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Abstract: Measurement error in an electromagnetic flow meter appears if magnetic and electric
properties of admixtures are different from that of the fluid. Expressions of the error, which depends
on volume concentration, permeability, and electric conductivity of particles were obtained by
approximating the particles’ shape as an ellipsoid. Components of the error, which appear inside
particles and outside particles in active zone of flow meter, with any canal form are investigated.
Expressions of the error are presented assuming that particles are oriented in various directions with
respect of the flow direction and are spinning. Different cases of magnetic and electric admixtures
properties are discussed. Error expression obtained for flows with nonconductive and nonmagnetic
particles coincides with experimental and modelling results obtained by other explorers for flows
with air bubbles. Magnetic particles with high electric conductivity are especially dangerous. Extra
measurement error in this case greatly depends on the shape of the particle. Measurement error
increases if particle shape differs from a sphere. The complementary measurement error can exceed
the volume concentration of particles by ten times if the ratio between the longest and the shortest
axes of ellipsoid exceeds 3.
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1. Introduction

Electromagnetic flow meters (EMFM) for measuring ionic fluid flow in closed completely
filled pipes are investigated in this paper. Theoretical foundations of these meters, summarized
by J.A. Shercliff [1], lead to the creation of accurate and reliable measuring instruments. Very important
impetus to the theory of such gauges was the concept of a virtual current, introduced by M.K. Bevir [2],
which allows for accurate estimation of the influence of every flow point over the measurement signal.
The ability of assessing the sensitivity to velocity distribution [3], the influence of channel electrical
properties on calibration [4,5], including the case when closed pipe is not completely filled [6], and
setting of weighting functions has been simplified [7]. The concept of virtual current is also widely
used for measuring multiphase flow with EMFM [8]. In the case when the concentration of other phase
admixtures is high, other methods are used: electrical resistance tomography [9–11], phase-isolation
method [12], or additional electrodes [13].

Further development of multiphase flow measurement theory is hampered by the insufficient
analysis regarding how different electric and magnetic properties of admixtures in the flow and
particles shape influence the accuracy of EMFM. This article summarizes results of the research carried
out by the Kaunas University of Technology.
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2. Global and Local Coordinate Systems

In electromagnetic flow meters, the electrode signal is formed by any point of the active zone (the
flow volume in which magnetic field acts). We linked the global rectangular coordinate system xyz
with the active zone. Weight of any active zone point x, y, z over the measurement signal depends
on the value of weight vector in this point W(x, y, z) = B(x, y, z)× J(x, y, z) [2]. In this expression,
B(x, y, z) is the vector of magnetic flux density and J(x, y, z) is the vector of virtual current density
in the point x, y, z. Virtual current density J(x, y, z) is a formal parameter. It can be calculated as the
density of the current equal to 1 A driving from one electrode to the second one when the fluid is at
rest [2].

Let us say the fluid flow is parallel to the z-axis, i.e., flow velocity has only component vz, and
the z-axis coincides with canal axis and the x-axis coincides with the line connecting the centers of
electrodes and the mean value of velocity equal to ν = 1 m/s. It is a normalized regime. Signal U can
be expressed in this case [14]: U =

∫
τa

Wz(x, y, z)dτa;

Wz(x, y, z) = Jx(x, y, z)By(x, y, z)− Jy(x, y, z)Bx(x, y, z);
(1)

where τa is the volume of the active zone; Wz(x,y,z) is the value of the weight vector z component in
the point x, y, z of the active zone; and Jx(x,y,z), Bx(x,y,z), Jy(x,y,z), By(x,y,z) are the x and y components
of the virtual current J and magnetic flux B densities vectors at this point.

Considering that the weight vector can be different in any point of the active zone, we express the
value of measurement signal U0 when there are no admixtures in the flow: U0 =

(
1
τa

∫
τa

Wz0dτa

)
· τa = Wz0τa;

Wz0 = Jx0By0 − Jy0Bx0;
(2)

where Jx0 = Jx0(x,y,z), Jy0 = Jy0(x,y,z), Bx0 = Bx0(x,y,z), By0 = By0(x,y,z) are the values of respective
components in the point x, y, z of the active zone without admixtures, Wz0, Jx0By0, and Jy0Bx0 are the
mean values of the weight vector z component and products of the respective components in all the
active zone values when the fluid flow is clean.

