plots of significant parameters distributions are 

shown for benign and malignant tumours separately, based on the classification model 

and the data source of the captured images. The analysis of distributions are based on 

mean and standard deviation for each significant parameter of benign and malignant 

tumours depending on the imaging technique and classification model that was used. 

The description and values of mean and standard deviations for the significant 

parameters are listed under each of the plots provided in Appendix 2. The first five 

images represent the distributions of the significant parameters that are evaluated from 

the ultrasonic images by using the discriminant analysis model. Images starting from 

6 to 22 represent the distributions of the significant parameters that are evaluated from 

the digital dermatoscopy images by using the discriminant analysis model. The 23rd 

and 24th images represent the distributions of the significant parameters that are 

evaluated from the ultrasonic images by using the logistic regression model. The last 

two images represent the distributions of the significant parameters that are evaluated 

from the digital dermatoscopy images by using the logistic regression model.  
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4.8. An overview of results of histopathology, digital dermatoscopy, ultrasound 

B-scan and a newly developed automatic statistical post-processing method, 

which is based on the assessment of synergy of digital dermatoscopy and 

ultrasound B-scan imaging 

 

Nowadays, there are a lot of different techniques used in dermatology, such as 

histopathology; where the skin tumours are measured manually after a surgical 

intervention has been made. All these measurements are known as a “golden standard” 

in the field of dermatology and are used for decision making in order to identify 

malignant skin tumours. Another decision support technique is digital dermatoscopy, 

including spectrophotometric intracutaneous analysis technique, which is also a 

widely used tool in the field of dermatology. For example, in 2000, Menzies et al. 

presented a simple dermoscopy technique in order to diagnose pigmented basal cell 

carcinoma disease [85]. This method has shown reliable results, with sensitivity for 

diagnosing of basal cell carcinomas equal to 93%, specificity in comparison with 

melanoma equal to 89% and compared with the benign lesion was equal to 92%. 

Spectrophotometric intracutaneous analysis, known as SIA, is also used as a valuable 

tool in the case of identifying a skin cancer. In 2002, SIA was used by Moncrief et al. 

and showed very significant results, i.e. specificity was equal to 80,1% and sensitivity 

equal to 82,7% for melanomas [92]. SIA is also a relevant method to use for 

identifying a non-melanoma skin cancer. To construct a predictive model for non-

melanoma skin cancer diagnosis a logistic regression model was used. In 2006, 

Tehrani et al. presented a paper and showed incredible results in the classification of 

basal cell carcinomas, melanocytic nevus and other non-melanoma tumours. For the 

estimation of overall accuracy, receiver operator characteristic curves were used. 

Authors found that the sensitivity of the mode is equal to 98,0% and a specificity equal 

to of 95,7%, while overall accuracy of the model was equal to 98,2% in the case of 

non-melanoma skin cancer classification [93]. The third well-known method is 

ultrasound B-scan images processing technique as an alternative method in 

diagnosing skin cancer. For example, Harland et al. used 20-MHz ultrasound B-scan 

imaging including acoustic shadowing and entry echo line enhancement in order to 

classify melanomas and basal cell papilloma. Researchers found that the sensitivity in 

order to classify melanomas and basal cell papilloma was equal to 100%, while 

specificity was equal to 79% [48]. ROC analysis has also shown reliable results in the 

classification of melanomas and basal cell papilloma, i.e. coefficient in the case of 

quantitative estimation of shadowing areas was equal to 0,93 and for semi-quantitative 

estimation was equal to 0,97 [48]. In 2010, Wortsman and Wortsman presented a 

study of an application of ultrasound imaging in order to identify different skin 

damage, such a melanoma, basal cell carcinoma, skin cyst and nail damage [54]. One 

of the disadvantage of the used technique was the lack of sensitivity to detect 

epidermis lesions that are around 0,1 mm of thickness. Although all the diagnoses 
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were confirmed independently by a single observer, it was stated that the ultrasound 

can affect accuracy during the diagnosing stages up to 17% [54]. As a result, the 

percent of correct classification of the lesions was equal to 73%, while sensitivity was 

equal to 99% and specificity - 100% [54]. Rallan et al. presented a paper on 

classification of benign nevus, melanoma and SKs by using a three-dimensional high-

resolution ultrasound in order to capture images using a reflex transfer [55]. An 

ambient skin was used as the test, where digital ultrasonography parameters have been 

captured for all the significant measurements of lesions of total ultrasound attenuation, 

intra-lesion sound reflection, surface sound reflectance and the relative uniformity of 

each parameter across the tumour [55]. As a result, reliable differences were identified 

between benign and malignant parameters of tumours in order to reduce the accuracy 

of classification of benign tumours by 65% without missing melanomas [55]. A newly 

developed method proposes to use information captured from two different image 

processing techniques, such as ultrasonic B-scan and digital dermatoscopy tools. This 

novel technique is used for classification of melanomas and melanocytic nevus. 

Looking at the results of a newly developed automatic statistical post-processing 

method, which is based on assessment of synergy of digital dermatoscopy and 

ultrasound B-scan techniques, the probability of correct prediction during the 

classification of ultrasonic images by using a discriminant analysis classification 

model and significant parameters is equal to 62%. However, the probability of correct 

prediction during the classification based on assessment of synergy of digital 

dermatoscopy and ultrasonic medical images by using significant parameters is 

similar and equal to 62%, while sensitivity was equal to 74% and specificity equal to 

50%. The estimated area under the ROC curve is 0.671, which means that the 

classification was not improved when comparing the results of the discriminant 

analysis classification models. Analysing the outcomes of application of the stepwise 

logistic regression, it is obvious that the automatic classification was improved by 9% 

and has reached 82% of correct prediction compared with the classification of 

ultrasonic B-scan analysis only. In this case, sensitivity was equal to 85,5% and 

specificity equal to 75%. The proposed automatic classification method is usable for 

automatic identification of melanoma and melanocytic nevus. An automatic algorithm 

based on data captured from two different technologies has shown high diagnostic 

accuracy compared with the methods that are not fully automated. As a conclusion, a 

newly developed automatic statistical post – processing method could be used as a 

decision support tool in the field of dermatology in order to identify the malignant 

tumour and benign nevus. 

