
 77

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 ───────────────────────────────── 2006. Nr. 5(69)

ELEKTRONIKA IR ELEKTROTECHNIKA

TELEKOMUNIKACIJŲ INŽINERIJA
T 180 ────────────────────────

TELECOMMUNICATIONS ENGINEERING

Review of Voice Dialogues in Telecommunications

A. Rudžionis, K. Ratkevičius, R. Maskeliūnas
Speech Research Laboratory, Kaunas University of Technology
Studentų str. 65, LT-51369, Kaunas, Lithuania; phone: +370 37 354191; e-mail: alrud@mmlab.ktu.lt
V. Rudžionis
Dept.of Informatics, Kaunas Humanities Faculty of Vilnius University
Muitinės str. 8, LT-44280 Kaunas, Lithuania; phone: +370 37 354191; e-mail: vyrud@mmlab.ktu.lt

Introduction

Speech processing is an important technology for
enhanced computing because it provides a natural and
intuitive interface for the user. People communicate with
one another through conversation, so it is comfortable and
efficient to use the same method for communication with
computers. Voice technologies – speech recognition, text-
to-speech, and speaker verification – are now mature
enough to create a vital mode of customer contact, equally
powerful as live agents and the Web. They have the
potential to dramatically reduce the number of routine
inquiries and transactions handled by agents and boost
customer satisfaction by offering easy-to-use, always-
available access from any landline or mobile phone.

Speech technology is also the future technology of e-
business because it enables more natural, intuitive, and
engaging customer service for less cost. The numerous
benefits of speech technology for e-business include:

• Interaction with callers is easier and more natural;
• Menus can be eliminated or flattened, for more

subtle and intuitive navigation;
• Call durations can be minimized, meaning less

cost per transaction;
• Interaction with customers can occur 24 hours a

day, 7 days a week;
• Customers interact with your business using their

telephone or cellular telephone, resulting in
continuous access to the customer base regardless
of their location;

• Individuals with physical or perceptual
disabilities might have greater access to e-
business services;

• Enterprise branding is extended to a new channel
– phone-based interaction;

• Overall customer service costs are decreased;
• Return on investment for speech application

development often occurs in as few as three to six

month;
• Opportunities for integrating and streamlining

business processes arise as speech applications
are developed;

• New business opportunities can arise using
speech technology.

An effective dialogue is the key component to a
successful interaction between a voice-only (telephony)
application and a user. A voice-only application interacts
with the user entirely without visual cues. The dialogue
flow must be intuitive and natural enough to simulate two
humans conversing. It must also provide a user with
enough contextual and supporting information to
understand the next action step at any point in the
application. Because multimodal applications feature a
graphical user interface (GUI) with which users interact,
developers do not design dialogs for them. A hands-free
application is an exception to this rule. Hands-free
applications contain both a GUI and dialog-flow
components, and provide users with both verbal and visual
confirmations. A dashboard navigation system in a car is
an example of a hands-free application. A user speaks to
the application and the application speaks to the user, and
a visual cue appears on a map, based on the user's input.

There are some alternatives for the developing and
deploying of speech-enabled telephony applications:

• CAPI (Common ISDN (Integrated Services
Digital Network) Application Programming
Interface);

• Telephony API (TAPI)+Speech API (SAPI);
• Voice Server + Software Development Kit (SDK)

+ markup language.
The voice based timetable for long distance buses

was created using CAPI: the user collects the known
phone number and listens to directions by voice from
computer, selects the departure town and the arrival town
by voice, computer by phone presents some routes reading
prerecorded speech phrases [1]. This approach is efficient

 78

for telephony but is not well-suited to speech and internet
applications [2].

Second approach integrates together telephony and
speech. The SAPI application programming interface
(API) dramatically reduces the code overhead required for
an application to use speech recognition and text-to-
speech, making speech technology more accessible and
robust for a wide range of applications. The SAPI API
provides a high-level interface between an application and
speech engines. The two basic types of SAPI engines are
text-to-speech (TTS) systems and speech recognizers.
SAPI includes the speech grammar compiler tool, which
enables to design voice dialogues in XML grammar format
without changing the program source code. Microsoft's
Telephony API (TAPI) provides developers with a
standardized interface to rich selection telephony
hardware. By utilizing TAPI, developers can write
applications that support any device with a TAPI driver,
also called a Telephony Service Provider (TSP). TAPI
eliminates the need for developers to wrestle with device
specific APIs and enables well-behaved device sharing
between TAPI applications. Unfortunately TAPI is very
complex and does not include direct support for useful
speech technologies like text-to-speech (TTS) and speech
recognition (SR). Now rather many companies offer TAPI
controls (a collection of ActiveX and VCL (Visual
Component Library) controls) [3], which you can call from
your telephony application. These controls release you
from the drudgery of writing low-level code.