Expressions of the measurement signal errors when the fluid is contaminated by small magnetic
particles depending on the volume concentration, permeability, and electric conductivity of particles
are obtained in Reference [14] for spherical particles and for an ideal electromagnetic flow meter with
a rectangular duct and infinitely conductive large electrodes. The real shape of particles is different
from a sphere. It is important to investigate dependence of the measurement error on a shape of
admixture particles. We approximate particle shape using an ellipsoid. This shape allows for the
generalization of particles of very different forms. The limiting cases of ellipsoid are sphere, disc,
cylinder, lamella, and other.

Some different particular cases are investigated in References [15,16]. We generalize all cases for
ellipsoidal shape of particles and any form of canal.

The shape of admixtures was approximated using an ellipsoid, which can be orientated any way
with respect to the global coordinate system. We used a local rectangular coordinate system q, r, s,
where axes coincide with axes of the ellipsoid (see Figure 1). The equation of the ellipsoid in this
coordinate system is:

q2/a2 + r2/b2 + s2/c2 = 1 (3)

where a, b, c are the lengths of the ellipsoid semi-axes. We can obtain very different forms of particles
by varying ratios a/b and b/c.
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Figure 1. Global and local coordinate systems.

In a rectangular canal of a flow meter with wide electrodes and homogeneous fluid, both magnetic
field and virtual current lines are uniform. In a circular channel with spot electrodes, virtual current
lines are not uniform, but in an environment of small particles, they may be considered as uniform
with a slight error. Therefore, we suppose that irrespective of the meter design, lines of magnetic flux
and virtual current densities are distributed uniformly in the volume occupied by the particle before it
gets into the flow (see Figure 2a).
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Figure 2. Distribution of virtual current
→
J and magnetic flux density

→
B in the small part of canal

cross-section: (a) in homogeneous fluid, and (b) in the admixture particle and around it.

The distribution of virtual current and magnetic flux density in an ellipsoidal particle with
different electrical conductivity and permeability than that of the fluid can be analyzed using an
analogy of electrostatic, magnetic field, and electric current.

Let the single admixture particle of volume τp get into the active zone of the flow meter.
In Figure 2b, it is shown how lines of virtual current and magnetic flux density change if conductive
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magnetic ellipsoid enter a rectangular channel. We can see that values of
→
J and

→
B in comparison with

the clean fluid vary inside and outside the particle.
Signal U of the electrodes can be divided into two components:

U = U f

∣∣∣
τ=τa−τp

+ Up
∣∣
τ=τp

=
∫

τa−τp

Wz f dτ+
∫
τp

Wzpdτ (4)

Indexes f or p mean that signal U or weight function W are formed in the volume outside or in
admixture particle, correspondingly.

To find out the influence of the admixture over the electrode signal, it is necessary to investigate
the variation of magnetic flux and virtual current density distributions inside the particle and in the
active zone outside the particle.

3. Signal Error inside the Admixture Particle

We suppose that particles are small and distributed evenly in the flow.
The weight function inside the ellipsoidal particle can be calculated this way:

Wzp = JxpByp − JypBxp (5)

Using an electric, electric current, and magnetic fields analogy, and using relations obtained in
Reference [17], we can relate the components of virtual current and magnetic flux densities inside the
particle Jxp, Jyp, Jzp, Bxp, Byp, and Bzp with suitable components in the clean flow Jx0, Jy0, Jz0, Bx0, By0,
and Bz0 as follows: [

Jx p, Jy p, Jz p
]T

= [h][Aγ][h]T
[

Jx0, Jy0, Jz0
]T (6)[

Bx p, By p, Bz p
]T

= [h][Aµ][h]T
[
Bx0, By0, Bz0

]T (7)

where:

[Aγ] =

 Aγ
a 0 0

0 Aγ
b 0

0 0 Aγ
c

 (8)

Aγ
a = 1 + (Ca − 1)κγ

a , Aγ
b = 1 + (Cb − 1)κγ

b , Aγ
c = 1 + (Cc − 1)κγ

c (9)

κ
γ
a =

1−
(

γ f /γp

)
1 + (Ca − 1)

(
γ f /γp

) , κ
γ
b =

1−
(

γ f /γp

)
1 + (Cb − 1)

(
γ f /γp

) , κ
γ
c =

1−
(

γ f /γp

)
1 + (Cc − 1)

(
γ f /γp

) (10)

γp and γf are electrical conductivities of the particles and fluid, correspondingly.
There Ca, Cb, and Cc are the shape factors; κ

γ
a , κ

γ
b , and κ

γ
c are factors of electric properties, and κ

µ
a ,

κ
µ
b , and κ

µ
c are factors of magnetic properties.

Factors Aµ can be calculated using Equations (8)–(10) but replacing matrix [Aγ] with matrix [Aµ]:

[Aµ] =

 Aµ
a 0 0

0 Aµ
b 0

0 0 Aµ
c

 (11)

Aµ
a = 1 + (Ca − 1)κµ

a , Aµ
b = 1 + (Cb − 1)κµ

b , Aµ
c = 1 + (Cc − 1)κµ

c (12)

where

κ
µ
a =

1− (1/µp)

1 + (Ca − 1)(1/µp)
, κ

µ
b =

1−
(
1/µp

)
1 + (Cb − 1)

(
1/µp

) , κ
µ
c =

1−
(
1/µp

)
1 + (Cc − 1)

(
1/µp

) (13)



Energies 2019, 12, 772 5 of 16

µp is the permeability of particles.
Ellipsoid shape factors Ca, Cb, and Cc are Reference [17]:

Ca =
2

abc
∞∫
0

dw/
√
(w+a2)

3
(w+b2)(w+c2)

,

Cb = 2

abc
∞∫
0

dw/
√
(w+a2)(w+b2)

3
(w+c2)

,

Cc =
2

abc
∞∫
0

dw/
√
(w+a2)(w+b2)(w+c2)

3
.

(14)

If the local coordinate system is rotated about axis x of a global system by an angle ψ, about axis y
by an angle ν, and about axis z by an angle φ, elements of the matrix [h] have values as follows:

h11 = cos ν cos φ,
h12 = − sin φ cos ν,
h13 = sin ν,
h21 = cos ψ sin φ + sin ψ sin ν cos φ,
h22 = cos ψ cos φ− sin ψ sin ν sin φ,
h23 = − sin ψ cos ν,
h31 = sin ψ sin φ− cos ψ sin ν cos φ,
h32 = sin ψ cos φ + cos ψ sin ν sin φ,
h33 = cos ψ cos ν.

(15)

Equations (5)–(14) are obtained for the case when the longest semi-axis a coincides with the q-axis,
the semi-axis of the mean length b coincides with the r-axis, and the shortest semi-axis c coincides with
the s-axis of the local coordinate system.

In reality, particles can take any position with respect to the global coordinate system. Besides,
mostly they rotate intensely in the stream. Therefore, in Equation (5) average values of virtual current
and magnetic flux density must be estimated correspondingly Jpx, Jpy and Bpy, Bpx for any position of
the particle. First, the case is analyzed when the local coordinate system axes are rotated, respectively
at angles ψ, ν, and φ with respect to the axes of the global system, but ellipsoidal semi-axes a, b, and
c can be oriented in direction of any axis of the local system. Let us denote semi-axes directed in
the q direction as i, semi-axes directed in s direction as j, and semi-axes directed in r direction as k.
From Table 1, it can be seen that there are six different possible combinations of the local system axes
and ellipsoidal semi-axes. In this case, instead of matrices [Aγ] and [Aµ], matrices

[
Aγ

ijk

]
and

[
Aµ

ijk

]
are used: [

Aγ
ijk

]
=

 Aγ
i 0 0

0 Aγ
j 0

0 0 Aγ
k

,
[

Aµ
ijk

]
=

 Aµ
i 0 0

0 Aµ
j 0

0 0 Aµ
k

 (16)

Table 1. Possible orientations of ellipsoid semi-axes with respect to the local system axes.

