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INTRODUCTION

Dynamic visual cryptography-based numerical image coding schemes can be
applied to a variety of scientific and engineering tasks. The ability of the human
visual system to average the images of fast-moving objects in time can be used to
identify specific diseases of the visual system, identify human fatigue, and perform
optical diagnostics of technical systems [1]. On the other hand, these secret image
coding schemes have a rather large application potential in MOEMS (micro-opto-
electromechanical systems) [2]. However, when forming an optical phase profile
for CGH (computer-generated holograms), it is necessary to take into account that
image oscillating in the projection plane is reflected from the deformable MOEMS
element. Thus, all of the dynamic visual cryptographic algorithms that have been
suggested so far are inappropriate when light flux is reflected from a deformable
body surface. The aim of this dissertation is to create theoretical foundations and
construct appropriate algorithms that allow the modeling of optical effects of
dynamic visual cryptography in deformable and two-dimensional moiré gratings.

The object of the research

1. The development of dynamic visual cryptography-based numerical image
hiding algorithms in deformable harmonic moiré gratings.

2. The development of dynamic visual cryptography-based numerical image
hiding algorithms in deformable chaotic moiré gratings.

3. The development of dynamic visual cryptography-based numerical image
hiding algorithms in two-dimensional cross-gratings.

The aim of the research

To develop dynamic visual cryptography-based numerical image hiding
techniques in deformable and two-dimensional moiré gratings.

The objectives of the research

The following objectives have been set to achieve the aim of the research:
1. To construct a dynamic visual cryptography scheme in deformable moiré
gratings and apply this scheme to hide images in the gratings described by finite
elements.
2. To apply a scheme of dynamic visual cryptography based on hiding numerical
images in the case of chaotic oscillations.
3. To construct a scheme for hiding numerical images in two-dimensional cross-
gratings.
4. To construct a setup for the experimental verification of the presented numerical
image hiding algorithms.



The methodology of the research

The objectives for defining the parameters of deformable two-dimensional
stochastic moiré gratings, secret image coding and decoding algorithms are
constructed and solved in MATLAB software environment. The problems of
surface dynamics of the deformed bodies described by finite elements are solved
with the help of COMSOL program. The optimal model parameters are
determined using analytical methods.

Scientific novelty and practical significance of the work

1. New methods of dynamic visual cryptography have been proposed in the
thesis, where a deformed moiré grating oscillates harmonically and
chaotically according to a certain Eigen-shape. A detailed analysis of
these new methods opens the possibilities of applying the proposed
methods for optical control of micro-opto-electromechanical systems.

2. The most important element of the scientific novelty of this dissertation
is the realization of dynamic visual cryptography in two-dimensional
finite element gratings. In the works known so far, the principle of
dynamic visual cryptography-based image hiding was based on the
formation of time-averaged moiré fringe in one-dimensional moiré
gratings. Applying image coding algorithms to two-dimensional gratings
greatly expands the scope of the presented algorithms that constitutes the
practical value of this dissertation.

The approbation of the work results

8 scientific articles have been published on the topic of the dissertation,
including 4 articles in the journals of the Main List of the Institute of Scientific
Information (ISI) with citation index, 3 articles have been presented in
international scientific conferences and published in conference proceedings.

The structure of the dissertation

The dissertation consists of an introduction, three chapters, conclusions, a list
of references and a list of publications. The volume of the dissertation is 92 pages.
The main part of the dissertation consists of 66 figures and includes 98 references.

1. LITERATURE REVIEW

Geometric moiré is a classical in-plane optical experimental technique based
on the investigation of visual patterns produced by the superposition of two regular
gratings that geometrically interfere [3-5]. Moiré techniques are used to measure
variables such as displacements, curvature, rotation, and tension in a given area.



Moiré effects are also applied in areas such as interferometry [6, 7], moiré
deflectometry [8-11], moiré topography [12-14], steganography [15], fraud
prevention [16], and microscopy [17, 18].
The scientific articles dealing with moiré fringes can be divided into three
categories:
1. Targeted interfering moiré fringes with the aim of creating the desired
pattern. As a typical example, the structures of the designer-made moiré
patterned structures in architecture can be presented [19].

2. Moiré interference fringes appear as a side, undesirable phenomenon
and ways to eliminate them are sought [20-22].

3. Deformations of the observed body are determined from the
experimental studies of the moiré fringe images [23].

Visual cryptography is a cryptographic technique that allows to encrypt
visual information (e.g. text, pictures, etc.) in such a way that decryption is only
performed with the help of human visual system without any additional
calculations. Naor and Shamir are considered to be the initiators of visual
cryptography [24]. The classic visual cryptographic scheme is cryptographically
rather secure because without all the shares it is impossible to restore the secret
information. However, a lack of this scheme introduces major possibilities of
fraud.