4.9. Conclusions of 4th chapter 

1. The segmentation of ultrasonic and digital dermatoscopy medical images 

were made by using Gaussian smoothing and a thresholding procedure based on an 

expectation – maximization (EM) algorithm, which depends on calculations of 
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random values and a skin tumour where the contour of the largest area is then selected. 

31 ultrasonic and 31 digital dermatoscopy images were selected, 19 melanomas and 

12 benign nevi were analysed.  

2. After the selection of contours, 46 parameters of tumour structure were 

evaluated, i.e. 19 parameters of ultrasonic images and 27 parameters of digital 

dermatoscopy images.  

3. Fisher’s and Chi-squared tests were used to separate significant and not 

relevant parameters. The classification of measurements was made by using 

discriminant analysis and logistic regression methods. The probability of correct 

prediction for the discriminant analysis model when analysing ultrasonic images was 

equal to 62%, which is the same as the probability of correct prediction during the 

classification based on the assessment of synergy of digital dermatoscopy and 

ultrasonic B-scan images. It means, that the classification was not improved. The 

probability of correct prediction for the logistic regression model when analysing 

ultrasonic images was equal to 73%, with the sensitivity of 79% and specificity of 

67%. The probability of correct prediction during the classification based on the 

assessment of synergy of digital dermatoscopy and ultrasonic medical images was 

equal to 82%, with the sensitivity of 89,5% and specificity of 75%. The classification 

results were improved by 9%.  

4. To prove the reliability of the proposed automatic statistical post-processing 

method, the area under ROC curve has been calculated. The results are closer to 1, 

therefore the method is reliable.  

5. For this research, the area under the ROC was equal to 0.908, which means 

that the proposed method can be employed as an alternative to the well-known 

methods used in dermatology in order to improve the classification results.  
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5. METROLOGY EVALUATION OF THE SKIN TUMOURS 

THICKNESSES MEASUREMENTS 

Estimation of measurement uncertainty includes a usage of the measurements 

of the proposed model in order to establish the uncertainty that is closest to the best 

assessment of the value of the quantity to be gauged and provide the best assessments 

of the values of all quantities that crucially impacts the relations between those 

evaluations and quantity as well as defined uncertainties [302]. There are a number of 

methods that could be used in the evaluation procedure of measurements uncertainty. 

The application of these methods strongly depends on the properties of the 

measurands. The Guide to the Expression of Uncertainty in Measurement (GUM) is 

one of widely used techniques, which recommends a standard approach in order to 

express the uncertainty of measurements and ensures that the method used in some 

kind of analysis is reliable [303]. The GUM uncertainty framework has been 

implemented in standards define procedures and in computer software programs. 

There are also some other tools, for example; the Monte Carlo method (MCM) or the 

Bayesian method.  Picking up a reasonable methodology for the estimation of 

measurements uncertainties should be based on the confidence of estimation of 

physical reality it designates to reveal [302]. The GUM approach is one of the most 

suitable approaches to apply this methodology to different models with the linear 

distribution or mild non-linear. In addition, it is adequate in using Central Limit 

Theorem and the PDF, which have symmetric inputs [304].  

This chapter presents a metrology evaluation of the skin tumours thicknesses 

measurements. Section 5.1. presents an uncertainty due to the measurements of 

thickness of skin tumours. Uncertainty due to the ultrasound velocity in skin tissue, 

time and the position of transducer is shown in section 5.2. Combined and expanded 

uncertainties are presented in section 5.3. Section 5.4. introduces summarized 

outcomes of chapter 5.  

 

5.1. Uncertainty due to the measurements of thickness of skin tumours  

 

This section represents the comparison of uncertainties due to the automatically 

and manually estimated ultrasonic B – scan measurements of thickness of skin 

tumours with the histological examination. In the field of dermatology, an invasive 

histological tool is known as a golden standard. It is acceptable that the measurement 

under the histological procedure is an etalon. On the other hand, the accuracy of 

histological examination strongly depends on the human factor, experience, lack of 

knowledge, in addition to the equipment which is using during the histological 

examination along other key factors. Due to this, it is assumed that the average of two 

pathologists’ estimations will be more adequate in this case. All the measurements 
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were grouped into four ranges of thicknesses as shown in Table 30. Mean and standard 

deviation of differences between thicknesses measured by two methods. These ranges 

were selected assuming that the approximate number of values contained in each of 

these four groups is more adequate and impacts a more accurate result. Looking at the 

mean and standard deviation of measurement differences for both methods, proves 

that the selection of ranges of thicknesses is reliable and the observations in each 

group are not extremely spread compared with the mean of measurement differences.  

Additionally, the results have showed that the proposed automatic statistical post – 

processing method versus invasive histological analysis is more or less similar to 

manual non-invasive ultrasound examination (made by dermatologist) versus invasive 

histological analysis. This proves that the proposed fully automatic method is 

constructed under the requirements in order to estimate the thickness as accurate as it 

is possible.  