Semi-axes

N i j k
1 a b c
2 b c a
3 c a b
4 a c b
5 b a c
6 c b a
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In Equations (6) and (7), using
[

Aγ
ijk

]
and

[
Aµ

ijk

]
instead of [Aγ] and [Aµ], and appreciating that

Jz0 = Bz0 = 0, we can express, respectively, Jxp, Jyp and Byp, Bxp as:

Jxp =
(

h2
11 Aγ

i + h2
12 Aγ

j + h2
13 Aγ

k

)
Jx0 +

(
h11h21 Aγ

i + h12h22 Aγ
j + h13h23 Aγ

k

)
Jy0 (17)

Jyp =
(

h11h21 Aγ
i + h12h22 Aγ

j + h13h23 Aγ
k

)
Jx0 +

(
h2

21 Aγ
i + h2

22 Aγ
j + h2

23 Aγ
k

)
Jy0 (18)

Bxp =
(

h2
11 Aµ

i + h2
12 Aµ

j + h2
13 Aµ

k

)
Bx0 +

(
h11h21 Aµ

i + h12h22 Aµ
j + h13h23 Aµ

k

)
By0 (19)

Byp =
(

h11h21 Aµ
i + h12h22 Aµ

j + h13h23 Aµ
k

)
Bx0 +

(
h2

21 Aµ
i + h2

22 Aµ
j + h2

23 Aµ
k

)
By0 (20)

The weight function of the electromagnetic flow meter signal is a vector product of vectors B and
J. Components of multiplication of collinear vectors are equal to zero. Therefore, the expression of the
weight function inside the ellipsoidal particle we get by using Equations (17)–(20) for Equation (5), and
eliminating of expression after multiplication the components with Jx0Bx0 and Jy0By0, is as follows:

Wzp =
[

h12h21(h12h21 − h11h22)Aγ
j Aµ

i + h11h22(h11h22 − h21h12)Aγ
i Aµ

j + h13h21(h13h21 − h11h23)Aγ
k Aµ

i

+h13h22(h13h22 − h12h23)Aγ
k Aµ

j + h11h23(h11h23 − h21h13)Aγ
i Aµ

k + h12h23(h12h23 − h13h22)Aγ
j Aµ

k

]
Jx0By0

−
[

h12h21(h12h21 − h11h22)Aµ
j Aγ

i + h11h22(h11h22 − h21h12)Aµ
i Aγ

j + h13h21(h13h21 − h11h23)Aµ
k Aγ

i

+h13h22(h13h22 − h12h23)Aµ
k Aγ

j + h11h23(h11h23 − h21h13)Aµ
i Aγ

k + h12h23(h12h23 − h13h22)Aµ
j Aγ

k
]

Jy0Bx0.

(21)

Any value of i, j, and k in Equation (21) are likely with the same probability, therefore in order to
calculate the average value Wzp in Equation (21), we replace any of products Aγ

ijk · Aµ
ijk by the average

Aγ Aµ, which is:

Aγ Aµ = 1/6
(

Aγ
a Aµ

b + Aγ
a Aµ

c + Aγ
b Aµ

a + Aγ
b Aµ

c + Aγ
c Aµ

a + Aγ
c Aµ

b

)
(22)

Then, the average of weight function Wzp is as follows:

Wzp = Aγ Aµ · H(ϕ, ν, ψ) ·Wz0 (23)

where
H(φ, v, ψ) =

[
h11

2(h22
2 + h23

2)+ h12
2(h21

2 + h23
2)+ h13

2(h21
2 + h22

2)]
−2(h11h22h12h21 + h11h23h13h21 + h12h23h13h22).

