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Abstract
The nanoscale composition of silk defining its unique properties via a hierarchial structural anisotropy needs to be analysed at the

highest spatial resolution of tens of nanometers corresponding to the size of fibrils made of β-sheets, which are the crystalline build-

ing blocks of silk. Nanoscale optical and structural properties of silk have been measured from 100 nm thick longitudinal slices of

silk fibers with ca. 10 nm resolution, the highest so far. Optical sub-wavelength resolution in hyperspectral mapping of absorbance

and molecular orientation were carried out for comparison at IR wavelengths of 2–10 μm using synchrotron radiation. A reliable

distinction of transmission changes by only 1–2% as the anisotropy of amide bands was obtained from nanometer-thin slices of silk.
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Introduction
Recent advances in the nanofabrication of electronic devices

require cutting-edge analytical technologies to provide a reli-

able structural characterisation of materials at the nanoscale.

Such technologies are particularly important to probe molecu-

lar properties of cross sections smaller than 100 nm in all three

dimensions, which is of rapidly growing interest in the field of
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nanotechnology. Electronic chip manufacturing is currently

introducing the sub-10 nm fabrication node (a half pitch of a

grating pattern) in the development of 3D fin-gates of field-

effect transistors. Nanofabrication techniques are approaching

single-digit-nanometer resolution using electron emission [1]

and thermal probes [2,3]. Further control of surface nanotex-

turing, to achieve regularly patterned features with sub-100 nm

resolution, is currently under development for inherent material

properties, such as controllable surface wettability, anti-

biofouling, anti-reflection, and biocidal/bactericidal properties

[4,5]. For example, the motheye plastic films produced by roll-

to-roll technology already replicate nanopillars with 100 nm

separation (MOSMITE from Mitsubishi Chemicals Ltd.).

The structural and optical properties of a material are interre-

lated. By using a wide spectrum of electromagnetic waves from

visible light to terahertz radiation, it is possible to gain insights

into complex hierarchical structures of composite materials. For

materials with strong structural anisotropy, defined by the mo-

lecular orientation and alignment of crystalline microvolumes, it

is important to characterise structure at the highest lateral and

longitudinal resolutions [6,7]. Anderson localisation of light and

thermal cooling of silk at IR wavelengths was recently demon-

strated to be related to the fibril substructure of silk, which was

in the range of tens of nanometers [8]. This defines the range of

the spatial resolution required for structural and chemical

analyses that are typically carried out using X-ray and IR-based

techniques at larger scales.

Real and imaginary parts of the refractive index, ,

together with the orientation dependency of the birefringence

Δn and dichroism Δκ, define the optical response of a material.

The reflectance R is proportional to the real part, while the ab-

sorbance A corresponds to the imaginary part of . Recently,

we demonstrated that the IR measurements of silk performed

using three different methods, i.e., (i) a table-top Fourier-trans-

form infrared (FTIR) transmission spectrometer, (ii) a synchro-

tron-based attenuated total reflection (ATR) FTIR spectrometer,

and (iii) an atomic force microscopy (AFM) tip responding to

the absorbed IR light (nano-IR [9]), produced comparable spec-

tral features [10]. Whilst the first two modalities probe microm-

eter-sized volumes of silk, the AFM-based nano-IR technique

acquires structural information at the nanoscale (i.e., the area

under the AFM tip from a volume with a lateral cross section of

ca. 20 nm). Differences in absorbance and spectral line shapes

of the characteristic silk bands are related to the different sensi-

tivity of R and A to the real and imaginary parts of .

The absorbance measured from the far-field transmission

directly reflects the imaginary part of the index κ, while the ab-

sorbance obtained in the ATR-FTIR mode is affected by the

real part of the index via Snell’s law [11]. As a result, compara-

tive measurements of the absorbance by different near- and far-

field techniques are essentially required to understand differ-

ences in electric-field determination of the local light and its

interaction with the sample [12].