Third approach integrates together telephony, speech
and internet. So far it has only two kits to develop
realizations: Microsoft Speech Server (MSS) and IBM
WebSphere Voice Server [4]. The IBM WebShpere Voice
Server is a VoiceXML 2.0 (Voice eXtensible Markup
Language) -enabled speech environment. The VoiceXML
is aimed at developing telephony-based applications, and
takes the advantages of Web-based applications delivery to
IVR (Interactive Voice Response) applications. Being
different from IBM, Microsoft is using SALT 1.0 (Speech
Application Language Tags) within Microsoft Speech
Server. SALT targets speech-enabled applications across
all devices such as telephones, PDAs, tablet PCs, and
desktop PCs [4]. The Microsoft Speech Application SDK
(SASDK), version 1.0 enables developers to create two
basic types of applications: telephony (voice-only) and
multimodal (text, voice, and visual) [5]. Run from within
the Visual Studio.NET environment, the SASDK is used to
create Web-based applications only. The SASDK makes it
easy for developers to utilize speech technology. Graphical
interfaces and drag-and-drop capabilities mask all the
complexities behind the curtain. All the .NET developer
needs to know about speech recognition is how to interpret
the resulting confidence score.

Basic voice dialogue components

Real world users are unpredictable, and the system

design needs to accommodate the wide variety of dialogs
that may occur. For every node in the conversation, the
designer needs to employ a consistent strategy or set of
behaviors that can gracefully accommodate the range of

unpredictable turns the conversation may take. Every voice
dialogue could be composed of a collection of recognition
and non-recognition states:

• Recognition states prompt the user for some
input;

• Non-recognition states are effectively output
only.

Since a non-recognition (or output) state does not
require input from the user, error handling is generally not
an issue. Further we will focus on the basic strategies most
commonly used to handle errors and commands within a
recognition state.

Typically, a recognition state has a main or initial
prompt that is played on entry, plus a number of other
supporting prompts that either restates the question or
directive in a contextually appropriate way or offers help
as the user traverses the state. Fig. 1 shows basic voice
dialogue components [5]. Successful recognitions proceed
to the next state. One of the most common schemes in use
today involves:

• A main or initial prompt;
• A first silence prompt;
• A second silence prompt;
• A first mumble prompt;
• A second mumble prompt;
• A help prompt.

Fig. 1. Basic voice dialogue components

Other common elements employed in some systems

are:
• A success prompt;
• A cancel prompt;
• A status prompt;
• A repeat prompt;
• A correction prompt.
Main or initial prompt is the default or entry prompt

for the dialogue. Generally, this prompt is played on first

 79

entry. All other prompts in the state support this prompt. In
some cases a design may call for a tracked entry. Uses may
vary, but a tracked entry for a main prompt is usually used
to track first time entries, rather than subsequent entries, to
a dialogue and adjust the prompts accordingly. For
example, if a system's design allows users to loop back to a
dialogue where the initial prompt was "Who should I
invite?" the tracked entry prompt might say "Who else
should I invite?" on all subsequent entries.

Silence prompt: by tracking the number of times the
system does not hear anything from the caller, specific
prompts can address the error in ways that are appropriate
to the context. Usually, there are two levels of silence
time-outs followed by a give-up prompt.

No recognition or mumble prompt: by specifying
additional variables to store the number of
misrecognitions, the system is able to track how
successfully the user is negotiating the dialogue and
respond with increasingly specific help messages. The
maximum value for these prompts is at the discretion of
the system designer. Currently, two is the norm.

A give-up or failure prompt can either send the user
back to some predetermined state in the system to try
another approach, or the system may offer to connect the
user to a live operator.

Help prompt is a context-sensitive prompt that is
triggered when the user invokes the system's help
command. The help command is usually global in scope
and is therefore generally available anywhere in the
system.

The cancel prompt acknowledges the user's request to
exit the state. Typically, when exiting a state because of a
cancellation request from the user, the system will return
to some task-appropriate signpost or landmark. The cancel
prompt can also discourage users from exiting a multi-step
interaction that they have nearly completed.

