
7th Asia-Pacific Workshop on Structural Health Monitoring 

November 12-15, 2018 Hong Kong SAR, P.R. China 

Bifurcation Characteristic-based Damage Identification for Plates 

undergoing Large Amplitude Vibration 
 

 

D.Y. Li 1, M.S. Cao 1*, M. Ragulskis 2, 

 
1 Department of Engineering Mechanics, Hohai University, Nanjing, P.R. China 

Email: dyl@hhu.edu.cn; cmszhy@hhu.edu.cn 

 
2 Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas 

University of Technology, Kaunas, Lithuania 

Email: minvydas.ragulskis@ktu.lt 

 

 

KEYWORDS:  Large Amplitude Vibration; Crack Model; Bifurcation; Damage Identification; 

Nonlinear Structural System 

 

ABSTRACT 
 

A nonlinear damage indicator based on bifurcation characteristics of cracked plates with large 

deflections is established in this paper. Firstly, von Kármán plate theory is applied to derive the 

governing equations of motions for large deflection plates. The derived model comprises quadratic and 

cubic terms describing the specific nonlinear dynamical behaviours within large deflection plates. 

Secondly, Galerkin's method is employed to discrete the PDE governing equations of large deflection 

plates and the simplified dimensionless equation is dealt with multiple scale perturbation method. After 

that, the classic hardening-type frequency responses can be observed clearly. Featured the hardening-

type frequency responses, the bifurcation characteristics are discussed in detail, and crack effect on it is 

argued. Then, the nonlinear damage indicator is established to identify the existence of cracks in flat 

plates with large deflections. Next, Runge-Kutta iteration algorithm is used to achieve numerical results 

of the simplified dimensionless equation for plates at various damage levels. Finally, the effectiveness 

of established damage indicator for identifying the existence of cracks has been validated using these 

dynamical responses. It is demonstrated that the established damage indicator can identify the existence 

of cracks successfully and has a promising application in structural health monitoring of plate type 

structures with large deflections. 

 

 
 

1. Introduction 
 

Flat plate type structures are fundamental components and have a wide utilization in engineering, 

ranging from civil engineering to space technology, such as steel bridges, aircraft wings, and ships[1-3]. 

The dynamic behaviours of thin plate structures have gained great attention from the scientific and 

engineering communities due to their importance to a wide variety of technical applications. In general, 

theoretical analysis of plate structures is extensively based on the linear theory, known as Love-

Kirchhoff plate theory[4]. However, this theory works well for small deformations only. Taking large 

deflections into account, the linear theory causes relatively big errors - what prevents the use of Love-

Kirchhoff plate theory in such engineering applications where the structural response is considered not 

only around the state of equilibrium. 
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Characterizing nonlinear dynamic behaviours of large deflection plates is one of the key problems in the 

engineering for its significance and complexity[5, 6]. The nonlinear plate theory was introduced by von 

Kármán in 1910, known as von Kármán plate theory[7]. It plays an important role in analysing the 

dynamic behaviours of large deflection plate structures. Back in 1961, after analysing the approximate 

solutions of thin plates undergoing large amplitude deflections, Yamaki[8] obtained a hard spring type 

frequency response, that is, the frequency of nonlinear vibration increases with increasing amplitude. 

These hard/soft spring type response curves were also observed experimentally by Kirchman and 

Greenspon[9] and Lassiter et al.[10], which began to be regarded as a representation of nonlinear vibrations. 

Studies on hard/soft type nonlinear dynamical behaviour springs out from then on. Eisley got the soft 

spring type response when investigating the influence of initial membrane stress on nonlinear vibration 

of beams and rectangular plates[11], and the hard spring type response when inspecting buckled beams 

and plates[12]. Sathyamoorthy and Pandalai[13, 14] obtained the hard type nonlinearity in analysis of 

nonlinear flexural vibration of skew plates. Prathap and Varadan[15] found that the nonlinearity of large 

amplitude vibration of stiffened plates is of the hardening-type in all cases of boundary conditions and 

the in-plane conditions considered. In recent decades, with the rapid development of computational 

science, it is allowed for researchers to consider more and more alternative situations in nonlinear 

vibration analysis of plates and shells, such as composite materials[16-20], complex boundary 

conditions[21], thermal effects[22] and fluid conditions[23-25]. It presents that hard/soft type responses are 

common in vibrations of plates and shells with large deflections. Additionally, Amabili and his 

colleagues have confirmed it from the aspect of experiment[26]. 

 

Except for the effect of large deflection (geometry nonlinearity), the existence of a crack has an 

important influence on nonlinear dynamics responses of plates as well. According to changes of specific 

dynamics features due to a crack, vast majority of vibration-based structural health monitoring methods 

have been developed to detect and localize damage[27], including resonant frequencies, mode shapes, 

and curvature/strain mode shape-related indices. Above modal-based approaches work well for linear 

system. However, the low sensitivity to damage in nonlinear system limits their application to such 

engineering problems[28].  

 

In present work, a bifurcation behaviour based structural health monitoring method is established to 

detect a crack in flat plates with large deflections. Firstly, the dimensionless governing equation is 

obtained using von Kármán's plate theory and Galerkin's method. Secondly, with the application of 

multiple scale perturbation method, bifurcation behaviours of large deflection plates are achieved and 

the classic nonlinearity, hardening-type frequency responses, can be observed clearly. Then, after 

analysing the effect of a crack on hardening-type frequency responses, a combined damage index is 

established to identify the existence of a crack in flat plates with large deflections. At last, the method 

is validated using numerical results from Runge-Kutta iteration algorithm. As expected, the damage 

indicator has a positive relationship with damage levels and cracks can be identified successfully. 

