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Abstract: Simulation models allow predicting the development of realsituations in various technical, business and so-
cial systems. However, many real situations in business environment are of bursty nature. Buyers often appear
concentrated or, in other words, bursty. Different approaches for analysing buyers’ behaviour have been de-
veloped. One of these approaches focuses on analysis of gapsbetween buyers, and the buyers’ scenario is
completely described by the sequence of gaps. The present research is interdisciplinary, namely telecommuni-
cations and business management. The methodology of the present contribution is built on adaptation of gap
distribution functions from data transmission theory in telecommunications to bursty business process in busi-
ness management. The aim of the paper is to demonstrate inter-connections between different gap distribution
functions such as Weibull, Exponential and Wilhelm as well as to compare different gap distribution functions
for their suitability when analysing bursty processes. Furthermore, this contribution provides the mathematical
description of gap processes. The comparison results of different gap distribution functions are presented. The
theoretical results are confirmed by practical implementation in agent-based simulation environment.

1 INTRODUCTION

Phenomenon’s simulation or, in other words, imita-
tion of a situation or process, allows predicting the
development of real situations in various technical,
business and social systems. Many real situations in
business environment are of bursty nature as shown
in telecommunication systems by Gilbert and Elliot
in the 1960s (Gilbert, 1960; Elliott, 1963). Contem-
porary computers and information and communica-
tions technology (ICT) facilitate phenomenon simu-
lation. When the mathematics is intractable, agent-
based simulation provides an efficient solution to sim-
ulate the bursty process of buying by taking decisions
of individual buyers, so called agents, into account
(Axelrod, 2006; Albanese, 2006; Tesfatsion, 2006).
Thus, in business process, agent-based simulation as-
sists in analysing buyers’ behaviour.

Different approaches for analysing buyers’ be-
haviour have been developed. One of these ap-
proaches focuses on analysis of gaps between buyers,
and the buyers’ scenario is completely described by
the sequence of gaps. However, in many situations,

buyers appear concentrated or, in other words, bursty.
Bursty processes are described by gap distributions
in data transmission theory in such a research field
as telecommunications. In such scenarios the classi-
cal Bernoulli model, also known as memoryless sce-
nario in data transmission theory, cannot be applied.
Mostly the Weibull gap distribution is used to describe
bursty processes. Unfortunately, the parameters of
the Weibull gap distribution are not directly connected
with the process of buying.

A promising approach was formulated by Wil-
helm. Wilhelm described the distribution of bit-errors
(i. e. gaps between bit-errors) in data transmission
by defining a bit-error probability as well as a bit-
error concentration (Wilhelm, 1976). The Wilhelm
approach was adapted by Ahrens to the bursty process
of buying by defining a buyer probability as well as a
buyer concentration (Ahrens et al., 2015; Ahrens and
Zaščerinska, 2016). Both gap distribution functions,
namely Weibull as well as Wilhelm, can be applied
to describe bursty and non-bursty business processes.
Whereas the Bernoulli approach is well established in
statistical theory, in this paper we are going to show



that the Wilhelm gap distribution function is an ex-
tension of the Bernoulli model (the same as for the
Weibull gap distribution).

The present research is interdisciplinary, namely
telecommunications and business management. The
methodology of the present contribution is built on
adaptation of gap distribution functions from data
transmission theory in telecommunications to bursty
business process in business management.

The novelty of this paper is the demonstration of
inter-connections between different distribution func-
tions as well as a comparison of different distribution
functions for their suitability when analysing bursty
processes. The paper provides the mathematical de-
scription of gap process and presents the comparison
results of different gap distribution functions. Practi-
cal implementation in agent-based simulation is used
to confirm the theoretical results.

The remaining part of this paper is structured as
follows: In section 2 the mathematical description of
gap processes is presented. In section 3 the proba-
bility of arbitrarily buyer’s patterns is demonstrated.
The comparison results of different gap distribution
functions are shown in section 4. Finally, the practical
implementation in agent-based simulation is shown in
section 5. Some concluding remarks are given in sec-
tion 6.

2 MATHEMATICAL
DESCRIPTION OF GAP
PROCESSES

Bursty buyer processes can be defined by gaps be-
tween consecutive buyers as highlighted in Fig. 1 and
2.

block interval n buyer
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Figure 1: Buyer processes defined by gaps between consec-
utive buyers.
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Figure 2: Definition of gaps between consecutive buyers (a
buyer (represented by ”x”) within a sequence of non-buying
visitors (represented by ”-”)).