(24)

Please note that the Wzp expression is only a partial average when the local coordinate system is
rotated with respect to the global system, respectively, by angles ψ, ν, and φ. As these angles can take
any number, the global average Wzp may be obtained by entering H to Equation (23), where H is the
mean value of H(φ, ν, ψ) when angles φ, ν, ψ vary in the range [0, π/2]. Evaluating Equation (24) after

integration, we have: H = 8
π3

π/2∫
0

π/2∫
0

π/2∫
0

H(φ, ν, ψ)dψdφdν = 1.

The mean weight function value in the spinning ellipsoidal particle using Equation (23) is:

Wzp = H · Aγ Aµ ·Wz0 = Aγ Aµ ·Wz0 (25)

For the spinning particle, we can express the component of error δp caused by signal variation
inside the spinning particle using Equations (1), (3), (5), and (22) as follows:

δp =

(
Up −U0

)
τp

U0 · τa
=

(
Up

U0
− 1

)
· k =

(
Wzp

Wz0
− 1

)
· k =

(
Aγ Aµ − 1

)
· k (26)
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where Up is the average value of the signal inside the admixture particle, τp is the volume of the
particle, and:

k = τp/τa (27)

is the volume concentration of admixtures.
We express the error component δp via shape, electric, and magnetic properties factors using

Equations (9), (12), and (22) as follows:

δp = 1
6 k
{

2
[
(Ca − 1)

(
κ

γ
a + κ

µ
a

)
+ (Cb − 1)

(
κ

γ
b + κ

µ
b

)
+ (Cc − 1)

(
κ

γ
c + κ

µ
c

)]
+(Ca − 1)(Cb − 1)

(
κ

γ
a κ

µ
b + κ

γ
b κ

µ
a

)
+ (Ca − 1)(Cc − 1)

(
κ

γ
a κ

µ
c + κ

γ
c κ

µ
a

)
+(Cb − 1)(Cc − 1)

(
κ

γ
b κ

µ
c + κ

γ
c κ

µ
b

)}
.

(28)

As Equations (26)–(28) are the same for any ellipsoidal particle, they can be generalized for all
admixture particles. In this case τp is the volume of all admixture particles.

4. Error Due to Virtual Current and Magnetic Field Distortion

When a particle with volume τp and different from fluid physical properties gets into the active
zone, it distorts the magnetic field and virtual current in the residual active zone volume τa – τp.
We can write the variation of the electrode signal ∆Ud due to this distortion:

∆Ud =
∫

τa−τp

∆Wz f dτ, ∆Wz f = Wz f −Wz0 (29)

where Wz0 and Wz f are mean values of the weight vector z component at any point of volume outside
particle τa– τp in the clean fluid and in the fluid with admixtures, correspondingly.

For the ∆Ud investigation, we use the local ellipsoidal coordinate system ξ, η, ζ [17]. A link to this
system with the local rectangular coordinate system q, r, s is shown in Figure 3.

Figure 3. Rectangular q, r, s and ellipsoidal ξ, η, ζ local coordinate systems.
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The equation of ellipsoidal particle surface in the ellipsoidal coordinate system is ξ = 0. To calculate
function ∆Wz f (ξ, η, ζ), we use Green’s theorem written as follows:∫

τ−τp

gradβgradγ dτ =
∮
S

β(gradγdS)−
∫

τ−τp

βdivgradγ dτ (30)

Let us note that gradγ = eξ ∆Wz f (ξ, η, ζ) and β =
∫

hξdξ (hξ is the Lame coefficient of coordinate

ξ in ellipsoidal coordinate system). Then ∂β
∂ξ = hξ and gradβ = eξ

1
hξ

∂β
∂ξ = eξ . Surface S in the second

integral of Equation (30) is composed of the surfaces ξ = 0 and ξ = ξL > 0. There are no sources of J
and B in the volume τa–τp and divgradγ = div

[
eξ ∆Wz f (ξ, η, ζ)

]
= 0. Therefore, the Equation (30)

expresses the electrode signal variation ∆Ud because of virtual current and magnetic field distortion:

∆Ud =
∫

τa−τp

∆Wz f (ξ, η, ζ) dτ =
∮
S

[∫
hξdξ

]
S

∆Wz f (ξ, η, ζ) dS = Iξ=0 + Iξ=ξL (31)

where Iξ=0 and Iξ=ξL are the values of the surface integral on the particle surface and on the ξL =
const, correspondingly.