Different modalities of sample preparation for nanoscale

imaging include focused ion beam milling and microtome

slicing. When the thickness of samples, especially soft biomate-

rials, is close to 100 nm the cutting tool might cause tear- and

cut-induced strain below the surface. In turn, this can cause arti-

facts in the determination of optical properties that are related to

the mass density and its gradients. It is important to measure n

and κ from decreasingly smaller volumes and to compare with

data obtained from the bulk samples.

Here, we used a near-field scattering method to probe n and κ

and to determine spectral differences between the reflectance

and absorbance of silk fibers with ca. 10 nm resolution. Cross

sections of silk fibers were prepared using an ultramicrotome.

Silk was chosen due to its well-known spectral properties and

its increasing applications as a biocompatible and biodegrad-

able material [13,14]. Silk exhibits a uniaxial symmetry that can

be examined from longitudinal microtome slices used in this

study. Sub-wavelength resolution in hyperspectral IR mapping

of absorbance and orientational properties of the absorbing

bands was reliably achieved in 100 nm thick slices of silk. Such

a high-resolution technique is essential in order to gain a better

understanding of the fibril structure of silk [8].

Experimental
Silk slices
White Bombyx mori cocoons were purchased from the silk

rearing house in Jiangsu, China, and brown Antheraea pernyi

silkworm cocoons were collected from Liaoning Province,

China. The white and brown silk fibers used in this work are

fibroin fibers obtained by degumming Bombyx mori and

Antheraea pernyi silk fibres, respectively. To degum the fibres,

the cocoons were boiled three times in an aqueous 0.5% (w/v)

Na2CO3 solution to remove the sericin coating. The degummed

silk fibers were rinsed with warm ultrapure water (60 °C) thor-

oughly to remove the residual sericin, and then dried at room

temperature.

Silk fibers were embedded in epoxy resin (Oken Ltd., Japan)

and cut by using an ultramicrotome to achieve a sample thick-

ness of ca. 100 nm. The slices were then immobilised on

IR-transparent non-birefringent CaF2 substrates.

X-ray characterization
3D X-ray computed microtomography (micro-CT) of white

Bombyx mori silk fibers was performed using a ZEISS Versa
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Figure 1: X-ray tomographic images showing 3D rendered volumes of white Bombyx mori silk fibers at 3.15 μm pixel resolution. The bundle of silk
fibers is composed of degummed single-strand silk fibers.

Figure 2: (a) Wide-angle 2D X-ray diffraction of a bundle of white Bombyx mori silk fibers. The inset shows an optical microscopic image of a
convolved silk fiber bundle. The silk bundle was composed of degummed single-strand silk fibers. The long axis of the fibers was predominantly
vertical. (b) Optical image of white silk fibers through an optically aligned polariser–analyser (high-transmission) setup under white-light illumination
using a Nikon MPlan 10× DIC objective lens with numerical aperture NA = 0.25.

520 X-ray Microscope at the Stanford Nano Shared Facilities,

Stanford University. The scan settings were as follows: source

voltage - 30 kV, pixel size - 3.15 μm, number of projections -

1600, exposure time - 10 s. The micro-CT dataset was recon-

structed using the ZEISS Scout-and-Scan Reconstructor soft-

ware (Figure 1).

2D X-ray diffraction of Bombyx mori silk was carried out on a

Bruker D8 Venture single-crystal diffractometer using a Cu Kα

microfocus X-ray source with λ = 1.5418 Å (Figure 2a).

IR spectral measurements
The sub-diffraction scattering scanning near-field optical micro-

scope (s-SNOM, neaspec GmbH) uses a metalized atomic force

microscopy (AFM) tip. The tip maps the surface relief (topogra-

phy) by its basic AFM operation and, simultaneously, under

external infrared illumination (broadband laser with difference

frequency generation, Toptica), acts as a light-concentrating

antenna such that the sample is probed with a nanofocused light

field. The AFM tapping-mode operation (ca. 60 nm amplitude)

modulates the near-field interaction between the tip and sample

[15]. An asymmetric Michelson interferometer and a lock-in

detection of the signal at higher harmonic of the tapping fre-

quency (approximately 250 kHz) provides background-free

nano-IR spectra and images with maximum resolution imposed

by the AFM tip size independent of the laser wavelength [12].