Table 30. Mean and standard deviation of differences between thicknesses measured 

by two methods 

Method 
Ranges of thicknesses, 

mm 

Mean of 

differences 

between 

thicknesses 

measured by 

two methods 

Standard 

Deviation of 

differences 

between 

thicknesses 

measured by two 

methods 

Proposed automatic 

statistical post – processing 

method vs Invasive 

histological analysis  

0 < histological <= 0.3  

0.3 < histological < 0.5  

0.5 <= histological < 0.7  

0.7 <= histological <=1  

0.090 

-0.067 

-0.033 

-0.375 

0.146 

0.184 

0.192 

0.158 

Manual non-invasive 

ultrasound examination 

(made by dermatologist) vs 

Invasive histological 

analysis  

0 < histological <= 0.3  

0.3 < histological < 0.5  

0.5 <= histological < 0.7  

0.7 <= histological <=1  

0.141 

0.081 

0.029 

-0.265 

0.081 

0.204 

0.187 

0.239 

 

As the thickness of skin measurements was directly estimated, it was included 

in evaluation of type A standard uncertainty. Type A standard uncertainty (regarding 

the differences of mean thicknesses) was measured in order to compare the proposed 

automatic statistical post – processing method versus invasive histological analysis 

method and manual non-invasive ultrasound examination (made by dermatologist) 

versus invasive histological analysis methods.   

Type A standard uncertainty of the systematic error can be expressed as [305]: 

𝑢(∆𝑑) = √
1

𝑛(𝑛−1)
∑ (∆𝑑𝑝 − ∆𝑑̅̅̅̅ )2𝑛

𝑝=1 ;                             (53) 

here ∆𝑑𝑝 means the difference between results of measurements of the two methods 

described above. n shows the size of the sample and is equal to 31 cases. ∆𝑑̅̅̅̅  is the 

mean of the differences of the two methods and can be presented by the form: 
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∆𝑑̅̅̅̅ =
1

𝑛
∑ 𝑑1/2,𝑝 − 𝑑3,𝑝

𝑛
𝑝=1 ;                                 (54) 

here 𝑑1,𝑝 is the thickness of an application of the proposed automatic statistical post 

– processing method, 𝑑2,𝑝 is the thickness of non – invasive ultrasound examination 

(made by dermatologist) and 𝑑3,𝑝 is the thickness of invasive histological analysis 

examination. 

As a result, the uncertainty for all the measurements of both methods differ 

by just 0.003 mm (Table 31. Type A standard uncertainty of ultrasonic measurements 

comparing two methods) and also proves that the proposed automatic method could 

be used in the estimation of skin tumours thicknesses from the ultrasonic images. 

  

Table 31. Type A standard uncertainty of ultrasonic measurements comparing two 

methods 

Method 
Systematic error (bias), 

mm 

Type A standard 

uncertainty (differences of 

mean thicknesses), mm 

Proposed automatic 

statistical post – processing 

method vs invasive 

histological analysis  

∆𝑑̅̅̅̅ = −0.070 𝑢(∆𝑑) =  0.225 

Non-invasive ultrasound 

examination (made by 

dermatologist) vs invasive 

histological analysis  

∆𝑑̅̅̅̅ = 0.022 𝑢(∆𝑑) = 0.222 

 

Uncertainty of the thickness of the skin tumours measured by automatic and 

manual non-invasive ultrasonic images examination methods. Assume that all the 

measurements of automatic and manual methods are divided into four groups by the 

ranges of thicknesses presented in Table 31. Mean and standard deviation of ultrasonic 

measurements differences. Type A standard uncertainties of the proposed automatic 

statistical post – processing method and non-invasive ultrasound examination could 

be defined as: 

𝑢(𝑑𝑖) = √
1

𝑛(𝑛−1)
∑ (𝑑𝑖,𝑝 − 𝑑𝑖)̅̅ ̅̅ 2𝑛

𝑝=1 .                                 (55) 

Here i denotes the index of thickness group (in this case i = 1,2,3,4), n is the 

number of observations, which belong to one of 4 indexed groups, 𝑑𝑖̅ is the average 

thickness of one of the 4 indexed groups and 𝑑𝑖,𝑝 is the thickness of the invasive 

histological examination. 

The results of this application are presented in Table 32. Comparison of type A 

standard uncertainty of two measurement methods. 
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Table 32. Comparison of type A standard uncertainty of two measurement methods 

Method 
Ranges of thicknesses, 

mm 

Type A standard 

uncertainty, mm 

Proposed automatic 

statistical post – processing 

method 

0 < histological <= 0.3  

0.3 < histological < 0.5  

0.5 <= histological < 0.7  

0.7 <= histological <=1  

𝑢(𝑑1) = 0.096 

𝑢(𝑑2) = 0.184 

𝑢(𝑑3) = 0.200 

𝑢(𝑑4) = 0.151 

Non-invasive ultrasound 

examination (made by 

dermatologist) 

  

0 < histological <= 0.3  

0.3 < histological < 0.5  

0.5 <= histological < 0.7  

0.7 <= histological <=1  

𝑢(𝑑1) = 0.066 

𝑢(𝑑2) = 0.200 

𝑢(𝑑3) = 0.183 

𝑢(𝑑4) = 0.248 

 

Fig. 26. and Fig. 27. represent the Least-Square (or L – S) means plots of the 

proposed automatic statistical post – processing method and non-invasive ultrasound 

examination in each of the four selected ranges of thicknesses detailed above with the 

level of confidence of 95%. Plumb lines propagating from the four-defined means are 

representing confidence interval of a level of 95%. Mean and standard deviation for 

each of the ranges are calculated by using pooled estimations of the variance. The 

length of the corresponding 95% confidence interval for their difference is based on 

the size of observations sample and magnitude of the variance of pooled grip [306].  