Features of voice dialogues used in SASDK

We will shortly overlook the specific features of

voice dialogue organization with Microsoft’s SASDK.
There are two possible styles of voice dialogues in
SASDK:

System-Initiative dialogue style. Using the system-
initiative style, a sequence of specific questions or prompts
guides a user through an application. The application asks
the user a question, and accepts only an answer to that
specific question. Dialogue occurs sequentially. Each
question and answer cycle consists of one question and
one answer. System-initiative dialogues are typically
simpler to design than those using mixed initiative, but
they limit the amount of flexibility a user has when
answering questions.

Mixed Initiative dialogue style. Using the mixed
initiative style, a user can answer multiple questions at
once. The application can accept an answer in response to
a specific question, but it can also accept extra answers
that apply to questions the application has not yet asked.
This style enables non-sequential dialogue. Each question
and answer cycle includes one question, and one or more
answers. Mixed initiative dialogues are typically more

difficult to design than system-initiative dialogues, but
they provide users with greater flexibility when answering
questions. Mixed initiative dialogues simulate human
interaction more closely than system-initiative dialogues.

Usage of semantic information. The application
needs to gather semantic information from the user's
responses, and to retain that semantic information for use
throughout the application. Designers can specify a
confirmation threshold for a semantic item. The semantic
item accepts data returned with scores in excess of the
confirmation threshold. In this case, the semantic item's
state property is set to Confirmed. Any data with scores
below the confirmation threshold will be marked as
needing confirmation. By setting both confirmation and
rejection thresholds the designer can control the flow of
the voice dialogue: the recognizer either accepts the
incoming data, marks it as needing further confirmation or
simply rejects it as out of grammar.

Confirmation strategies used in SASDK:
Yes/No confirmations. A Yes/No confirmation is

one in which the user is asked to explicitly confirm an item
or chunk of information gathered during a previous part of
the conversation.

Short Time-out confirmation. Another confirmation
strategy involves the use of a short time-out. The system
includes the most recently gathered information as part of
the next turn. In the absence of user denial, the system
takes the user's silence as a tacit confirmation of the data.

Menus and lists. Menus provide users with a list of
choices. Because of the linear nature of speech, the
number of items in a menu should be limited. Callers will
not be able to hold more than three or four options in mind
at one time. Grouping choices in some memorable way can
increase the usable number to four or five.

There are three types of lists in SASDK:
• Coasting Lists;
• User-driven Lists;
• Numbered Lists.
Coasting lists are the audio equivalent of a slide

show. Typically, a header introduces the list and tells the
listener how many items to expect. In most cases, each
item begins with marker or signposting phrases that
explain their place in the list to the user.

User-driven lists rely on navigational commands
from the user to advance from one item to the next.
Typically, user-driven lists also begin with a description of
the number of items on the list followed by a summary of
the first item.

Numbered lists present a group of items, each
preceded by a number. This scheme is suited to items that
may share identical titles or labels.

Examples of speech-enabled Web and telephony
applications

Speech application “Form filling by voice” was

created to demonstrate Lithuanian voice dialog
possibilities and could be used in such areas, as internet
banking, e-shops, data acquisition and registration
systems, etc. Speech can be implemented in two ways:

 80

using “Voice Web Studio” toolkit for “Macromedia
Dreamweaver MX” [2] as regular speech-enabled HTML
webpage or using Microsoft’s SASDK as telephony
speech-enabled web application.

Scenario of voice dialogue: computer (either via
computer speakers or telephone) greets user and asks to
what company he would like to make the transaction
(possible answers: shops “Minima” or “Maxima”). After
user’s response computer shows the recognized input. In
case of incorrect recognition or silence, computer asks to
repeat (giving possible answers) or to speak up more
loudly (e.g., “I’m sorry I can’t hear you, could you speak
up more loudly please”), otherwise executes the second
part of the voice dialog asking user how much he would
like to pay (e.g., one or two Litas). Once all required
information is gathered, program asks for confirmation
(e.g., “would you like to transfer one Litas to Maxima’s
account?”).

Multimodal version of speech-enabled Web
application was made with “Voice Web Studio” (Fig. 2). It
allow the user to choose the appropriate input method,
whether speech or traditional Web controls. Main window
contains regular HTML form elements: text display areas
(text area) and text input fields (text field). Two main
SALT elements (listen and prompt) were used for speech
input and output. This sample is hosted on Speech
Research Lab’s website
(http://www.speech.itpi.ktu.lt/
/demo/eb/default.html).