 

2. Equation of motion for cracked plates with large amplitude vibration 
 

Large deformation of vibration can easily induce local cracking of a large deflected plate. When a crack 

occurs to a largely-deflected plate, the crack will significantly influence the vibration characteristics of 

the plate. To address crack effect, the modelling of the crack is implemented by using the line-spring 

model developed by Rice and Levy[29]. In terms of the line-spring model, the cracked section is 

represented as a continuous line spring, which has both stretching and bending resistance.  

 

The governing equation of motion for a largely-deflected plate with a crack can be formed by 

introducing the modelled crack into the governing equation of motion for an intact largely-deflected 

plate. Solving the vibration of the simply supported cracked largely-deflected plate subjected to the 

excitation gives rise to a temporal governing equation of the cracked plate, given by 

 * *2 * 2 * 3 *2 cosf               ,  (1) 



 

 

 

where * , 
* , 

* , 
* , 

*
f ,   are dimensionless coefficients;  ,   and   are dimensionless 

response amplitude, dimensionless excitation frequency and dimensionless time, respectively.  

 

3. Bifurcation characteristics and damage indicator 
 

The exact explicit solution of Eq. (1) is unavailable due to its nonlinearity and complexity. To this end, 

the perturbation method of multiple scales, a sophisticated tool to analyse nonlinear dynamic systems, 

is used to attain approximate solution of the equation. When Eq. (1) is processed by the perturbation 

method of multiple scales, a steady-state frequency-response function, is derived, of the form: 

 
* 2 *2

*2

* *2 2

3
-

8 4 b

b f 
 

  ,  (2) 

where   is the detuning parameter, measuring the deviation between the excitation frequency and the 

primary natural frequency; b  represents the amplitude of steady-state response. The operator   

indicates a certain response amplitude corresponds two values of detuning parameter. 

 

 
Figure 1. Frequency-response relation for largely-deflected plates. 

 

The steady-state frequency-response function stated in Eq. (2) reveals the relation between excitation 

frequency and the corresponding steady-state response amplitude, namely b   relation, as shown in 

Fig. 1. This relation characterizes the essence of the vibration of a largely-deflected plate, and the 

quadratic coefficient, * , has no effect on it. For a positive  , there are two different dynamic responses 

when the excitation frequency varies from low-to-high and from high-to-low, resulting in two branches, 

represented by B-1 and B-2. The two branches overhang to the right-side of the frequency domain, 

indicating a hardening-type nonlinearity[8, 9]. This one-to-two relation is called nonlinear bifurcation in 

frequency domain. The excitation frequency at which the bifurcation starts to occur, is called jump point. 

From the jump point, the steady-state response of the vibration system jumps from B-2 to B-1 when   

varies from high to low. This nonlinear bifurcation describes the relationship between the excitation 

frequency and the dynamic response. 

 

Without loss of generality, two states of largely-deflected plates are considered: the intact one 

represented by    , 0,0   , and the cracked one represented by    , 0,0   . By analysing the 

frequency response curves, two bifurcation characteristics due to damage can be observed: (1) the 

change of maximal dynamic response amplitudes; (2) the left-side shift of jump points of bifurcations.  
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A comprehensive damage indicator according to above two parts is established to quantify the change 

of nonlinear bifurcations of largely-deflected plates due to damage. In general, it is expressed as 

 
2 2

1 2DI DI DI  ,  (3) 

where 
1DI  measures the average increasement of dynamic response amplitude due to damage; 

2DI  

deals with the shift of the jump point of the bifurcations. For an intact large-deflected plate, DI  ought 

to be zero for the stable nonlinear bifurcation. When damage occurs, the nonlinear bifurcation makes a 

difference, and DI  should be positive. This characterization of DI  indicates that it is a promising tool 

to distinguish the nonlinearity due to damage from the complex nonlinear dynamic responses. 

 

4. Damage interrogation using established indicator 
 

An aluminium largely-deflected plate by SSSS boundary condition is considered for damage 

interrogation. The damage interrogation still needs a baseline. With the dynamic responses obtained, the 

bifurcations for each case can be achieved. The obtained bifurcations are the typical hardening-type 

nonlinearity. When damage occurs, the response amplitude increases with the growth of crack length 

and the bifurcation shifts to the left-side of the frequency domain. These characteristics are consistent 

with the discussion in forward problem analysis. Damage indicator, DI , is used to quantify the change 

of bifurcations for damage interrogation. The calculated indicators for each case are presented in Fig. 2. 

The indicator increases with the growth of crack length. It is implied that the established damage 

indicator based on bifurcation characteristics is capable of distinguishing the nonlinearity due to damage, 

and promising for damage interrogation of nonlinear dynamic systems. 

 

 
Figure 2. Damage interrogation using established indicator. 

 

5. Conclusions 
 

Bifurcation behaviours of cracked flat rectangular plates with large deflections have been studied using 

von Kármán's plate theory and multiple scale perturbation method. Firstly, the partial differential 

equation based on von Kármán's plate theory is discretized by Galerkin's method and then the governing 

equation of cracked plate with large deflections is obtained. Secondly, on the basis of multiple scale 

perturbation method, bifurcation behaviours of cracked plates are obtained and the hardening-type 

frequency responses are clearly observed. The frequency responses of small deformations and large 

deflections are also compared. By analysing three features of hardening-type frequency responses, a 

combined damage index is established to identify the existence of cracks in flat rectangular plates with 
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large deflections. Using Runge-Kutta iteration method, the numerical results are obtained and they are 

used to validate the effectiveness of established damage index for identifying cracks. As expected, the 

damage index has a positive relationship with damage levels and cracks can be identified successfully. 
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