Figures also shows that 95% confidence intervals of the L-S Means can overlap, 

(which may also be inferred from the considerable overlap of the data distributions) 

with more information about it found in the references [307]. 

 

Fig. 26. L-S means graph of the proposed automatic statistical post – processing 

method regarding the ranges of thicknesses 
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Fig. 27. L-S means graph of the non-invasive ultrasound examination (made by 

dermatologist) method regarding the ranges of thicknesses 

The results of the measurements evaluated by the proposed automatic statistical 

post – processing method are shown in Fig. 28. The Bland-Altman plot of the 

proposed automatic statistical post – processing method. The plot is representing the 

systematic error, which is equal to -0,070 and the range of agreements (±1.96 SD), 

within which 95% of the differences between the proposed automatic method and 

thicknesses measured by invasive histological analysis are found. 

 

Fig. 28. The Bland-Altman plot of the proposed automatic statistical post – processing 

method and invasive histological analysis 
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In order to compare the proposed method with the non-invasive ultrasound 

examination, a Bland-Altman plot is presented in Fig. 29.  

 

Fig. 29.  The Bland-Altman plot of non-invasive ultrasound examination and invasive 

histological analysis  

Comparing the results of the Bland-Altman plot of non-invasive ultrasound 

examination and invasive histological results against the Bland-Altman plot of the 

proposed automatic statistical post – processing method and invasive histological 

analysis; it is clear that the systematic errors differ. The larger the bias is, the larger 

the differences between the two methods measurements are. Following this note, it is 

obvious that measurements of non-invasive ultrasound examination are more closely 

associated to the measurements of invasive histological analysis (bias is equal to 

0.022) than the measurements of the proposed automatic statistical method, because 

the bias is higher. This could be explained by the fact that the measurements of non-

invasive ultrasound examination were made by experienced dermatologist. 

Spearman Correlation is used for identifying the relationship between paired 

groups of measurements of lesions of the human skin tissue. In this case, the highest 

correlation is between the proposed automatic statistical post – processing method and 

the non-invasive ultrasound examination and is equal to 0.713 (see Table 33 below). 

Looking at the correlation of the invasive histological method and the other two non-

invasive methods, it is clear that there is not enough relative, but the proposed 

automatic statistical post – processing method is more associated than the non-

invasive ultrasound examination. 
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Table 33. Spearman’s Correlation Coefficient (n = 43) 

Methods 

Proposed 

automatic 

statistical post – 

processing method 

Invasive 

histological 

analysis 

Non-invasive 

ultrasound 

examination 

Proposed automatic 

statistical post – 

processing method 

1.0 0.435 0.713 

Invasive 

histological analysis 
0.435 1.0 0.423 

Non-invasive 

ultrasound 

examination 

0.713 0.423 1.0 

 

5.2. Uncertainty due to the ultrasound velocity in skin tissue, time and the 

position of transducer  

Many authors of studies assumed that the general velocity of ultra-sonographic 

measurements in skin melanoma’s is equal to 1580 m/s. This was based on data for 

the whole human skin, even the velocity differs in every tissue [308] and depends on 

the structure of human skin [309]. 

Weichenthal et al., presented an ultrasound velocity that was calculated from 

runtime differences of a 20 MHz ultrasound signal along a known distance, either 

through fluid alone or through thick specimens of primary melanoma. Although the 

most preferable for practical reasons is to set a velocity equal to 1580 m/s, in fact 

could be lower than normally assumed, thereby explaining a part of the overestimation 

usually found in sonographic measurement of melanoma invasion depth. As a result, 

authors have shown that the ultrasound velocities vary between 1553 m/s and 1588 

m/s with a mean of 1564 m/s [310]. 

In this way, the type B standard uncertainty due to the difference of ultrasound 

velocity is assumed to be evaluated by a rectangular distribution and could be 

expressed as [311]: 

𝑢∆𝑐 =
∆𝑐

2√3
;                                                    (56) 

here ∆𝑐 is the difference between the maximum and minimum ultrasound velocities, 

measured by Weichenthal et al. [311]. The differences of the ultrasound velocity in 

melanoma tissue for the B type standard uncertainty is equal to 10 m/s. Limits of the 

predicted errors in ultrasound velocity is equal to 6.4 µm for melanoma of 1 mm 

thickness. The uncertainty of constant ultrasound velocity is distributed by the 

function 𝑢∆𝑐(𝑑) = 0.02𝑑. Features, such as stiffness and density of human skin tissue 

strongly affect the speed and sound.  
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Time of flight, known as TOF, can be measured by different methods such as 

cross – correlation, threshold and by using other digital methods. Taking into account 

that the velocity is a constant, the measurement of TOF uncertainty depends on the 

sampling frequency. As the system with 100 MHz sampling frequency was used, a 

discretisation time interval was equal to Δt=0.01 μs, so then the uncertainty of time 

discretisation is equal 𝑢∆𝑡(𝑑) = 5 𝑛𝑠. Seeking to increase a resolution for TOF 

measurements, an interpolation can be used. In this case, the discretised time interval 

was interpolated twice up to 5 ns, therefore the uncertainty due to the time 

discretization is equal to 2μm [312]. 

Another important aspect is the uncertainty of the transducer position that is 

used by a dermatologist, moving it through the lesion in order to find the thickest 

cross-section of the tumour. The results of the examination strongly depend on the 

human factor, but the uncertainty of the transducer position is unavoidable and 

irregular, while the tumours have no regular shape. 