The nano-FTIR spectra were recorded at  a rate of

ca. 100 s/spectrum with a spectral resolution of 10 cm−1.

Removal of the instrumental response function from the nano-
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Figure 3: (a) A series of optical images taken at different voltages of a liquid crystal (LC) retarder (schematically shown in the inset of (b)) and a Nikon
Optiphot-pol microscope with LMPlanFL 20× objective lens, NA = 0.4. (b) Calibration curve of retardance as a function of voltage collected at 635 nm
wavelength and 22.8 °C.

FTIR spectra was done by normalization of the measured spec-

tra to a reference Si signal. Resulting nano-FTIR absorption and

reflectivity spectra can be directly correlated with the standard

far-field IR spectra [16,17].

Hyperspectral imaging of the absorbance was measured on the

IR Microspectroscopy (IRM) Beamline at Australian Synchro-

tron (Victoria, Australia). The measurements were performed

using a Bruker Hyperion 2000 FTIR microscope (Bruker Optik

GmbH, Ettlingen, Germany) coupled to a Vertex V80v

FT-IR spectrometer equipped with a liquid nitrogen-cooled

narrow-band mercury cadmium telluride (MCT) detector. Holo-

graphic ZnSe wire-grid polarisers (Edmund) were used to set

polarisation at the IR spectral range of λ = 750–4000 cm−1

(2.5–13.3 μm); the extinction of polarisers was Tmax/Tmin ≈ 150

and the transmittance was about 50%. The far-field

transmission measurements were carried out with a 36× magni-

fication Cassegrain objective lens (NA = 0.5) at the correspond-

ing resolution of 0.61λ/NA ≈ 4.1 μm at the 3000 cm−1

band (λ = 3.33 μm). The absorbance or optical density

A = −log(T) spectrum is defined by the absorption coefficient

α ≡ 4πκ/λ = 2ωκ/c [cm−1] for the transmitted light intensity

IT = I0e−αd = I0 × 10−OD; where d is the thickness of sample, the

transmittance T = IT/I0, OD is the optical density, ω is the

cyclic frequency of light, and c is the speed of light. The

reflectance for the normal incidence from air is defined as

R = [(n− 1)2 + κ2]/[(n + 1)2 + κ2].

Results and Discussion
X-ray diffraction is the method of choice to reveal the internal

structure of complex materials and to detect crystalline regions.

Figure 1 and Figure 2a show 3D reconstructions of the Bombyx

mori silk fibers bundled together and their X-ray diffraction

(XRD) pattern, respectively. The period d corresponds to the

most pronounced peaks at the diffraction angle 2θ, given by

Bragg’s law d = λ/(2sinθ). The size L of the nanocrystalline

phase can be estimated from the Scherrer equation

L = Kλ/(B(2θ)cosθ; where K = 0.89 for spherical crystals and

B(2θ) is the full width at half maximum of the peak. The wide-

angle XRD pattern (Figure 2a) is identical to that reported

earlier [18]. The most pronounced peak corresponds to the sepa-

ration between the equatorial (200) planes d(200) = 4.69 nm and

crystal cross section of L ≈ 2.15 nm, while for the meridional

(002) planes d(002) = 3.46 nm and crystal size of L ≈ 10.76 nm

[18]. These are the dimensions of the β-sheets, which are crys-

talline segments in the silk fiber. SNOM measurements are well

suited to measure n and κ from areas of comparable dimensions.