Let us investigate a particle with γp→∞ and µp→∞. On the surface ξ = 0 of such a particle, the
equality Wz∞ = (J× B)z = 0 is valid because vectors J and B are perpendicular to the surface at any
point. Therefore, their directions coincide and vector product [J×B] is equal to zero. This equality is
independent of the particle position with respect to the global coordinate system.

By this equality, we can express mean value of the variation ∆Wz∞(0) of the weight vector z
component on the surface of particle with γp→∞ and µp→∞:

∆Wz∞(0) = Wz∞ −Wz0 = −Wz0 = −
(

Jx0By0 − Jy0Bx0
)

(32)

In this case we can write integral Iξ =0 as follows:

Iξ=0 =
∫

Sξ=0

[∫
hξdξ

]
ξ=0

· ∆Wz∞(0) · hηhζdηdζ = −∆Wz0 ·
−c2∫
−b2

−b2∫
−a2

[∫
hξdξ

]
ξ=0

hηhζdηdζ = −∆Wz0 · τp (33)

With an increase of coordinate ξL > 0, the shape of ellipsoid ξ = ξL is nearer to the shape of
a sphere with radius R =

√
ξ + a2 (see Reference [17]) and integral Iξ=ξL can be expressed in spherical

coordinates. With an increase of R, IξL drops to zero very quickly: IξL =
(
−W0τp

)(
a3/R3) → 0.

Therefore, outside the particle with γp→∞ and µp→∞, the signal variation using Equations (31)
and (33) is:

∆Ud∞ = −Wz0 · τp (34)

In Reference [14], there were relations obtained between the variation mean values of the virtual
current density ∆Jp and ∆Jp∞, and magnetic flux density ∆Bp and ∆Bp∞ in the real particles and in
the particles with γp→∞ and µp→∞, correspondingly, for a spherical shape. We can use the obtained
equations for ellipsoidal particles in this way:

∆Jp = κγ · ∆Jp∞, ∆Bp = κµ · ∆Bp∞ (35)

For spinning particles, κγ and κµ are:

κγ =
(
κ

γ
a + κ

γ
b + κ

γ
c
)
/3, κµ =

(
κ

µ
a + κ

µ
b + κ

µ
c

)
/3 (36)
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The variation of weight vector z component using Equation (33) in the common case is:

∆Wz = ∆Jx ∆By − ∆Jy ∆Bx = κγ · κµ ·
(
∆Jx∞∆By∞ − ∆Jy∞∆Bx∞

)
= −κγ · κµ ·W0 (37)

The mean value of the product κγκµ was obtained by multiplying κγ by κµ from Equation (30).
As factors κγ and κµ are related by being perpendicular to each other in components ∆Jx(y) and ∆By(x),
we can only multiply factors κ

γ
a,b,c and κ

µ
a,b,c related with different ellipsoid axes. As a result, we have:

κγκµ = 1/6
(

κ
γ
a κ

µ
b + κ

γ
a κ

µ
c + κ

γ
b κ

µ
a + κ

γ
b κ

µ
c + κ

γ
c κ

µ
a + κ

γ
c κ

µ
b

)
(38)

In the common case, the mean value of the signal variation ∆Ud because of virtual current and
magnetic flux distortion is:

∆Ud = −κγ · κµ ·Wz0 · τp (39)

The error component δd due to the virtual current and magnetic flux distortion outside particles is:

δd =
∆Ud∫

τa−τb

Wz0 dτ
= −κγ · κµ ·

Wz0 · τp

Wz0 ·
(
τa − τp

) ≈ −κγ · κµ · k (40)

For all possible values of κγ and κµ, the value of δd lays in the interval [0, −k].