Frequently used and well-suited practical approx-
imations are provided, if the model is based on the in-
dependence of gap intervals. The gap distribution in-

dicates the probability that a gapX between two buy-
ers is greater than or at least equal to a given number
k, i. e.

u(k) = P(X ≥ k) (1)

as well as the gap density functionv(k) defining the
probability that a gapX between two buyers is equal
to a given numberk, i. e.

v(k) = P(X = k) . (2)

Models that are based on the independence of gap in-
tervals are completely described by the gap density
or the gap distribution, respectively. The assumption
that successive gaps are statistically independent is
regarded as a good practical approximation. Mod-
els with these requirements are described as regenera-
tive models in the literature (Wilhelm, 1976; Ahrens,
2000). Several gap distribution functionsu(k) are
shown in Table 1. Whereas the Exponential distribu-
tion function is described by one parameter, Wilhelm
distribution as well as Weibull distribution are defined
by two parameters.

Table 1: Several gap distribution functions.

Type Distributionu(k)

Exponential e−βek

Weibull e−(βwk)αw

Wilhelm ((k+1)α −kα) ·e−β·k

When taking the gap distribution defined by Wil-
helm into account the following expression was iden-
tified

u(k) = ((k+1)α − kα) ·e−β·k 0≤ k< ∞ (3)

with
lim
k→∞

e−β·k = 0 β > 0 (4)

and
β ≈ pe

1/α . (5)

Here, the business process, i. e. the buyers’ character-
istics, is modelled by two parameters, namely visitor
probability to buy (also referred as the buyers’ proba-
bility) pe and the buyers’ concentration(1−α). Typ-
ical values for the buyer concentration are(1−α) = 0
for the memoryless buyer scenario (also known as the
Bernoulli scenario), i. e. the buyers appear indepen-
dently distributed and 0< (1−α) ≤ 0.5 for a bursty
buyer scenario. Assuming that the buyers appear in-
dependently form each other, i. e.(1−α) = 0, the
buyers’ gap distribution functionu(k) defined by Wil-
helm simplifies to

u(k) = e−pe·k = (e−pe)k . (6)



Taking the Taylor series of the exponential function
e−x for smallx into account, the functione−x can be
re-written as

e−x = 1− x+
x2

2
− x3

6
+

x4

24
+ · · · (7)

and approximated by

e−x ≈ 1− x (8)

for smallx. Finally, the buyers’ gap distribution func-
tion u(k), defined in (3), results for smallpe in

u(k) = P(X ≥ k) = (1− pe)
k = pk

e . (9)

The parameterpe described the probability of non-
buying and can be defined as

pe =
Number of Visitors - Number of Buyers

Number of Visitors
.

(10)
It should be noted that equation (9) is well-known
in probability theory for the product of independent
events and is valid for anype. Obtaining equation
(9) testifies the correctness of the equality (3) for the
memoryless buyer scenario.

The probability of a non-buying visitor is given by
pe = (1− pe). Finally, the probabilityu(k) = P(X ≥
k) thatX ≥ k consecutive visitors are non-buying vis-
itors results in

u(k) = pk
e = (1− pe)

k . (11)

Re-writing of u(k) leads to the buyers’ gap density
functionv(k), i. e.

v(k) = P(X = k) , (12)

which describes the probability of a gapX equal tok.
The buyers’ gap density functionv(k) can be calcu-
lated as follows

u(k) = v(k)+ v(k+1)+ v(k+2)+ · · ·
u(k+1) = v(k+1)+ v(k+2)+ · · · .

By calculating the difference betweenu(k) and
u(k + 1) the buyers’ gap density functionv(k) =
P(X = k) can be obtained

v(k) = u(k)−u(k+1) (13)

and results for the memoryless buying process with
(9) in

v(k) = pk
e− pk+1

e = pk
e · (1− pe) (14)

and can be simplified as

v(k) = (1− pe)
k · (1− (1− pe)) = (1− pe)

k · pe .
(15)

The probability that after a buyer in the distance of
k= 0 another buyer appears results in

v(0) = pe (16)

and is solely defined by the buyer probabilitype as
expected for the memoryless buyer scenario. In sit-
uations with bursty buyers, the probabilityv(0) in-
creased as highlighted in Fig. 3
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Figure 3: Buyers’ gap density functionv(k) for different
parameters of the(1−α) at a buyer’s probability ofpe =
10−2.