Silk is a strongly birefringent material, as revealed by cross-

polarised optical imaging (Figure 3). The images were taken

following adjustments of the voltage of a liquid crystal (LC)

retarder, which was inserted with its slow-axis perpendicular to

the orientation of the silk fiber (see inset in Figure 3b). Using

such a geometry, it is possible to compensate for the birefrin-

gence of the silk fibers, Δn ≡ ne − no > 0, with a phase delay

imparted by the LC retarder. When the phase delay through the

LC retarder is equal to the absolute value, but has an opposite

sign through the silk fiber, the darkest (black) region is formed

in the image at ca. 2.9 V (Figure 3a). For the thickness of fiber

d = 48 μm and measured retardance, the birefringence

Δn ≈ 4 × 10−3. This is an estimate of the order of magnitude

since the calibration of the LC retarder is carried out at a single

wavelength, while the imaging is done under white-light illumi-

nation. The birefringence originates from the alignment of the

structures, which is determined by the fiber orientation down to

molecular bonds and spans hierarchically over a wide range of

wavelengths due to secondary ordering [19]. Previously, longi-

tudinal ca. 1 μm thick silk slices were measured in transmission

mode using synchrotron IR radiation to characterise the molecu-

lar alignment of the typical amide bands [20], including amide
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Figure 4: (a) Far-field optical image of longitudinal slices of white silk embedded in an epoxy sheet. The inset shows schematics of a lateral silk slice
composed of β-sheets interconnected with α-coils and amorphous segments. (b) Optical and topographic images of the silk slice shown in (a)
measured with scattering near-field microscopy (SNOM; neaspec). Markers in optical image indicate locations where spectra were acquired.

Figure 5: Scattering near-field optical microscopy (SNOM) measurements of the nano-FTIR reflectance (a) and absorption (b) spectra from selected
points on silk and epoxy (shown in the right inset).

II at 1512 cm−1 (C–N), amide I (β-sheets) at 1628 cm−1 (C=O),

and amide A at 3290 cm−1 (N–H). A perpendicular orientation

between C=O and C-N bonding was revealed at a high accu-

racy when longitudinal silk slices were prepared [20]. Longitu-

dinal slices facilitated more precise measurements of the molec-

ular alignment since there were no averaging artifacts due to the

curvature of silk fiber and different thickness across the fiber

slice [21].

Scattering SNOM was used to measure reflectance and absor-

bance spectra from nanoscale areas of a single silk slice. Lateral

slices of 0.1 μm were prepared on a gold mirror (Figure 4a).

Optical and topographic images were obtained that confirmed

the thickness of the silk slices to be ca. 100 nm (Figure 4b).

Spectra of nano-FTIR reflectance and absorption from selected

points were also measured (Figure 5) with a high repro-

ducibility, showing a clear distinction between the silk
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and the epoxy host matrix. The nano-FTIR absorption is propor-

tional to the imaginary part of the scattering coefficient

, which relates the scattered field of the light

Es(ω), and the incident field Ei(ω) through the equation

Es = σnEi; where s(ω) and  are the amplitude and phase of

the back-scattered spectra [12]. The reflectivity information is

given by the real part of the scattering coefficient [12]. Using an

asymmetric Michelson interferometer, the full complex func-

tion of the scattered optical signal could be recorded, therefore

enabling the simultaneous measurement of both nano-FTIR

absorption and reflectivity spectra, shown in Figure 5.

The amide-I and amide-II bands were well reproduced in the

absorption spectra collected from four different single points.

However, only spectra from two measurement points are

displayed in Figure 5 for a better clarity of presentation. Nano-

scale resolution is readily achievable for SNOM measurements

and is defined by the AFM tip, which has a diameter of

ca. 10 nm. Around the center of the absorption peak, regions of

normal dispersion with a higher refractive index at a higher

photon energy (proportional to the wavenumber) was observed.

Spectral positioning of the absorption peak and dispersion line

shapes corresponded to the expected Lorentzian behavior of a

damped oscillator.