 

5.3. Combined and expanded uncertainties 

The proposed automatic statistical post – processing method has shown 

systematic error (bias) which is equal to -0.070 and a type A standard uncertainty 

equal to 0.225. Meanwhile, a non-invasive ultrasound examination (made by 

dermatologist) method has a systematic error equal to 0.022 and an uncertainty equal 

to 0.222. Results of the proposed automatic statistical post – processing method was 

therefore used in the calculation of combined and expanded uncertainties. All the 

above described components are not correlated, so combined and expanded 

uncertainties could be defined by using individual type A and type B standards 

uncertainties. 

Expanded uncertainty can be expressed as follows: 

 

𝑢𝑐𝑜𝑚𝑏 = √𝑊∆𝑑
2 𝑢∆𝑑

2 +  𝑊∆𝑡𝑑
2 𝑢∆𝑡𝑑

2 +  𝑊∆𝑐
2 𝑢∆𝑐

2 ;                         (57) 

 

here 𝑢∆𝑡𝑑 is an uncertainty of ultrasonic signal sampling frequency. 

Where W represents a sensitivity coefficient of the uncertainty part and is 

calculated by using partial derivatives. Here, in order of simplicity uncertainty the 

coefficient is set to be equal to 1. Combined uncertainty depends on the linearity of 

evaluated thickness and depends on the function 𝑢𝑐𝑜𝑚𝑏(𝑑) = 0.222 + 0.02𝑑, where 

d means the value of measured thickness. An expanded uncertainty is calculated by 

multiplying a combined uncertainty by a coverage factor. Generally, this is set to be 

equal to 2 and up to 3 [313], as European Accreditation has recommended to use a 

coverage factor equal to 2 if the combined uncertainty has a normal distribution [314]. 

A definition of normal distribution means that at least three components of uncertainty 

should be distributed by normal or rectangular distributions. In this case, a coverage 

factor m is set to be equal to 2. Therefore, an expanded uncertainty is equal to a 
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function of 𝑢𝑒𝑥𝑝𝑎𝑛𝑑(𝑑) = 0.44 + 0.04𝑑. Summary of the components and the above 

described uncertainties are presented in Table 34.  

 
Table 34. Combined and expanded uncertainties relationship 

Components Distribution 
Uncertainty (d – means the 

thickness of measurements, mm) 

Systematic error (bias) due to the 

differences of measurement 

thickness 

Normal 0.225(𝐴) 

Ultrasound velocity, 𝑢∆𝑐(𝑑) 

(constant)  
Rectangular 𝑢∆𝑐(𝑑) = 0.02𝑑(𝐵) 

Ultrasound sampling frequency, 

𝑢∆𝑡(𝑑) 
Rectangular 0.002(𝐵) 

Combined uncertainty Normal 𝑢𝑐𝑜𝑚𝑏(𝑑) = 0.22 + 0.02𝑑 

Expanded uncertainty (coverage 

factor m = 2) 
𝑢𝑒𝑥𝑝𝑎𝑛𝑑(𝑑) = 0.44 + 0.04𝑑 

 

5.4. Conclusions of 5th chapter  

 

1. Uncertainty is a measure of the reliability of method accuracy. As the 

measurements results depend on various factors, different uncertainties were 

calculated.  

2. Uncertainty due to the measurements of thickness of skin tumours when 

comparing results of the proposed automatic statistical post – processing method 

versus the invasive histological analysis with results of non-invasive ultrasound 

examination (made by dermatologist) versus invasive histological analysis has shown 

that the results are similar.  

3. The uncertainty of non-invasive ultrasound examination measurements is less 

than per 0.003 mm of the proposed method and explained by the fact that the 

measurements were made by well trained and experienced dermatologist. Following 

the above, it can be stated that the proposed fully automatic method is constructed 

under the requirements and can be used as an accurate alternative method helping to 

identify skin cancer.  

4. The Spearman Correlation test has shown that the results measured by 

dermatologist and by the automatic proposed statistical post-processing method are 

strongly related. The correlation is equal to 0.713.  

5. The results of Spearman Correlation showed that not all the uncertainties 

factors are correlated. Combined and expanded uncertainties were calculated. 

Expanded uncertainty consists of type A standard systematic error uncertainty and 

type B uncertainties due to the ultrasound velocity and time is equal to 𝑢𝑒𝑥𝑝𝑎𝑛𝑑(𝑑) =

0.44 + 0.04𝑑, where the coverage coefficient is m = 2. 
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6. GENERAL CONCLUSIONS 

1. The results of the assessment of synergy between two different imaging 

technologies (ultrasound and digital dermatoscopy) identified the classification was 

improved by 9%. The reliability of classification is proven by the estimated area under 

the ROC curve of 0,908. This means that the newly developed and proposed automatic 

statistical post–processing method can be used as a decision support tool in the field 

of dermatology in order to identify malignant tumours and benign nevus.  

2. To prove that the reliability of the ultrasonic thickness of skin tumours 

measured by the proposed automatic algorithm is completely covered by a high 

similarity to the histological thickness measurement, 43 measurements of tumours 

under a non-invasive ultrasound examination and invasive histological analysis were 

analysed. It showed that the density of the ultrasonic thicknesses distribution is similar 

to the Normal distribution density by more than 90 percent and a high similarity to the 

histological results was obtained.  