3 STATISTICAL ANALYSIS OF
ARBITRARILY BUYERS’
PATTERNS

In this section, the proof is given that the beforehand
defined functionsu(k) andv(k), introduced by Wil-
helm, can be used to calculate the probability of ar-
bitrarily buyer pattern withe buyers within an inter-
val of n visitors. Let us denote the number of pattern
with Kn,e and start with the memoryless buyer sce-
nario with (1−α) = 0. Analysing a patternE of n
visitors withe buyers, total number of pattern within
an intervaln is given by

Kn,e =

(
n
e

)
=

n!
e! (n−e)!

. (17)

Here it is worth noting that when analysing the mem-
oryless buyer scenario all patternE within an interval
of n visitors withebuyers appear with the same prob-
ability.

block interval
n = 7

buyer
with pe

position 1 2 3 4 5 6 7

u(2) u(4)

Figure 4: Calculation of the probabilityPE(7,1) of a pattern
E within an interval ofn= 7 visitors withe= 1 buyer at the
positionn1 = 3.

According to Fig. 4, the probabilityPE(7,1) of such
a patternE within an interval ofn = 7 visitors with



e= 1 buyer results in

PE(7,1) = pe ·u(2) ·u(4) . (18)

The termpe · u(2) defines the probability that there
will be a buyer before the considered interval fol-
lowed by a gap of at least two visitors. With

u(k) = (1− pe)
k = pk

e . (19)

the probabilityPE(7,1) can be expressed for the con-
sidered pattern and the memoryless buyer scenario as

PE(7,1) = pe · p2
e · p4

e = pe · p6
e , (20)

indicating that six non-buying visitors within an inter-
val of n= 7 visitors appear. Here the position of the
buyer is not of any interest, as the pattern depicted in
Fig. 5 results in the same probability forPE(7,1).

Taking two buyers within an interval ofn visitors
into consideration as exemplary depicted in Fig. 6, the
probabilityPE(7,2) of such a patternE within an in-
terval ofn= 7 visitors results in

PE(7,2) = pe ·u(2) ·v(1) ·u(2) . (21)

With
u(k) = (1− pe)

k = pk
e (22)

and
v(k) = (1− pe)

k · pe = pk
e · pe (23)

the probability PE(7,2) can be expressed for the
memoryless buyer scenario as

PE(7,2) = pe · p2
e · pe · pe · p2

e = p2
e · p5

e (24)

indicating that five non-buying visitors within an in-
terval ofn= 7 visitors with 2 buyers appear.

On the other hand, 2 buyers between 7 visitors
may appear in another sequence.

It yields from (17) that the total number of such
combinations (pattern) equals to

K7,2 =

(
7
2

)
=

7!
2!(7−2)!

= 21 . (25)

Therefore, the probability of 2 buyers between 7 visi-
tors of all patterns is given by the Bernoulli formula

P(7,2) = K7,2 ·PE(7,2) =
7!

2!(7−2)!
· p2

e · p5
e . (26)
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Figure 5: Calculation of the probabilityPE(7,1)) of a pat-
ternE within an interval ofn= 7 visitors withe= 1 buyer
at the positionn1 = 4.
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Figure 6: Calculation of the probabilityPE(7,1) of a pattern
E within an interval ofn= 7 visitors withe= 2 buyers at
the positionn1 = 3 andn2 = 5.

Therefore, for the memoryless channel it can be
shown that the obtained results coincide with the
Bernoulli model.

Having more than 2 buyers within an interval of
n visitors, the probabilityPE(n,e) of a patternE in
an interval ofn visitors withe buyers at the positions
n1,n2, · · · ,ne can be obtained as

PE(n,e) = pe ·u(n1−1) ·u(n−ne) ·
e

∏
ν=2

v(nν −nν−1−1) .

(27)
The ith pattern (with 1≤ i ≤ Kn,e) is determined by
the buyers’ positionn1,n2, · · · ,ne.