The technique of hiding the image, when the secret image appears in the
form of time-averaged moiré fringes when the non-deformable encoded image
oscillates, was first proposed in article [25]. Here, in order to hide the secret image
in one encoded image, a stochastic moiré grating is employed. Secret information
is decoded by the naked eye when the amplitude of the harmonic oscillations
exactly matches the preset value. Although the encoded image is not
cryptographically secure, by combining visual cryptography, the effect of the
formation of the interference fringes, and the procedure of time-averaging, we
obtain a new image hiding technique, i.e. dynamic visual cryptography [26, 27].
Unlike classic visual cryptography, where multiple shares put on top of each other
are used to decode a secret image, only one share is used for dynamic visual
cryptography, i.e. decoding is performed by oscilating the encoded image exactly
according to a predefined trajectory. Since the dynamic visual cryptography
technique can be applied to human vision system research, in micro-opto-
electromechanical systems, it is essential to expand the research of this technique
in deformable and two-dimensional moiré gratings.

2. ADEFORMABLE MOIRE GRATING
Two phases are important in dynamic visual cryptographic tasks: encoding

and decoding. Each of these phases requires certain steps. The algorithms for
coding and decoding are presented below.



The algorithm for encoding:
1. The selection of A, — pitch of the moiré grating for the background.
2. The selection of the law according to which the grating is oscillated.
3. The selection of the pitch for the secret information A, solving the
two-criteria optimization task.
4. The selection of the secret image.
5. The application of phase regularization and initial random phase
algorithms for hiding the image in the stochastic moiré grating.
The algorithm for decoding:
1. The oscillation of the encoded image according to the given law for
the recording of the time-averaged image.
The algorithm descriptions reveal that the coding phase is much more
complex than the decoding phase.

2.1. Estimation of optimal pitch of a moiré grating in dynamic visual
cryptography!

The standard deviation of the time-averaged greyscale intensity can be
calculated according to [28]:
21
o (Fa)| @.1)

S(Ft(x)) = 8

Let the pitch of grating in the area of secret information be denoted by A
and the pitch of grating in the background — A,. The pitches of grating A, and 4,
cannot differ significantly |4, — 4,| < &, otherwise the encoded secret could be
seen by a naked eye in a static share. Simultaneously, the difference between A,
and A, should ensure a sufficient contrast between secret and background areas in
the time-averaged image.

Let the standard deviations of the secret and background areas in the time-
averaged image be denoted as g, and g, respectively. The values of g, and o, are
calculated as [28]:

2
I 0 o) 2.2)
s N b N
A sufficient contrast between the leaked secret and the background in the
time-averaged cover image is obtained only if |6, — g3,| = &. Thus, the objective
function for optimization is max |o; — a,| with constraint [A; — A,| < €. The
graphical representation of standard deviations o, and g, is proposed in Fig. 2.1.

! The results presented in this section have been published as:

Near-optimal pitch of a moiré grating for image hiding applications in dynamic visual cryptography
Saunoriene L.; Aleksiene S.; Ragulskiene J.

Copyright © 2017 JVE International.
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Fig. 2.1. The variation of standard deviations of a time-averaged moiré. The thick solid
line stands for standard deviation of the secret o, at A, = 0.45; the thin solid and dashed
lines represent standard deviations of the background a;,; and g, at 4,; = 0.7, 1p, =
0.35 accordingly

Let us assume that the contrast of the leaked secret in the time-averaged
cover image is sufficient, if standard deviation a;, is equal or exceeds threshold &:

|f°(§—za>\ 2.3
& =>4, (2.3)
Whereas the amplitude of oscillation is presetto a = %rl, Eqg. (2.3) yields:
"0(;_2“” 2.4
—F— 24 (2.4)

Inequality 2.4 is visualized in Fig. 2.2 when A is fixed. Striped intervals
on the graph show the intervals of A, for which inequality |]0 (:—Srl)| /N8 >6
b

holds true. Zeroes of the function J, (%rl) are located at 4, = A, :—1 i=12...
b i

To obtain a sufficient predetermined contrast between secret and

background areas (g, = §), it would be optimal to choose such values of 4, that

lie on the contours of the grey and striped grey areas in Fig. 2.3, or, if § is small,

the approximate optimal solution is:
—) or A, = A (1 -2 ) (25)

r1J1(r1) r1J1(r1)

B =2 (1+
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solid line represents the variation °f|(\r—s)| tangents at points A and /1 are displayed
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Note, that the difference between values A and A, still should be small
enough in order to ensure the safety of the visual encoding scheme.

A

] 0.05 0.1 0.15 0.2 8

p (l ) (i)

> §: grey color indicates areas where

Fig. 2.3. Solutions of inequality ——=—

ng ) . .