Fig. 2. Multimodal speech-enabled Web application “Form
filling by voice”

Speech-enabled “voice only” telephony application

with the same scenario was developed with SASDK. In
this section we’ll describe main steps of this application
creation. First step is opening of Visual Studio and creation
of Speech Web Application project. Second step is buildup
of grammar rules. Grammar is a representation of
everything the user can be expected to say, with certain
selections tagged with semantic properties and values.
Grammars are built in grammar editor using List and
Phrase (recognizable words) elements (Fig. 3). Each rule
in the grammar specifies semantic information in Semantic

Markup Language. From the Grammar Toolbox, a Script
Tag element must be dragged and dropped in the List
element just to the right of the Phrase element with the
text "minima". Developer must assign property “Return
result in a sub-property of this Rule“ in Semantic Script
Editor.

Fig. 3. Grammar editor

Third step is creation of dialog framework (Fig. 4).

Speech QA (Question-Answer) controls prompt user for
information and can also recognize user answers.
Properties on the QA control also assign information to
semantic items for use in responding to the recognized
responses. All QA controls, except welcoming LabasQA1,
must be dragged into ASPX panel in order to control them
with QASpeechControlSettings1. AnwerCall1 and
SemanticMap controls are inserted by default.

Fig. 4. Dialog framework

Next step is to record voice prompts. All the prompts

are kept in a prompt database. Prompt transcriptions and
recordings are done with Speech Prompt Editor.
Developer must create extractions (bookmarks
corresponding to recorded file) by placing brackets ([])
around the word or full phrase in Transcription field.
When all transcripts and extractions are ready, it is
possible to record the audio data for each transcription.
Recording is done with Recording Tool. Speech

 81

recognition engine processes recorded audio data and
creates alignments (marks the end of each word in the
audio data). After successful processing, a small wave icon
asterisk appears in the Has Wave column and a green
check mark appears in the Has Alignments column (Fig.
5). If the green check mark does not appear, the alignment
failed (developer must re-record that phrase or word).

Speech recognition engine processes user input and
returns semantic information to SemanicMap control. The
SemanticMap control specifies semantic items to be used
throughout the application to contain the semantic
information. In the Properties window of SemanticMap
control, developer must create three SemanticItem
elements: siminimai_maximai, siviena_du, siTaip_Ne,
specify recognition rules (by pointing to correct grammar
file and selecting active rule) in every QA control (except
welcoming LabasQA1) and indicate which recognition
results get bound to which SemanticItem elements.

In order to make voice dialog more effective,
application should confirm the responses that it has
recognized to ensure that it has not recognized some
phrases incorrectly, and to give user a chance to correct the
error. To play back the user's responses as a prompt, it is
necessary to create a prompt function, which extracts the
text from the semantic items that were filled with user’s
answers to previous questions. Developer must specify
parameter name, validation value (on which specified

event should occur) and runtime value in Prompt Function
Editor (Fig. 6). In our application such variables as
spatvirtinimas (to play back phrase “You chose”),
satsisveikinimas (to play back phrase “Thanks, call again”)
and sprompt (fully constructed confirmation prompt i.e.,
“You chose” + user answer “yes” or “no” + “Thanks, call
again”) were used.

This telephony application could be heard at Speech
Research Laboratory after connecting of Intel Dialogic
board D41JCT to telephone line.

Conclusions

Voice server with SDK combines Web technology

with speech-processing services and telephony capabilities
in a single system. So far it has only two realizations:
Microsoft Speech Server (MSS) and IBM WebSphere Voice
Server.

An effective dialogue is the key component to a
successful interaction between a voice-only (telephony)
application and a user, so the strong requirements to the
voice dialogue structure should be implemented. The
Microsoft Speech Application SDK (SASDK) provides
efficient means for the design of voice dialogues.

Fig. 5. Speech Prompt editor

Fig. 6. Prompt Function editor

 82

Two versions of speech-enabled Web application

“Form filling by voice” were created: multimodal version
of this application is hosted on Speech Research Lab’s
website (www.speech.itpi.ktu.lt/demo/eb/default.html),
“voice only” telephony application with the same scenario
could be heard at Speech Research Laboratory (Studentu 65-
108).