3. Overall, 46 parameters of skin tumours were estimated by using the same 

proposed automatic algorithm, which has shown reliable results when comparing the 

thicknesses of skin tumours. Significant parameters were selected by using the 

Fisher’s test and Chi-Square test. Additionally, 19 parameters of ultrasonic B-scan 

images and 27 parameters of digital dermatoscopy images were included in the 

classification models. In the case of the logistic regression model, the probability of 

correct prediction during the classification was equal to 82%, with a sensitivity of 

89,5% and specificity of 75%. 

4. To estimate the precision and reliability of the proposed automatic analysis 

and measurement technique; type A standard, combined and expanded uncertainties 

were calculated. The uncertainty due to the systematic error of the proposed automatic 

statistical post-processing method was equal to 0.225 mm and is just 0.003 mm higher 

than the uncertainty of measurements made by a dermatologist. The expanded 

uncertainty consisting of type A standard systematic error uncertainty and type B 

uncertainties due to the ultrasound velocity and time of flight measurement equal to 

𝑢𝑒𝑥𝑝𝑎𝑛𝑑(𝑑)=0.44+0.04𝑑, where k = 2.  
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APPENDIX 1. ULTRASONIC AND DIGITAL DERMATSOCOPY IMAGES 

 

Ultrasonic B-scan images (raw and processed) of skin melanoma, axes are in 

millimetres (1-pixel value for length is 0.033 mm, for depth – 0.0079 mm): ultrasonic 

raw B-scan image, binary B-scan image, detected informative region are presented in 

order. 
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Digital Dermatoscopy Images (raw and processed) of skin melanoma, axes are 

in millimetres (1-pixel value 0.0071 mm):  raw optical image, binary optical image, 

detected informative region are presented in order. 
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Ultrasonic B-scan images (raw and processed) of benign nevus, axes are in 

millimetres (1-pixel value for length is 0.033 mm, for depth – 0.0079 mm): ultrasonic 

raw B-scan image, binary B-scan image, detected informative region are presented in 

order. 
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IF052 

 

Digital Dermatoscopy Images (raw and processed) of benign nevus, axes are in 

millimetres (1-pixel value 0.0071 mm):  raw optical image, binary optical image, 

detected informative region are presented in order. 
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APPENDIX 2. DISTRIBUTIONS OF THE SIGNIFICANT PARAMETERS 

OF ULTRASONIC AND DIGITAL DERMATOSCOPY IMAGES 

Fig. 1. – Fig. 5. represent the distributions of the significant parameters that are 

evaluated from the ultrasonic images by using the discriminant analysis model. Fig. 

6. – Fig. 22. represent the distributions of the significant parameters that are evaluated 

from the digital dermatoscopy images by using the discriminant analysis model. Fig. 

23. – Fig. 24. represent the distributions of the significant parameters that are 

evaluated from the ultrasonic images by using the logistic regression model. Fig. 25. 

– Fig. 26. represent the distributions of the significant parameters that are evaluated 

from the digital dermatoscopy images by using the logistic regression model.  

 

Fig. 1. Distribution of the maximum width by diagnosis evaluated from the ultrasonic 

images by using the discriminant analysis model. Mean of the maximum width for 

melanomas was equal to 7.621 millimetres, while mean of the maximum width for benign 

nevus was equal to 6.306 millimetres. Standard deviation for melanomas was equal to 2.089 

millimetres, for benign nevus – 2.268 millimetres. 

Diamonds show the mean of the maximum width of melanomas and benign 

nevus. For the melanomas, more observations are lower than the mean. For the benign 

nevus, more values are around the mean of maximum length.  
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Fig. 2. Distribution of the area by diagnosis evaluated from the ultrasonic images by 

using the discriminant analysis model. Mean of the area for melanomas was equal to 3.997 

squared millimetres, while mean of the area for benign nevus was equal to 2.845 squared 

millimetres. Standard deviation for melanomas was equal to 1.844 squared millimetres, for 

benign nevus – 2.111 squared millimetres. 

Diamonds show the mean of the area. For melanomas and benign nevus, more 

values of the area are distributed under the mean. 

 

Fig. 3. Distribution of the perimeter by diagnosis evaluated from the ultrasonic images 

by using the discriminant analysis model. Mean of the perimeter for melanomas was equal to 

18.761 millimetres, while mean of the perimeter for benign nevus was equal to 15.318 

millimetres. Standard deviation for melanomas was equal to 5.773 millimetres, for benign 

nevus –7.385 millimetres. 

Diamonds show the mean of the perimeter. The values of observations of 

melanoma are very close to the mean. In the case of the benign nevus, more values 

of area of observations are less than the mean. 
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Fig. 4. Distribution of the ratio of average kurtosis (from 1000 directions) and 

maximum kurtosis by diagnosis evaluated from the ultrasonic images by using the 

discriminant analysis model. Mean of the ratio of average kurtosis (from 1000 directions) 

and maximum kurtosis for melanomas was equal to 1.711, while mean of the ratio of average 

kurtosis (from 1000 directions) and maximum kurtosis for benign nevus was equal to 6.463. 

Standard deviation for melanomas was equal to 3.562, for benign nevus – 11.962. 

Diamonds show the mean of the ratio of average kurtosis (from 1000 directions) 

and maximum kurtosis by diagnosis. In the case of melanoma, more values are above 

the mean, while more values for the benign nevus are under the mean. 

 

Fig. 5. Distribution of the ratio of perimeter and area by diagnosis evaluated from the 

ultrasonic images by using the discriminant analysis model. Mean of the ratio of perimeter 

and area for melanomas was equal to 5.290, while mean of the ratio of perimeter and area for 

benign nevus was equal to 7.670. Standard deviation for melanomas was equal to 1.962, for 

benign nevus – 4.048. 