T’; < —§, black lines correspond to the boundaries of
the approximate solution

=

@l

&, striped grey areas — where

10



2.2. Harmonic oscillations, deformable moiré grating 2

Let us consider a harmonic moiré grating on the surface of a one-
dimensional deformable body. Let us assume that the deflection of point x from
the state of equilibrium is u(x, t). Then the deformed moiré grating reads [29]:

F(x,t) = —+ cos( u(x, t)) (2.6)

only if the independent variable x can be expressed from the relationship

x+ulx,t)=2z 2.7)

into the explicit form

(2.8)
x = u(z,t).
Let us assume that the space and time variables can be separated in the
deflection function u(x, t):

u(x, t) = a(x) - g(b), (2.9)

where a(x) is the shape function of in-plane oscillations; g(t) is the time process.
Now let us linearize function a(x) around the point x = x;:

a(x) = ay + ao(x — x5) + 0((x — x9)?), (2.10)

where a, = a(x,) and @, = d';ix) . Equations (2.7), (2.9) and (2.10) yield the
=Xq
relationship:
_ z—(ap—dox0)g(t)
X T e (2.11)

Thus the deformed moiré grating reads:

2w x—(ap—doxo)g(t)
F(x,t) ~—+ 5 €0S (A W). (2.12)

Averaging of Eg. (2.12) in time yields:

’ 2r x — (ap — doxo)g(t)
cos dt.
7 1+ adeg(t)

1
Fi(x) == + = hm

> Jim — (2.13)

If the deformation field is linear a(x) = Ax [29], then time-averaging
yields:

2 The results presented in this section have been published as:
Optical image hiding based on chaotic vibration of deformable moiré grating
Lu G., Saunoriene L., Aleksiene S., Ragulskis M.
Copyright © 2018 Elsevier B.V.
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F.(x) = §+%cos (%ﬂx)]o (Z%Ax). (2.14)

Thus, time-averaged moiré fringes do form at 2TﬂAx =n, i=12,..

Figure 2.4 illustrates the formation of time averaged moiré fringes for the
deformable moiré grating.
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Fig. 2.4. Time-averaged image of the deformable one-dimensional moiré grating. The
pitch of the grating in the state of equilibrium is 2 =0.2. (a) motion of one-dimensional
moiré grating during one period of oscillations (A = 0.075; dashed line indicates
maximum displacement from the state of equilibrium); (b) time-averaged image of part
(a); (c) one-dimensional time-averaged moiré grating at increasing amplitudes 4; (d)
standard deviation of the time-averaged image

The left side of the grating is fixed motionlessly, while the right side
oscillates harmonically (amplitude A varies from 0 to 0.3 in the observation
window). The pitch of the moiré grating at the state of equilibrium is 4 = 0.2.
Figure 2.4(a) illustrates the motion of one-dimensional deformable moiré grating
during one period of oscillations. The time-averaged image of Figure 2.4(a) is
presented in Figure 2.4(b), and Figure 2.4(c) shows the time-averaged one-
dimensional moiré gratings at increasing amplitudes A (the higher is the amplitude
of harmonic oscillations, the larger number of moiré fringes is visible in the time-
averaged image).

12



2.3. Dynamic visual cryptography based on deformable moiré gratings on
finite element grids®

A nonlinear field of deformation is used for the formation of time-averaged
moiré fringes. The 2D field of deformations a(x,y) constructed by FEM
computations is sliced horizontally. One-dimensional pitch distributions are
computed in adjacent moiré gratings. Therefore, every row of pixels in the digital
image of 2D deformations is interpreted as a one-dimensional variation of
amplitudes a(x). This process is demonstrated in Fig. 2.5.

Fig. 2.5(a) depicts the twelfth Eigen-shape of a plate: the dark zones
represent the maximum deformations from the state of equilibrium; the white
zones indicate areas that do not oscillate at this resonance frequency. Fig. 2.5(b)
illustrates 500 horizontal one-dimensional moiré gratings. After setting k = 0.0025
and b = 0.0075 for further calculations, the initial range of true values [-1,1] is
changed to the required range of amplitudes [0.005,0.01].

(a) (b) (c) (d)

Fig. 2.5. Harmonic oscillations according to the 12th Eigen-mode of a free
rectangular plate produce a gray two-dimensional image: part (a) shows the Eigen-shape;
part (b) illustrates the stationary moiré grating (the pitch of the grating varies in the
interval A = [0.013,0.026]; A(x) = zr—" a(x); part (c) shows the cover image produced

1
from the moiré grating; part (d) illustrates the time-averaged image when the cover image
is oscillated according to 12 Eigen-mode

The functionality of such image hiding schemes based on dynamic visual
cryptography is demonstrated by the following computational experiment. The
secret dichotomous image is embedded into the cover image by employing the
12th Eigen-shape of the rectangular plate. The stochastic initial phase and phase
regularization algorithms are employed to hide the secret. It is impossible to
recognize the secret image from the cover image with the naked eye. Moreover,

3 The results presented in this section have been published as:

Image hiding in time-averaged moiré gratings on finite element grids
Vaidelys M.; Ragulskiene J.; Aleksiene S.; Ragulskis M.

Copyright © 2015 Elsevier Inc.
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the secret image can only become visible when the deformable encoded image is
oscillated according to the Eigen-mode, which was used to encode the secret.

Mode 7 Mode 11 Mode 12 Mode 13 Mode 20

|
.