Next, direct absorbance and orientation mapping [22] through a

100 nm thick silk slice was demonstrated using synchrotron IR

radiation (Figure 6). By measuring the absorbance at several

azimuth angles, θ, it was possible to determine the molecular

alignment within the fibril structure. Here, we demonstrate the

use of the technique on the thinnest silk section of 100 nm. The

well-aligned amide bands were measured in transmission mode

at wavelengths that are much longer than the thickness of the

silk slice (d = 100 nm). A wavenumber of 1500 cm−1 corre-

sponds to a wavelength of 6.67 μm. The pitch between mea-

surement points was 2 μm and was approximately two-times

smaller than the focal spot (4.1 μm). This caused an uncertainty

in orientation azimuth at the boundary of the silk fiber and the

surrounding epoxy matrix. However, the central part of the fiber

shows a well-defined orientation, while the epoxy region has a

random orientation. The absorbance from silk, which makes

only d/λ ≈ 1.5% of the probing wavelength, was reliably

measured in transmission. The retardance of silk, d = 100 nm,

has a birefringence of Δn = 4 × 10−3 at the non-absorbing

vis–IR wavelengths. For example, the band at 3600 cm−1

(λ = 2.78 μm) resulted in ΔT = sin2(πΔnd/λ) = 2 × 10−5%,

which was beyond the precision of measurements. Alternative-

ly, the real part of the refractive index can be determined from

the known values of reflectance R and extinction κ following

the equation n = [(1 + R)/(1 − R)] + [4R/(1 − R)2 − κ2]1/2. How-

ever, R was not measured in this experiment.

Figure 6: (a) Single-point absorbance spectra of thin silk samples on
BaF2 collected at different angles θ between the linear polarisation and
the fiber axis, using 2 μm pixel pitch, 15 × 15 pixel points, 4.17 μm
spatial resolution, and 4 cm−1 spectral resolution. (b) Orientation color
maps indicating that amide A (N–H) is oriented perpendicular to amide
I (C=O) and amide II (C-N).
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Anisotropy in absorption is defined by the dichroism

where k = 2π/λ is the wave vector. It defines the losses in trans-

mission T, at the maximum and minimum orientations of linear

polarisation . The dichroism was estimated

for the amide bands. For the amide-A band, Δ” ≈ 0.014 sug-

gests only a minute transmission change  for

the two perpendicular polarisations. Similarly, the results ob-

tained for the amide-I band (Δ” ≈ 0.027 and 97.4%) and the

amide-II band (Δ” ≈ 0.019 and 98.1%) also indicated that very

small changes of absorbance of light passed through the thin

100 nm lateral slices of the silk fiber occurred. This shows that

an anisotropy of absorbance can be measured from nanoscale

materials of sub-wavelength thickness. There were no apparent

spectral differences among the measurements at different orien-

tations of 100 nm thick silk slices. The far-field (Figure 6) and

near-field (Figure 5) absorbance spectra are comparable and are

matching earlier results measured from thicker samples [10].

This study shows that the SNOM measurements reach the reso-

lution required to measure the structural composition of silk

fibres corresponding to the crystalline segments observed in

XRD and the measurements can be carried out with nanometer-

thin slices of silk.

Conclusion
Spectral characterisation, lateral mapping and transmission with

deep sub-wavelength resolution in the spectral window of IR

molecular fingerprints were demonstrated using 100 nm thin

lateral slices of silk. Absorbance and reflectance spectra of silk

with the resolution of the SNOM tip of ca. 10 nm were ob-

tained. Absorbance from nanometer-thin silk slices with thick-

ness only 1.5% of the wavelength were measured when the

beam diameter was comparable to the IR wavelength. Hyper-

spectral mapping across the silk fiber slice was obtained with

high accuracy and reproducibility. An orientational map of the

amide bands was revealed and was consistent with data

collected from bulk samples. It shows that preparation of thin

microtome slices of soft biomaterials is not altering their struc-

ture and opens the possibility to read optical properties from

nanovolumes. In the case of optical measurements, optical aver-

aging over thicker inhomogeneous volumes of samples can be

avoided using nanoslices and this provides more reliable direct

measurement of optical properties. The study demonstrated the

characterisation of silk fibers with nanoscale resolution in all

three dimensions.