5. Error Due to Magnetic Flux Density Variation

If magnetic particles get into active zone of the EMFM mean value of permeability of all active
zone µm varies. This expression of µm was obtained for spherical magnetic particles in Reference [14]
by analogy with the expression in Reference [17] for the mean value of electrical permittivity of the
dilute suspension of spherical particles:

µm = 1 +
τp

τa
Aµ

s

(
1− 1

µp

)
(41)

where Aµ
s =

Bp
B0

, and B0, and Bp are the values of magnetic flux densities, correspondingly, in clean
fluid without particles and inside magnetic particle.

The influence of a spinning non-spherical particle to the mean value Bym of an external magnetic
field is the same as the influence of spherical particle but factor Aµ

s for ellipsoidal particle must
be exchanged with the mean value of factor Aµ. In the case of an ellipsoidal particle, factor Aµ

can be expressed by noting that magnetic flux density mean value variation has no influence on
virtual current:

Aµ = 1/3
(

Aµ
a + Aµ

b + Aµ
c

)
(42)

The mean value of the y component of magnetic flux density Bym in all volume τa (including
volume τp of particles) when magnetic particles get into the active zone is:

Bym = µmBy0 =

[
1 + Aµ

(
1− 1

µp

)
τp

τa

]
· By0 (43)

Noting that the mean value of magnetic flux density in the fluid volume τa–τp outside particles is
By f , we can express the Bym another way:

Bym = By f ·
τa − τp

τa
+ Aµ By0 ·

τp

τa
(44)
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Comparing Equations (43) and (44), we obtain the expression for the mean value of the increment
of magnetic flux density in volume τa–τp, i.e., outside particle, ∆By f :

∆By f = By f − By0 =

(
1− Aµ

µp

)
·

τp

τa − τp
· By0 (45)

For spinning particles, the increment ∆Bx f is expressed via analogy to ∆By f :

∆Bx f = Bx f − Bx0 =

(
1− Aµ

µp

)
·

τp

τa − τp
· Bx0 (46)

The mean variation value of signal ∆UB in the active zone outside particle due to an increment of
the mean value of magnetic flux density, supposing that virtual current is not varied, and evaluating
Equations (45) and (46) is:

∆UB =
∫

τa−τp

∆Wz dτ =
∫

τa−τp

(
Jx0∆By f − Jy0∆Bx f

)
dτ = Wz0

(
1− Aµ

µp

)
· τp

τa−τp
·
∫

τa−τp

dτ = Wz0

(
1− Aµ

µp

)
· τp (47)

We can obtain from Equation (13):

1− 1
µp

= κ
µ
a +

1
µp
· κµ

a · (Ca − 1) (48)

After transformation and evaluating Equation (12) we have:

1− 1
µp
·
[
1 + κ

µ
a · (Ca − 1)

]
= 1− Aµ

a
µp

= κ
µ
a (49)

By analogy, we obtain

1−
Aµ

b
µp

= κ
µ
b (50)

1− Aµ
c

µp
= κ

µ
c (51)

After summing the left and right sides of Equations (49)–(51), dividing both sides by 3, and
evaluating Equation (44), we have:

1− Aµ

µp
=

1
3

(
κ

µ
a + κ

µ
b + κ

µ
c

)
= κµ (52)

Using Equation (52) with Equation (47), we can express relative error δB due to variation ∆UB
analogically to δp:

δB =
∆UB∫

τa−τp

Wz0 dτ
=

Wz0 · κµ · τp

Wz0 ·
(
τa − τp

) = κµ · k
1− k

≈ κµ · k (53)

6. Error Due to the Virtual Current Variation

Using the concept of a virtual current [2], we obtain the distribution of its density if electrodes
of flowmeter are connected to a source of 1 A. Therefore, mean values of virtual current density
components Jx and Jy cannot vary in cross-sections perpendicular to the axes x and y, correspondingly.
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Variation of the mean value of virtual current density inside the particle may be expressed as:

∆Jxp = Jxp − ∆Jx0 =
(

Aγ − 1
)

Jx0 (54)