Fig. 2.6. The Eigen-mode serves as the key for visual decryptlon of the cover
image. Line (a) shows different Eigen-shapes; line (b) — the time-averaged images; line
(c) — the highlighted time-averaged images

In other words, the Eigen-mode can be considered as the key of the visual
decoding procedure. Fig. 2.6 shows the results of visual decoding when the
encoded image is oscillated according to different Eigen-modes. Image
highlighting procedures [30] are used to better visualize the moiré interference
fringes in time-averaged images.

2.4. Chaotic oscillations, non-deformable moiré grating

Let us consider chaotic oscillations of a non-deformable moiré grating:

F, tim 2 [ (cos (P x - 0(9)) d (2.15)
(%) = —+§Tgn 7), (cos (T(x - (t))) t; .
where 8(t) is a time function determining chaotic deflection from the state of
equilibrium. If 8(t) is a Gaussian normal ergodic process, approximated by a
discrete scalar series of normally distributed numbers with zero mean and o
variance, the time-averaged image reads [31]:

F.(x) = %+%cos (2/1_7rx) exp <—%<277TA0)2>. (2.16)

14



It should be mentioned that time-averaged fringes do not form at all in the
case of chaotic oscillations [31].

Standard deviation of the grayscale intensity of time-averaged moiré (Eq.
(2.16)) reads:

1 07 2
S(Fe(®)) = f7 (Fe(0) = E(F.(x))) dx =
vz 121 2
S exp <_E (TAO') )
However, it is difficult to construct a clear physical interpretation for the
replacement of a continuous chaotic function by a discrete scalar series of
normally distributed numbers (though such replacement is beneficial for building

theoretical relationships). Therefore we continue by assuming that 6(t) is a
solution of the paradigmatic chaotic model — the Rossler system [32]:

(2.17)

dx;
a s e
dx,
1_dt = x; + ax,, (2.18)
dx
praie bx; — cx5 + X1 x3;

where x;, x,, x5 are functions of time t; a, b, ¢ are constant parameters. The
Rossler system exhibits stationary, periodic, quasiperiodic, and chaotic behavior
at different values of the parameters.

2.4.1. Linear shape function of a(x)

Let us consider a deformable one-dimensional moiré grating with a constant
pitch in the state of equilibrium A = 0.2.Let us assume that the left side of the
moiré grating is fixed and the right side is oscillating according to the chaotic time
function g(t) = Ax,(t). Moreover, let the shape function of in-plane oscillations
be linear: a(x) = x. Then,

am X ); (2.19)

A 1+ Ax (0
where the parameter A varies from 0 to 0.3 (analogously as in Figure 2.7). The
resulting time-averaged images are illustrated in Figure 2.7(c).

1 1
F(x,t) =§+ECOS(

15



0 >
0 0.00358 0.00717 0.01075 0.01433 0.01792 A

(b) (d)

Fig. 2.7. Time-averaged image of the deformable one-dimensional moiré grating at
a(x) = x and g(t) = Ax,(t): (a) chaotic motion of one-dimensional moiré grating at
A = 0.005; (b) time-averaged image of part (a); (c) one-dimensional time-averaged moiré
grating at different values of A; (d) standard deviation of time-averaged one-dimensional
images

2.4.2. Nonlinear shape function a(x)

Let us analyze the case when the shape function describing the oscillation
mode of a deformable one-dimensional body is nonlinear. The argument of cosine
function in Eq. (2.13) can be rearranged as follows:

x — (ag — dgxe)g(t) _
1+ dog(t) (2.20)
= (x —(ap — doxo)g(t))(l - dog(t)) +0(ap).

Let us denote ay+ay(x — x,) = a(x). Then the deformed moiré grating
reads:

1 1 2w . .
F(x,t) = > + had (7 (x — (ag — agxg)g(t) —apxg(t)
(2.21)

+ (ap — doxo)dogz(t))> =

16



1 1

_ 2 . . 2m _
=5 + 5 €os (7 (x + (ag — agxg)aog (t))) cos (7 ax)g (t)) +

+%sin (27” (x + (ao — doxo)dogz(t))> sin (277{ : d(x)g(t)).

Time averaging of Eq. (2.21) yields:
T
= li 1 F dt = !
R = Jim 7 [ PG ode =5+
0

T
+giim | cos (2_”' (x + (a0 - doxo)dogz(t))> cos (2 -atwg)ar+ ¢?

+ liln 1 OT sin (2771 (x + (ap — doxo)dog? (t))) sin (27” . d(x)g(t)) dt.

If the time function g(t) is the Gaussian normal ergodic process, it can be
approximated by a discrete scalar series of normally distributed numbers with zero
mean and o2 variance:

gi~N(0,0),i=1,2, ..., k. (2.23)

However, if g; are normally distributed numbers with zero mean and o
variance, then g7 are distributed according to chi squared distribution (gZ~x2(1))
and Eg? = o2 [33]. Now, Eq. (2.21) can be rearranged by replacing o2 by g?(t):

F(x) = § + %cos (27" (x+ (ag — doxo)doaz)) exp <— 2 (27" : d(x)a)2>. (2.24)

The obtained relationship in Eq. (2.24) corresponds well with Eqg. (2.16). It
is clear that in the case of stochastic oscillations time-averaged fringes do not form
at all. Higher variance and/or higher values of maximum deflections yield more
intensive blur. However, this relationship is only approximate since it was derived
under the assumptions that g2(t) can be replaced by o2.