Acknowledgements
JM acknowledges a partial support by a JSPS KAKENHI Grant

No.16K06768 and 18H04506. We acknowledge partial support

via ARC Discovery DP170100131 grant. Experiments were

carried out through a beamtime proposal (ID. 12107) at the

Australian Synchrotron IRM Beamline, part of ANSTO. We are

grateful for R. Kikuchi from Materials Analysis Division of

Tokyo Institute of Technology, Ookayama, for his assistance

with ultramicrotomy. X-ray characterisation was performed at

the Stanford Nano Shared Facilities (SNSF), supported by the

National Science Foundation under award ECCS-1542152. SJ is

grateful for sabbatical stays at Tokyo Institute of Technology

and Shizuoka University. A part of this work was carried out

under the Cooperative Research Project Program of the

Research Institute of Electronics, Shizuoka University.

ORCID® iDs
Saulius Juodkazis - https://orcid.org/0000-0003-3542-3874

References
1. Rangelow, I. W.; Ahmad, A.; Ivanov, T.; Kaestner, M.;

Krivoshapkina, Y.; Angelov, T.; Lenk, S.; Lenk, C.; Ishchuk, V.;
Hofmann, M.; Nechepurenko, D.; Atanasov, I.; Volland, B.; Guliyev, E.;
Durrani, Z.; Jones, M.; Wang, C.; Liu, D.; Reum, A.; Holz, M.;
Nikolov, N.; Majstrzyk, W.; Gotszalk, T.; Staaks, D.; Dallorto, S.;
Olynick, D. L. J.
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process.,
 Meas., Phenom. 2016, 34, 06K202. doi:10.1116/1.4966556

2. Paul, P. C.; Knoll, A. W.; Holzner, F.; Despont, M.; Duerig, U.
Nanotechnology 2011, 22, 275306.
doi:10.1088/0957-4484/22/27/275306

3. Holzner, F.; Paul, P.; Drechsler, U.; Despont, M.; Knoll, A. W.;
Duerig, U. Appl. Phys. Lett. 2011, 99, 023110. doi:10.1063/1.3610490

4. Linklater, D. P.; Nguyen, H. K. D.; Bhadra, C. M.; Juodkazis, S.;
Ivanova, E. P. Nanotechnology 2017, 28, 245301.
doi:10.1088/1361-6528/aa700e

5. Ivanova, E. P.; Hasan, J.; Webb, H. K.; Gervinskas, G.; Juodkazis, S.;
Truong, V. K.; Wu, A. H. F.; Lamb, R. N.; Baulin, V. A.; Watson, G. S.;
Watson, J. A.; Mainwaring, D. E.; Crawford, R. J. Nat. Commun. 2013,
4, 2838. doi:10.1038/ncomms3838

6. Shao, Z.; Vollrath, F. Nature 2002, 418, 741. doi:10.1038/418741a
7. Jiang, J.; Zhang, S.; Qian, Z.; Qin, N.; Song, W.; Sun, L.; Zhou, Z.;

Shi, Z.; Chen, L.; Li, X.; Mao, Y.; Kaplan, D. L.; Gilbert Corder, S. N.;
Chen, X.; Liu, M.; Omenetto, F. G.; Xia, X.; Tao, T. H.
Adv. Mater. (Weinheim, Ger.) 2018, 30, 1705919.
doi:10.1002/adma.201705919

8. Choi, S. H.; Kim, S.-W.; Ku, Z.; Visbal-Onufrak, M. A.; Kim, S.-R.;
Choi, K.-H.; Ko, H.; Choi, W.; Urbas, A. M.; Goo, T.-W.; Kim, Y. L.
Nat. Commun. 2018, 9, No. 452. doi:10.1038/s41467-017-02500-5

9. Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Opt. Lett. 2005, 30,
2388–2390. doi:10.1364/ol.30.002388

10. Ryu, M.; Kobayashi, H.; Balčytis, A.; Wang, X.; Vongsvivut, J.; Li, J.;
Urayama, N.; Mizeikis, V.; Tobin, M.; Juodkazis, S.; Morikawa, J.
Mater. Res. Express 2017, 4, 115028. doi:10.1088/2053-1591/aa98a9