Diamonds show the mean of the ratio of perimeter and area. For melanomas, 

more values are distributed around the mean, while for benign nevus more values 

are above the mean.  
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Fig. 6. Distribution of the average diameter by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the average 

diameter for melanomas was equal to 1074.410 millimetres, while mean of the average 

diameter for benign nevus was equal to 908.855 millimetres. Standard deviation for 

melanomas was equal to 273.421 millimetres, for benign nevus –  284.260 millimetres. 

Diamonds show the mean of the average diameter. In the case of melanoma, a 

lot of the values are located above the mean, while the values for benign nevus are 

pretty much the same as the mean.  

 

Fig. 7. Distribution of the minimum diameter by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the minimum 

diameter for melanomas was equal to 932.058 millimetres, while mean of the minimum 

diameter for benign nevus was equal to 695.872 millimetres. Standard deviation for 

melanomas was equal to 260.188 millimetres, for benign nevus – 275.939 millimetres. 

Diamonds show the mean of the minimum diameter. For the melanomas, more 

values of parameter are distributed around the mean.  Looking at the distribution of 

the benign nevus, more values are under the mean. 
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Fig. 8. Distribution of the area by diagnosis evaluated from the digital dermatoscopy 

images by using the discriminant analysis model. Mean of the area for melanomas was equal 

to 759201.740 squared millimetres, while mean of the area for benign nevus was equal to 

470307.330 squared millimetres. Standard deviation for melanomas was equal to 388217.870 

squared millimetres, for benign nevus – 412327.460 squared millimetres. 

Diamonds show the mean of the area. For both types of the tumours, more values 

are less than the mean, but for the melanomas there are more observations that are 

under the mean.  

 

Fig. 9. Distribution of the average kurtosis (from 1000 directions) by diagnosis 

evaluated from the digital dermatoscopy images by using the discriminant analysis model. 

Mean of the average kurtosis (from 1000 directions) for melanomas was equal to -0.930 

millimetres, while mean of the average kurtosis (from 1000 directions) for benign nevus was 

equal to -0.157 millimetres. Standard deviation for melanomas was equal to 0.075 

millimetres, for benign nevus – 2.435 millimetres. 

Diamonds show the mean of the average kurtosis (from 1000 directions). In the 

case of melanoma, the values are distributed very closely to the mean, while 

more observations of the benign nevus are below the mean.  
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Fig. 10. Distribution of the maximum kurtosis by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the maximum 

kurtosis for melanomas was equal to -0.762 millimetres, while mean of the maximum 

kurtosis for benign nevus was equal to 0.651 millimetres. Standard deviation for melanomas 

was equal to 0.291 millimetres, for benign nevus – 4.036 millimetres. 

Diamonds show the mean of the maximum kurtosis. In the case of melanoma, 

the values are distributed very closely to the mean, while more observations of the 

benign nevus are below the mean. 

 

Fig. 11. Distribution of the ratio of maximum diameter and average diameter by 

diagnosis evaluated from the digital dermatoscopy images by using the discriminant analysis 

model. Mean of the ratio of maximum diameter and average diameter for melanomas was 

equal to 1.105, while mean of the ratio of maximum diameter and average diameter for 

benign nevus was equal to 1.178. Standard deviation for melanomas was equal to 0.054, for 

benign nevus – 0.122. 

Diamonds show the mean of the ratio of maximum diameter and average 

diameter. For both types of the skin tumours, more observations are distribution below 

the mean. 
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Fig. 12. Distribution of the ratio of minimum diameter and average diameter by 

diagnosis evaluated from the digital dermatoscopy images by using the discriminant analysis 

model. Mean of the ratio of the ratio of minimum diameter and average diameter for 

melanomas was equal to 0.865, while mean of the ratio of minimum diameter and average 

diameter for benign nevus was equal to 0.771. Standard deviation for melanomas was equal 

to 0.057, for benign nevus – 0.124. 

Diamonds show the mean of the ratio of minimum diameter and average 

diameter. The values of the melanomas are more closely to the mean than the values 

of the benign nevus parameters, which are higher than the mean.  

 

Fig. 13. Distribution of the ratio of maximum diameter and minimum diameter by 

diagnosis evaluated from the digital dermatoscopy images by using the discriminant analysis 

model. Mean of the ratio of minimum diameter and average diameter for melanomas was 

equal to 1.268, while mean of the ratio of minimum diameter and average diameter for 

benign nevus was equal to 1.606. Standard deviation for melanomas was equal to 0.145, for 

benign nevus – 0.537. 

Diamonds show the mean of the ratio of maximum diameter and minimum 

diameter. More values are less than the mean of benign nevus parameters. 
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Fig. 14. Distribution of the 1st decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 1st decile for 

melanomas was equal to 9.158 millimetres, while mean of the 1st decile for benign nevus was 

equal to 18.083 millimetres. Standard deviation for melanomas was equal to 5.833 

millimetres, for benign nevus – 9.258 millimetres. 

Diamonds show the mean of the 1st decile. In the case of melanoma, more values 

are distributed below the mean, while for the benign nevus values are placed very 

close to the mean. 

 

Fig. 15. Distribution of the 2nd decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 2nd decile for 

melanomas was equal to 10.632 millimetres, while mean of the 2nd decile for benign nevus 

was equal to 21.333 millimetres. Standard deviation for melanomas was equal to 7.515 

millimetres, for benign nevus – 10.228 millimetres. 