2.4.3. The information capacity of the image hiding scheme

Let us take four different sizes of the square elements. (Fig. 2.8). The pitch
of the moiré grating is variable in the observation window. Nevertheless, we use
the mean value of the pitch and construct four computational experiments. Fig
2.8(a) represents a square element embedded in the center of the cover image; the
length of the side of this element is equal to 0.251 (A is the mean pitch in the
observation window). The top image is the time-averaged cover image performing

17



chaatic oscillations according to the predefined shape function. The bottom image
is the contrast enhanced time-averaged cover image.

Analogously, computational experiments with a square element with the
side length equal to 0.51 is illustrated in Fig. 2.8(b), A — in Fig. 2.8(c) and 24 — in
Fig. 2.8(d). Thus, the minimum size of an element to be interpretable in the time-
averaged image must be not smaller than a half of the mean pitch (Fig. 2.8).

{

A
i
h
h
:
i

F 33

553

5>
=

P2

Fig. 2.8. The information capacity of the image hiding scheme. Figures in the top row
represent time-averaged images of a deformable moiré grating performing chaotic
oscillations; figures in the bottom row — respective contrast-enhanced images. The length
of the side of the square secret element is 0.251 (part (a)); 0.5 (part (b)); A (part (c)) and
22 (part (d)), where 2 is the mean pitch in the observation window

2.4.4. The security of the image hiding scheme

As mentioned previously, the proposed image hiding scheme belongs to
the class of visual cryptography techniques — special algorithms are required to
encode the image, but decoding does not require a computational device and is
completely visual. Classical visual cryptography schemes are based on the
splitting of the secret image into several shares. Each share separately is
cryptographically secure — the secret is leaked when all shares are accurately
overlaid on top of each other. However, the secret image is not split into shares in
this dissertation. Only one cover image is used, and the secret is leaked in the time-
averaged image.

Let us consider a simplified situation when shape functions are constant in
the whole window of observation. Such situation would result in deformable moiré
gratings with constant pitches in the state of equilibrium. Let the pitch in the area
occupied by the secret image be A, and the pitch in the background — 4,,.

It is clear that pitches A and A, cannot differ significantly — otherwise the
encoded secret could be observed with a naked eye in the static cover image. On
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the other hand, the difference between A and 4, should ensure a sufficient contrast
between the secret and the background in the time-averaged image. Note that
vibrations of the deformable cover image are chaotic. Thus, the standard deviation
of the grayscale color around 0.5 in the time-averaged image is o, =
2
gexp (—%(i—"Aa) > in the zone occupied by the secret, and o), =
S

2
gexp (—%(i—"Aa) ) in the background (Eg. (2.17)).

The secret is leaked when a sufficient contrast between o, and gy, is obtained
in the time-averaged image. Assuming that time-averaged moiré fringes become
almost fully developed in the regions occupied by the secret (o, = €, where ¢ is
a small positive number), the standard deviation of the background should be as

V2nAc

large as possible: |ay, — ag| = |0, — €] = &. Note that 1, = ——=—= (because
—In(2v2¢)

o, = ¢€). Therefore, the following inequality must hold true when a;, > o;:

\V2rnAc

Fin(zvzers) (229)

Analogously, when g3, < o;:

\

Ay =

\2rAc

Ap £ ——x
b - ln(2x/§(£—6)) (2'26)

Graphical interpretations of these inequalities are illustrated in Fig. 2.9. This
is a standard optimization problem with constraints — find max § (maximum
difference between contrasts in the time-averaged image) at a minimum difference
between A, and A, (minimum differences of pitches in the static cover image). The
Pareto optimal frontier is illustrated in Fig. 2.9 by a thick solid line. Thus, if € is
set to 0.05, A, is 3.18 mm, the difference |o;, — o,| should be not smaller than 0.1,
then 4,, must be not smaller than 4.8 mm (Fig. 2.9).

19



\ZrAa

~In(2v2(e+8))
. 1 < VimAa

p S

J-In(2va(e-6))

Ay =

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 016 &

Fig. 2.9. Graphical interpretations of inequalities Egs. 2.25 and 2.26 at € = 0.05,
A =1, 0 =1 (thick solid line stands for the Pareto optimal frontier)

2.5. Conclusions of the second chapter

20

1.

Secure encryption and successful decryption of the secret information are
based on the proper selection of parameters of the moiré grating.
Therefore, a methodology that allows the selection of optimal parameters
of the moiré grating in both harmonic and chaotic oscillations has been
proposed. The pitch of the secret information must ensure a uniformly
grey secret area in a time-averaged image (the standard deviation in this
area is zero). The background pitch must guarantee a sufficiently high
standard deviation in the time-averaged image. The optimal selection of
a pair of moiré grating pitches ensures a sufficient contrast of the decoded
image, as well as the fact that secret information is invisible in the static
cover image.