11. Bertie, J. E.; Michaelian, K. H. J. Chem. Phys. 1998, 109, 6764–6771.
doi:10.1063/1.477322

12. Huth, F.; Schnell, M.; Wittborn, J.; Ocelic, N.; Hillenbrand, R.
Nat. Mater. 2011, 10, 352–356. doi:10.1038/nmat3006

13. Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J.
Nat. Commun. 2017, 8, 1387. doi:10.1038/s41467-017-00613-5

https://orcid.org/0000-0003-3542-3874
https://doi.org/10.1116%2F1.4966556
https://doi.org/10.1088%2F0957-4484%2F22%2F27%2F275306
https://doi.org/10.1063%2F1.3610490
https://doi.org/10.1088%2F1361-6528%2Faa700e
https://doi.org/10.1038%2Fncomms3838
https://doi.org/10.1038%2F418741a
https://doi.org/10.1002%2Fadma.201705919
https://doi.org/10.1038%2Fs41467-017-02500-5
https://doi.org/10.1364%2Fol.30.002388
https://doi.org/10.1088%2F2053-1591%2Faa98a9
https://doi.org/10.1063%2F1.477322
https://doi.org/10.1038%2Fnmat3006
https://doi.org/10.1038%2Fs41467-017-00613-5


Beilstein J. Nanotechnol. 2019, 10, 922–929.

929

14. Li, C.; Hotz, B.; Ling, S.; Guo, J.; Haas, D. S.; Marelli, B.; Omenetto, F.;
Lin, S. J.; Kaplan, D. L. Biomaterials 2016, 110, 24–33.
doi:10.1016/j.biomaterials.2016.09.014

15. Richards, D.; Zayats, A.; Keilmann, F.; Hillenbrand, R.
Philos. Trans. R. Soc., A 2004, 362, 787–805.
doi:10.1098/rsta.2003.1347

16. Huth, F.; Govyadinov, A.; Amarie, S.; Nuansing, W.; Keilmann, F.;
Hillenbrand, R. Nano Lett. 2012, 12, 3973–3978.
doi:10.1021/nl301159v

17. Westermeier, C.; Cernescu, A.; Amarie, S.; Liewald, C.; Keilmann, F.;
Nickel, B. Nat. Commun. 2014, 5, 4101. doi:10.1038/ncomms5101

18. Drummy, L. F.; Farmer, B. L.; Naik, R. R. Soft Matter 2007, 3, 877–882.
doi:10.1039/b701220a

19. Balčytis, A.; Ryu, M.; Wang, X.; Novelli, F.; Seniutinas, G.; Du, S.;
Wang, X.; Li, J.; Davis, J.; Appadoo, D.; Morikawa, J.; Juodkazis, S.
Materials 2017, 10, 356. doi:10.3390/ma10040356

20. Ryu, M.; Balčytis, A.; Wang, X.; Vongsvivut, J.; Hikima, Y.; Li, J.;
Tobin, M. J.; Juodkazis, S.; Morikawa, J. Sci. Rep. 2017, 7, 7419.
doi:10.1038/s41598-017-07502-3

21. Honda, R.; Ryu, M.; Li, J.-L.; Mizeikis, V.; Juodkazis, S.; Morikawa, J.
Sci. Rep. 2018, 8, 17652. doi:10.1038/s41598-018-36114-8

22. Hikima, Y.; Morikawa, J.; Hashimoto, T. Macromolecules 2011, 44,
3950–3957. doi:10.1021/ma2003129

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0). Please note

that the reuse, redistribution and reproduction in particular

requires that the authors and source are credited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.10.93

https://doi.org/10.1016%2Fj.biomaterials.2016.09.014
https://doi.org/10.1098%2Frsta.2003.1347
https://doi.org/10.1021%2Fnl301159v
https://doi.org/10.1038%2Fncomms5101
https://doi.org/10.1039%2Fb701220a
https://doi.org/10.3390%2Fma10040356
https://doi.org/10.1038%2Fs41598-017-07502-3
https://doi.org/10.1038%2Fs41598-018-36114-8
https://doi.org/10.1021%2Fma2003129
http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.10.93

	Abstract
	Introduction
	Experimental
	Silk slices
	X-ray characterization
	IR spectral measurements

	Results and Discussion
	Conclusion
	Acknowledgements
	ORCID iDs
	References