Fig. 7 illustrates the calculation of the probability
PE(7,3) of a patternE within an interval ofn = 7
visitors. Here, thee= 3 buyers are at the positions
n1 = 3, n2 = 4 andn3 = 6. The probabilityPE(7,3)
of such a patternE within an interval ofn= 7 visitors
is given by

PE(7,3) = pe ·u(2) ·v(0) ·v(1) ·u(1) . (28)

With

u(k) = pk
e (29)

and
v(k) = pk

e · pe (30)

the probability PE(7,3) can be expressed for the
memoryless buyer scenario as

PE(7,3)≈ pe · p2
e · pe · pe · pe · pe = p3

e · p4
e . (31)

block interval
n = 7

buyer
with pe
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u(2) v(0) v(1) u(1)

Figure 7: Calculation of the probabilityPE(7,3) of a pattern
E within an interval ofn= 7 visitors withe= 3 buyers at
the positionsn1 = 3, n2 = 4 andn3 = 6.



Taking the total number of such combinations
(pattern) such as

K7,3 =

(
7
3

)
=

7!
3!(7−4)!

= 35 (32)

into account, the probability of 3 buyers in a sequence
of 7 visitors is given by the Bernoulli formula

P(7,3) = K7,3 ·PE(7,3) =
7!

3!(7−3)!
· p3

e · p4
e . (33)

Analysing the memoryless buyer scenario, the
probabilityPE(n,e) can be written as

PE(n,e)≈= pe
e · pn−e

e (34)

and is independent of the individual pattern when
analysing the memoryless buyer scenario where each
patternE appears with the same probability.

4 COMPARISON OF GAP
DISTRIBUTIONS

In this section the interconnections of Exponential,
Weibull and Wilhelm distribution are to be shown. It
is assumed that the given buyers’ characteristic under-
goes the Wilhelm distribution with given parameters
pe and(1−α).

Table 2 and 3 show the resulting estimation errors
for pe = 10−2. As quality parameter for the approx-
imation between the given Wilhelm gap interval dis-
tribution uWilhelm(k) and the investigated distribution
functionu(k) (Exponential, Weibull) the mean square
error

MSEmin =
kmax−1

∑
k=0

|u(k)−uWilhelm(k)|2 (35)

is used and minimized when using least-square opti-
mization. The parameterkmax specifies the maximum
gap length to be considered.

Tab. 2 shows the obtained results when using
an Exponential gap distribution instead of the Wil-
helm distribution. As the Exponential gap distribution
equals the Wilhelm distribution for the memoryless
(non-bursty) buyer scenario, a perfect mapping can be
achieved. With increasing buyers’ concentration, the
gap between the Wilhelm and Exponential gap distri-
bution becomes larger as the Exponential gap distri-
bution function is not able to take the buyers’ concen-
tration into account.

Tab. 3 highlights the obtained results when using
Weibull gap distribution instead of the Wilhelm one.
Here, a better adaptation can be reached, as gap distri-
bution functions with two parameters lead to a better

Table 2: Estimation errors when using the Exponential dis-
tribution instead of the Wilhelm distribution.

(1−α) βe MSE

0,0 0,010 0,000

0,1 0,016 0,989

0.2 0,026 2,377

0,3 0,055 2,613

adaptation. Finally, Fig. 8 shows the approximated
gap distributions as a function of the interval lengthk
at a buyer concentration of(1−α) = 0,2 and a buyer
probability of pe = 10−2.

Table 3: Estimation errors when using the Weibull distribu-
tion instead of the Wilhelm distribution.

(1−α) βw αw Error

0,0 0,010 1,000 0,000

0,1 0,013 0,460 0,007

0.2 0,033 0,310 0.002

0,3 0,119 0,264 0,007
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Figure 8: Approximated gap distributions as a function of
the interval lengthn at a buyer concentration of(1−α) =
0,2 and a buyer probability ofpe = 10−2.