An image coding scheme has been proposed when the variable-pitch
moiré grating oscillates according to a particular Eigen-shape. The secret
information is decoded in a form of time-averaged interference moiré
fringes when the encoded image is oscillated according to the same
Eigen-shape as the one encoded. The efficiency of the described scheme
is illustrated by numerical examples that employ the finite element
method.

A dynamic visual cryptographic scheme which uses Ronchi-type gratings
and triangular wave-form functions has been developed.

An image coding scheme for image hiding in stochastic deformable and
chaaotically vibrating moiré gratings has been proposed. The secret image



is embedded into a stationary moiré grating in such a way that secret
information becomes visible in the time-averaged image when the
deformable body oscillates chaotically according to a particular Eigen-
shape. Although in the case of chaotic oscillations the averaged
interference fringes do not form, the secret image is decoded due to the
difference of gray levels in the background and secret zone in the time-
averaged image.

3. TWO-DIMENSIONAL MOIRE GRATINGS, NON-DEFORMABLE
BODY
3.1 Two-dimensional cross-gratings. Elliptic oscillations *

A static two-dimensional cross-grating is described by:

F,(x,y) = % + %cos (27” x) cos (%ny), (3.1)

where A4 — is the pitch of the grating in the horizontal direction; u — is the pitch in
the vertical direction.

Let us assume that the deflection of a two-dimensional cross-grating around
the state of equilibrium is elliptic and the radiuses of the ellipse are a and b; then

elementary trigonometric manipulation yields:
lim lfTFz(x— asint,y — bcost) ==+
T—oo T Y0 2 (3 2)
1 2m 21 )
S cos (TX) cos (7)’)]0(1‘4)!

where

2 \2 2m 2_ _ bA
M = \/(Ta) + (Tb) ;@ = arctan (;) (3.3)
Thus, the time-averaged image becomes uniformly gray when the following
equality holds true:
21 2 27 2 _ 2.+ _
(Ta) + (Tb) =m)45i=12,... (3.4)
If a = b = A, then Eq. (3.4) reduces to an explicit relationship between 1
and u:

“ The results presented in this section have been published as:
Image hiding scheme based on time-averaged elliptic oscillations
Saunoriene L., Aleksiene S.; Maskelifinas R.; Ragulskis M.
Copyright © 2017 Elsevier B.V.
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1 2TA,

A=—7m—=u>—7i=12...
N2 1 Ti (3.5)
(zma) —22
A graphical representation of Eq. (3.5) is shown in Figure 3.1.
HA
0.8
06
0.4
ne—e_—m
0.2r
n
7] f3
0 : L : : >
0 0.2 0.4 0.6 0.8 A

Fig. 3.1. The relationship between grating parameters 4 and xat A = 0.1; different curves
correspond to the different values of r;, i = 1,2,3,4

3.2. Hiding secret in two-dimensional cross-gratings

As mentioned previously, all image hiding schemes based on dynamic visual
cryptography are not cryptographically secure. The main requirement is that the
secret image should not be leaked from the stationary cover image with a naked
eye. Therefore, the optical security of the proposed image hiding scheme can be
improved by adding random noise to the value §.

Fig. 3.2 illustrates the implementation of an image hiding technique based
on elliptic oscillations. The secret image is assumed to comprise humbers “1 2 3”
and letters “A B C”. The width of the alphanumerical symbols is selected to be
equal to a half of the pitch of the cross-grating in the background, which
corresponds to the minimal size of the embedded square-shaped object into a
stochastic moiré grating for unidirectional decoding [27].
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(c) (d)

Fig. 3.2. Image hiding scheme based on elliptic oscillations: (a) values of &(x, y)
corresponding to the stationary secret image; (b) the stationary cover image at A = 0.8,
u = 0.68 (a naked eye cannot interpret the embedded secret); (c) the time-averaged image
of the cover image performing elliptic oscillations at a = 0.25, b = 0.15; (d) the contrast
enhancement of the time-averaged image produces clear contours of the secret image

Fig. 3.2(a) shows the values of & used to the encode of the secret. The cover
image is constructed as a deformed two-dimensional cross-grating (Fig. 3.2(b)).
We consider the image is 12x12 rectangle, with pitches of two-dimensional grating
A =0.8and u = 0.68. Itis clear that the secret information cannot be leaked with
a naked eye from the cover image (Fig. 3.2(b)). The decrypted image is obtained
by oscillating the cover image elliptically with amplitudes equal to a =
0.25 and b = 0.15. As it was discussed in Section 3.1, parameters , u, a and b
must correspond to the relationship Eq. (3.4) in order to produce time-averaged
moiré fringes. The original and contrast enhanced time-averaged images are
presented in Fig. 3.2(c) and 3.2(d). Note that the size of the decrypted symbols in
the time averaged image (Fig. 3.2(d)) is larger compared to the size of the encoded
symbols (Fig. 3.2(a)). This is due to elliptic oscillations — the boundaries of the
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symbols are blurred. The larger are the radiuses of the ellipse, the wider are the
blurred boundaries.