Diamonds show the mean of the 2nd decile. For both types of the skin tumours, 

more values are distributed below the mean.  
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Fig. 16. Distribution of the 3rd decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 3rd decile for 

melanomas was equal to 12.368 millimetres, while mean of the 3rd decile for benign nevus 

was equal to 24.583 millimetres. Standard deviation for melanomas was equal to 9.215 

millimetres, for benign nevus – 10.933 millimetres. 

Diamonds show the mean of the 3rd decile. For both types of the skin tumours, 

more values are distributed below the mean.  

 

Fig. 17. Distribution of the 4th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 4th decile for 

melanomas was equal to 14.474 millimetres, while mean of the 4th decile for benign nevus 

was equal to 27.667 millimetres. Standard deviation for melanomas was equal to 10.637 

millimetres, for benign nevus – 11.881 millimetres. 

Diamonds show the mean of the 4th decile. For the melanomas, more values are 

under the mean. For the benign nevus, values are distributed around the mean. 
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Fig. 18. Distribution of the 5th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 5th decile for 

melanomas was equal to 17.789 millimetres, while mean of the 5th decile for benign nevus 

was equal to 31.333 millimetres. Standard deviation for melanomas was equal to 11.583 

millimetres, for benign nevus – 13.096 millimetres. 

Diamonds show the mean of the 5th decile. For melanomas, values are 

distributed below the mean, while for the benign nevus, more values are distributed 

above the mean.  

 

Fig. 19. Distribution of the 6th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 6th decile for 

melanomas was equal to 22.000 millimetres, while mean of the 6th decile for benign nevus 

was equal to 35.083 millimetres. Standard deviation for melanomas was equal to 12.987 

millimetres, for benign nevus – 14.761 millimetres. 

Diamonds show the mean of the 6th decile. For melanomas, more values are 

distributed below the mean, while for the benign nevus, more values are distributed 

above the mean.  

 



 
 

144 

 

 

Fig. 20. Distribution of the 7th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 7th decile for 

melanomas was equal to 27.000 millimetres, while mean of the 7th decile for benign nevus 

was equal to 39.833 millimetres. Standard deviation for melanomas was equal to 14.079 

millimetres, for benign nevus – 16.563 millimetres. 

Diamonds show the mean of the 7th decile. In the case of melanoma, values of 

the parameters are distributed extremely close to the mean. For the benign nevus, more 

values are distributed above the mean.  

 

Fig. 21. Distribution of the 8th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 8th decile for 

melanomas was equal to 33.632 millimetres, while mean of the 8th decile for benign nevus 

was equal to 45.833 millimetres. Standard deviation for melanomas was equal to 14.720 

millimetres, for benign nevus – 17.309 millimetres. 

Diamonds show the mean of the 8th decile. In the case of melanoma, values of 

the parameters are distributed extremely close to the mean. For the benign nevus, more 

values are distributed above the mean. 
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Fig. 22. Distribution of the 9th decile by diagnosis evaluated from the digital 

dermatoscopy images by using the discriminant analysis model. Mean of the 9th decile for 

melanomas was equal to 42.789 millimetres, while mean of the 9th decile for benign nevus 

was equal to 54.583 millimetres. Standard deviation for melanomas was equal to 15.109 

millimetres, for benign nevus – 16.412 millimetres. 

Diamonds show the mean of the 9th decile. For both graphs, more values are 

distributed above the mean. 

 

Fig. 23. Distribution of the ratio of average kurtosis (from 1000 directions) and 

maximum kurtosis by diagnosis evaluated from the ultrasonic images by using the logistic 

regression model. Mean of the ratio of average kurtosis (from 1000 directions) and 

maximum kurtosis for melanomas was equal to 1.711, while mean of the ratio of average 

kurtosis (from 1000 directions) and maximum kurtosis for benign nevus was equal to 6.463. 

Standard deviation for melanomas was equal to 3.562, for benign nevus – 11.962. 

Diamonds show the mean Distribution of the ratio of average kurtosis (from 

1000 directions) and maximum kurtosis. For the melanomas, more values are 

distributed above mean, while for the benign nevus, more values are distributed under 

the mean. 
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Fig. 24. Distribution of the ratio of perimeter and area by diagnosis evaluated from the 

ultrasonic images by using the logistic regression model. Mean of the ratio of perimeter and 

area for melanomas was equal to 5.290, while mean of the ratio of perimeter and area for 

benign nevus was equal to 7.670. Standard deviation for melanomas was equal to 1.962, for 

benign nevus – 4.048. 

Diamonds show the mean of the ratio of perimeter and area. For the melanomas, 

more values are distributed below the mean and for the benign nevus, they are 

distributed above the mean.  

 

Fig. 25. Distribution of the ratio of minimum diameter and average diameter by 

diagnosis evaluated from the digital dermatoscopy images by using the logistic regression 

model. Mean of the ratio of minimum diameter and average diameter for melanomas was 

equal to 0.865, while mean of the 2nd decile for benign nevus was equal to 0.771. Standard 

deviation for melanomas was equal to 0.057, for benign nevus – 0.124. 

Diamonds show the mean of the ratio of minimum diameter and average 

diameter. For the melanomas and for the benign nevus, more values are distributed 

above the mean. 
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Fig. 26. Distribution of the 2nd decile by diagnosis evaluated from the digital 

dermatoscopy images by using the logistic regression model. Mean of the 2nd decile for 

melanomas was equal to 10.632 millimetres, while mean of the 2nd decile for benign nevus 

was equal to 21.333 millimetres. Standard deviation for melanomas was equal to 7.515 

millimetres, for benign nevus – 10.228 millimetres. 

Diamonds show the mean of the 2nd decile. In the case of melanomas, a lot more 

values are distributed below the mean than for the benign nevus. 
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