References

1. Rudžionis A., Ratkevičius K., Rudžionis V., Kasparaitis P.

Voice operated informative telecom services // Electronics
and Electrical Engineering. – Kaunas: Тechnologija. – 2003.
– Nr. 3(45). – P. 17–22.

2. Rudžionis A., Ratkevičius K., Rudžionis V. Voice based
internet services // Electronics and Electrical Engineering. –
Kaunas: Тechnologija. – 2004. – Nr. 3(51).– P.5-9.

3. TAPI custom controls. Retrieved April 27, 2006, from
http://home.comcast.net/~bpennypacker/tapifaq/tapifaq4.html

4. Rudžionis A., Ratkevičius K., Rudžionis V. Speech in Call
and Web Centers // Electronics and Electrical Engineering. –
Kaunas: Тechnologija. – 2005. – Nr. 3(59).– P.58–63.

5. Microsoft Speech Application SDK. Retrieved April 27,
2006, from
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/SASDK_Tutorial/html/tut_introduction.asp.

Submitted for publication 2006 02 28

A. Rudžionis, K. Ratkevičius, R. Maskeliūnas, V. Rudžionis. Review of Voice Dialogues in Telecommunications // Electronics
and Electrical Engineering. – Kaunas: Technologija, 2006. – No. 5(69). – P. 77–82.

Paper deals with the voice dialogue organization in speech-enabled Web pages with telephony access. Alternatives for the
developing and deploying of speech-enabled telephony applications are reviewed. Basic components of voice dialogues are analyzed.
Specific features of voice dialogue organization with Microsoft Speech Application SDK (SASDK) are presented. Speech application
“Form filling by voice” was created to demonstrate Lithuanian voice dialog possibilities. Multimodal version of this application was
made with “Voice Web Studio” and is hosted on Speech Research Lab’s website (http://www.speech.itpi.ktu.lt/demo/eb/default.html).
Speech-enabled “voice only” telephony application with the same scenario was developed with SASDK. Main creation steps of this
application are presented. It could be heard at Speech Research Laboratory (Studentu str. 65–108). Ill. 6, bibl. 5 (in English; summaries
in English, Russian and Lithuanian).

А. Руджёнис, К. Раткявичюс, Р. Маскялюнас, В. Руджёнис. Обзор голосовых диалогов в телекоммуникациях //
Электроника и электротехника. – Каунас: Технология, 2006. - № 5(69). – С. 77–82.

Анализируются принципы организации голосовых диалогов для интернетных приложений, к которым можно обращаться
по телефону. Представлены альтернативы для создания голосовых диалогов для интернетных приложений и базовые
компоненты голосовых диалогов. Также представлен набор средств для программирования голосовых диалогов,
содержащийся в пакете Microsoft Speech Application SDK (SASDK). Описаны две версии интернетного сайта “Заполнение форм
голосом”: мультимодальная версия помещена по адресу http://www.speech.itpi.ktu.lt/demo/eb/default.html и телефонная версия,
созданная с помощью SASDK, которая может быть прослушена в лаборатории исследования речи (ул. Студентов 65–108). Ил.
6, библ. 5 (на английском языке; рефераты на английском, русском и литовском яз.).

A. Rudžionis, K. Ratkevičius, R. Maskeliūnas, V. Rudžionis. Balsinių dialogų telekomunikacijose apžvalga // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2006. – No. 5(69). – P. 77–82.

Nagrinėjami balsinių dialogų organizavimo principai, skirti balsiniams tinklalapiams, kai vartotojas kreipiasi į tinklalapį telefonu ir
nemato jokio vaizdo ekrane. Apžvelgiamos alternatyvos balsiniams dialogams kurti bei pagrindiniai balso dialogų komponentai.
Pateikiamos balso dialogų kūrimo priemonės, esančios Microsoft Speech Application SDK (SASDK) pakete. Paruošti balso dialogą
demonstruojantys tinklalapiai: įprastinis tinklalapis „Formų pildymas balsu“, tik išplėstas balso sąsaja (prieiga per internetą
http://www.speech.itpi.ktu.lt/demo/eb/default.html) ir to paties tinklalapio versija „tik balsas“ (gali būti pademonstruota Kalbos signalų
tyrimo mokslo laboratorijoje, Studentų g. 65–108). Trumpai apžvelgiama šio tinklalapio paruošimo, naudojant SASDK paketą,
metodika. Il. 6, bibl. 5 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