The information capacity of the proposed scheme (the quantity of secret
information that can be embedded into the cover image) is not worse than the
capacity of the scheme described in.

3.3. An experimental setup for decoding the encrypted images in the case of
a two-dimensional moire grating

An experimental encrypted image decoding setup (Fig. 3.3) consists of a
computer (1), a cable-connected digital camera (2), and a digitally controlled table
(3) with an encrypted image (4) attached to it.

1‘— = "”‘.r i ‘ : (2)

Camera

(3)
2D Table

Fig. 3.3. A photo of the experimental setup

In the plane of the movement, a point (Fig. 3.4.) is placed in the center of
the image. This point determines the line of motion trajectory, when the image
moves. The experiment is performed primarily by determining the rotation of the
stepper motors in the computer program relative to each other within a
predetermined time by the predetermined parameters. A digital camera is attached
above the table with the photo, the brightness is determined and the exposure time
is set (in this case, 2 sec.).
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Image motion
trajectory sign

Outline of the

decoded image

Fig. 3.4. Decoded, time-averaged image trajectory in plane with respect to x and y axes.
Exposure time T = 2 sec; the displacement on the x axis is 3 mm; the displacement on the

y axis is 5 mm

3.4. Conclusions of the third chapter

1.

3.

The image coding scheme based on elliptic oscillations has been
proposed. The image is encoded by employing a two-dimensional moiré
grating. The secret image appears in a form of time-averaged interference
fringes, when the encoded image is oscillated according to an elliptical
law of motion.

The essential difference between image hiding schemes based on
unidirectional oscillations and elliptic oscillations is the secret
embedding algorithm. One-dimensional rows (columns) can be randomly
mixed in image hiding schemes based on unidirectional oscillations.
However, this random mixing of phases cannot be applied to elliptic
oscillations. Therefore, a new secret image hiding technique has been
proposed to ensure effective optical decoding of the secret.

An image encoding scheme has been proposed, allowing to optically
record amplitudes of angular oscillations. This scheme is based on the
formation of time-averaged interference fringes in angular moiré
gratings.

Experimental setups have been created and real experiments have been
performed in case of two-dimensional cross-gratings and circular moiré
gratings.

GENERAL CONCLUSIONS

1.

A dynamic visual cryptographic scheme for deformable moiré gratings
has been developed. This scheme allows the implementation of a black-
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2.

and-white image visual hiding scheme on the surfaces of deformable
bodies defined by finite elements. This, in turn, provides the possibility
of applying these schemes to the optical control of micro-opto-
electromechanical systems.

A dynamic visual cryptographic scheme in chaotically oscillating
deformable moiré gratings has been developed. This makes it possible to
adapt these schemes to optical control of nonlinear systems.

Two dynamic visual cryptographic schemes for two-dimensional moiré
gratings (for elliptical oscillations and a circular moiré grating) have been
developed. This allows a significant expansion of the scope of dynamic
visual cryptography for complex engineering systems. Optical setups for
the experimental validation of the schemes have been created.
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REZIUME

Dinamine vizualigja kriptografija paremtos skaitiniy vaizdy kodavimo
schemos gali biiti taikomos jvairiuose mokslo ir inzinerijos uzdaviniuose.
7Zmogaus regos sistemos gebéjimas vidurkinti greitai svyruojanéiy objekty
vaizdus laike gali buti taikomas regos sistemos specifiniy ligy nustatymui,
zmogaus nuovargio identifikavimui, techniniy sistemy optinei diagnostikai [1].
Antra vertus, Sios slapty vaizdy kodavimo schemos turi gana didelj taikymo
potencialy MOEMS (mikro—opto—elektromechaninése sistemose) [2]. Taciau,
formuojant CGH (kompiuteriu generuoty hologramy) optinj faziy profilj, batina
ivertinti, kad projektavimo plok§tumoje virpantis vaizdas atsispindi nuo
deformuojamo MOEMS elemento. Taigi visi iki $iol pasitlyti dinamine vizualigja
kriptografija paremti skaitiniy vaizdy slépimo algoritmai yra netinkami, kai
$viesos srautas atsispindi nuo deformuojamo kiino pavirsiaus. Sios disertacijos
pagrindinis tikslas — sukurti teorinius pagrindus ir sukonstruoti atitinkamus
algoritmus, leidzian¢ius modeliuoti dinaminés vizualiosios kriptografijos optinius
efektus deformuojamosiose bei dvimatése muaro gardelése.

Tyrimo objektas

1. Dinamine vizualigja kriptografija paremty skaitiniy vaizdy slépimo
algoritmy sudarymas deformuojamosiose harmoninése muaro gardelése.

2. Dinamine vizualigja kriptografija paremty skaitiniy vaizdy slépimo
algoritmy sudarymas deformuojamosiose chaotinése muaro gardelése.