5 AGENT-BASED SIMULATION

In this section a model validation is carried out by
demonstrating that the model is a reasonable repre-
sentation of the investigated system (Martis, 2006).
Therefore, the objective of this section is compare
the probabilityP(n,e) with simulation outcomes ob-
tained by agent-based approach (Sajjad et al., 2016).
By agents relatively autonomous computational ob-
jects are understood. Agents of the same environment



Table 4: Comparison of the frequencyγe with the probabilityP(n,e) for memoryless buying scenarios.

block length numberme of probability mumberm of blocks in probability relative frequency
(theory) (simulation)

n of buying events pe simulated sample P(n,e) γe

5 2 0.01 200 0.001 0.000

5 1 0.01 200 0.048 0.040

5 2 0.1 200 0.073 0.051

5 1 0.1 200 0.328 0.328

7 4 0.1 142 0.003 0.007

7 2 0.1 142 0.128 0.078

5 2 0.5 200 0.031 0.030

5 1 0.5 200 0.156 0.197

7 4 0.5 142 0.273 0.234

7 2 0.5 142 0.164 0.170

may slightly differ in values of their properties, called
also attributes. Agents from different environments
may differ essentially. They exchange messages and
carry out activities influencing other agents and their
environment. Finally, agent activities are defined by
their own rules. Results of agent activities may be
message sending to other agents or the change of its
own state. The state of the agent may be changed
by other agents as well. Therefore according to vari-
ous authors, agents may have the following properties
(Ahrens et al., 2019):

• Intelligence: this property is implemented with
simple If then rules, fuzzy logic methods, built-in
neural networks, genetic algorithms, etc.

• Autonomy: agents are able to make decisions in-
dependently.

• Reactivity: agents have an ability to respond to
the activities of other agents and environment.

• Pro-activity: the agent may have a goal and are
programmed to reach it; the agent also may be
able to foresee possible negative events and to try
to avoid them.

• Adaptivity: agents may change their own rules of
behaviour responding to activities of other agents
and changes of environment as well as evaluating
accumulated statistics.

• Robustness: the ability to carry out activities and
survive in different environments.

• Goal-orientation: agents act according to their
goals and do nothing more.

• Mobility: agents may change their virtual place in
2D and 3D environments and they may be placed
on GIS map.

The process of making decisions when buyers enter
the shop was modelled using agent-based approach.
Each visitor was simulated as an autonomous agent
(Fig. 9). The visitors’ decisions were implemented as
rules. Each agent after entering the shop generated
a random decision to buy a product or service with
a given probabilitype. Various statistics and logs of
the whole process were collected as well as various
properties of the burstiness were calculated (Ahrens
et al., 2019).

For the purposes of this work, the simulation was
supplemented for the memoryless buyer scenario by
the export of the sequence of one thousand agents’
decisions to the Excel file. Fig. 9 shows the structure
of an individual agent simulating the decision of an
individual buyer.

entering

exiting

buying

yes

no
deciding

Figure 9: Individual Agent simulating the decision of an
individual buyer.

These decisions known as binary customer be-
haviour were coded by series of 1 (decision to buy)
and 0 (not to buy). The series were splitted intom
blocks each of the lengthn (number of visitors, pat-



tern length). Therefore the total number of visitors is
given byn ·m. For instance, when a pattern length
of n= 10 is considered, the series containedm= 100
blocks and therefore a series ofn ·m= 1000 visitors
is considered. Then the numberme of blocks con-
taining e buying events were counted. According to
the statistical definition of the probability, the relative
frequency

γe =
me

m
(36)

is an estimation of the theoretical probabilityP(n,e).
Tab. 4 presents the comparison of the simulated rel-
ative frequencyγe with the probabilityP(n,e). As
Tab. 4 shows, the difference between the probability
P(n,e) and the relative frequencyγe is not large, and
can be be explained by the randomness of the agents’
behaviour. The match testifies the consistency of an-
alytical and simulation models.

6 CONCLUSIONS

The present research has successfully demonstrated
the adaptation of gap distribution functions from data
transmission theory in telecommunications to busi-
ness processes. The similar nature, namely bursty na-
ture, of bit-errors in telecommunications and buyers
in business management has been outlined. Conse-
quently, the present paper has emphasized the bursty
nature of business processes such as buying and sell-
ing, too. The complex process of buying by analysing
such properties of buyers’ behaviour as buyer proba-
bility and buyer concentration has been highlighted.
The research has resulted in proposing the use of
gaps for the description of the buying process. The
mathematical description of gap processes built on
the independence of gap intervals has been revealed
in the present paper. As shown by our research re-
sults, distribution functions with two parameters such
as Weibull or Wilhelm have been found to be an ade-
quate tool for the analysis of both, namely the buyers’
behaviour and the process of buying.
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