3. Dinamine vizualigja kriptografija paremty skaitiniy vaizdy slépimo
algoritmy sudarymas dvimatése kryzminése muaro gardelése.

Tyrimo tikslas

Sukurti dinaminés vizualiosios kriptografijos principais pagristas skaitiniy
vaizdy slépimo metodikas deformuojamose bei dvimatése muaro gardelése.

Tyrimo uZdaviniai

Darbo tikslui pasiekti yra iskelti tokie uzdaviniai.

1. Sukonstruoti  dinaminés  vizualiosios  kriptografijos = schema
deformuojamosiose muaro gardelése ir pritaikyti Sig schema skaitiniy
vaizdy slépimui baigtiniais elementais apraSomose gardelése.

2. Pritaikyti dinaminés vizualiosios kriptografijos, pagrjstos skaitiniy
vaizdy slépimu, schemg chaotiniy virpesiy atveju.

3. Sukonstruoti skaitiniy vaizdy slépimo schemg dvimatése kryzminése
muaro gardelése.

4. Sukonstruoti stendus pristatomy skaitiniy vaizdy slépimo algoritmy
eksperimentiniam verifikavimui.
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Tyrimy metodika

Deformuojamyjy dvimaciy stochastiniy muaro gardeliy parametry
nustatymo uzdaviniai, slapto vaizdo kodavimo bei dekodavimo algoritmai
konstruojami ir sprendziami MATLAB programinéje aplinkoje. Baigtiniais
elementais aprasomy deformuojamyjy kiiny pavirSiaus dinamikos uzdaviniai
sprendziami pasitelkiant COMSOL programa. Optimaliis modeliy parametrai
nustatomi taikant apytikslius analitinius metodus.

Darbo mokslinis naujumas ir praktiné reik§mé

1. Darbe pasiilyti nauji dinaminés vizualinés kriptografijos metodai, kai
deformuojama muaro gardelé svyruoja pagal tam tikra tikring forma
harmoniskai bei chaotidkai. Siy naujy metody detalus i¥nagrinéjimas
atveria  galimybes taikyti pasitlytus metodus mikro—opto—
elektromechaniniy sistemy optinei kontrolei.

2. Svarbiausias Sios disertacijos mokslinio naujumo elementas yra
dinaminés vizualiosios kriptografijos realizavimas dvimatése baigtiniy
elementy gardelése. Iki Siol zinomuose darbuose dinaminés vizualiosios
kriptografijos principu pagristas vaizdy slépimo algoritmas buvo
paremtas laike vidurkinty muaro juosty formavimusi vienmatése muaro
gardelése. Vaizdy kodavimo algoritmy pritaikymas dvimatéms
gardeléms smarkiai i$plecia pristatomy algoritmy taikymo sritis — tai ir
sudaro Sios disertacijos prakting reikSme.

Darbo rezultaty aprobavimas

Disertacijos tema paskelbti 8 moksliniai straipsniai, i§ jy 4 straipsniai
Mokslinés informacijos instituto (ISI) pagrindinio sgraso leidiniuose su citavimo
indeksu, 3 straipsniai pristatyti tarptautinése mokslinése konferencijose ir
atspausdinti konferencijy pranesimy medziagoje.

Disertacijos struktiira

Disertacijg sudaro jvadas, 3 pagrindiniai skyriai, iSvados, literatiiros Saltiniy
sarasas. Disertacijos apimtis — 92 puslapiai. Disertacijos pagrindinéje dalyje yra
66 paveikslai ir 98 $altiniy cituojamos literatiiros sarasas.

ISVADOS

1. Sukurta dinaminés vizualiosios kriptografijos schema
deformuojamosiose muaro gardelése. Si schema leidzia jgyvendinti
juodai balty vaizdy vizualinio slépimo schema baigtiniais elementais
aprasomy deformuojamyjy kiiny pavirSiuose. Tai, savo ruoztu, atveria
galimybes taikyti sias schemas mikro—opto—elektromechaniniy sistemy
optinei kontrolei.
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Sukurta dinaminés vizualiosios kriptografijos schema chaotiskai
svyruojanciose deformuojamosiose muaro gardelése. Tai leidzia
pritaikyti Sias schemas netiesiniy sistemy optinei kontrolei.

Sukurtos dvi dinaminés vizualiosios kriptografijos schemos dvimatése
muaro gardelése (elipsiniams svyravimams ir apskritiminei muaro
gardelei). Tai leidzia pastebimai praplésti dinaminés vizualiosios
kriptografijos taikymo ribas sudétingoms inzinerinéms sistemoms.
Sukurti optiniai stendai suformuoty schemy eksperimentiniam
validavimui.

UDK 004.932.2 (043.3)

SL344. 2019-02-07, 2,25 leidyb. apsk. 1. Tirazas 50 egz.
Isleido Kauno technologijos universitetas, K. Donelai¢io g. 73, 44249 Kaunas
Spausdino leidyklos ,,Technologija“ spaustuvé, Studenty g. 54, 51424 Kaunas

34