For spinning particles, we must calculate Aγ as a mean value analogically to Equation (36) for Aµ.
We express the summands using Equation (9):

Aγ =
(

Aγ
a + Aγ

b + Aγ
c
)
/3 = 1 +

[
(Ca − 1)κγ

a + (Cb − 1)κγ
b + (Cc − 1)κγ

c
]
/3 (55)

Variation of ∆Jxp in volume τp is the reason for the variation of the mean value of component
∆Jx f in the fluid outside the particle but in volume τa–τp and with a contrary sign. Therefore:

∆Jx f = −∆Jxp
τp

τa − τp
(56)

The relative variation of the mean value of virtual current density x component in the volume
of active zone outside of particles τa–τp: δJ = ∆Jx f /Jx0. For spinning particles, values Jy0 and ∆Jy f

can be related to the same equation as Jx0 and ∆Jx f :
∣∣∣∆Jy f

∣∣∣ = δJ

∣∣∣Jy0

∣∣∣. Evaluating these relations, we

can express mean value of variation of the z component of the weight vector ∆WJ due to variation of
virtual current density outside particle is:

∆WJ = ∆JxBy0 − ∆JyBx0 = δJ ·
(

Jx0By0 − Jy0Bx0
)
= δJW0 (57)

By integrating both sides of this equation in volume τa–τp, we obtain the electrode signal variation
due to the virtual current density mean value variation outside particles ∆UJ :

∆UJ =
∫

τa−τp

∆WJ dτ =
∫

τa−τp

δJW0 dτ = δJU0 (58)

Therefore, δJ represents a relative error caused by virtual current variation outside particle. It can
be expressed using Equations (54) and (56):

δJ =
∆Jx f

Jx0
= −

∆Jxp

Jx0
·

τp

τa − τp
= −

(
Aγ − 1

) k
1− k

≈ −
(

Aγ − 1
)
k (59)

Substituting Equation (55) into Equation (59), we express the partial error that appears due to
variation of the mean value of virtual current outside particles as follows:

δJ = −1/3
[
(Ca − 1)κγ

a + (Cb − 1)κγ
b + (Cc − 1)κγ

c
]
k (60)

7. Common Expression of Error and Expressions for Partial Cases

The common value of the error δ when the flow has some admixtures is equal to the sum of
expressions of partial errors Equations (26), (40), (53), and (60). It can be expressed as:

δ = δp + δd + δB + δJ =
1
6

{
CaCb

(
κ

γ
a κ

µ
b + κ

γ
b κ

µ
a

)
+ CbCc

(
κ

γ
b κ

µ
c + κ

γ
c κ

µ
b

)
+ CcCa

(
κ

γ
c κ

µ
a + κ

µ
a κ

γ
c

)
−Ca

[
κ

γ
a

(
κ

µ
b + κ

µ
c

)
+ κ

µ
a
(
κ

γ
b + κ

γ
c − 2

)]
− Cb

[
κ

γ
b

(
κ

µ
c + κ

µ
a

)
+ κ

µ
b
(
κ

γ
c + κ

γ
a − 2

)]
−Cc

[
κ

γ
c

(
κ

µ
a + κ

µ
b

)
+ κ

µ
c
(
κ

γ
a + κ

γ
b − 2

)]}
· k .

(61)

Expression of maximum error value δm: Maximum value of error δm will be in the case if γp→∞,
µp→∞. We can write κ

γ
a = κ

γ
b = κ

γ
c = κ

µ
a = κ

µ
b = κ

µ
c = 1 in this case, and δm can be expressed this way:

δm = 1/3[Ca(Cb − 1) + Cb(Cc − 1) + Cc(Ca − 1)]k (62)
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For spherical particles Ca = Cb = Cc = 3 and δm = 6. An analogous result was obtained in
Reference [14] for a rectangular duct.

Expression of common error δ1, if electrical conductivity of magnetic particles is close to
conductivity of fluid: If electrical conductivity of magnetic particles with µp >> 1 is comparable
with electrical conductivity of fluid γp ∼= γf, we obtain: κ

γ
a ≈ κ

γ
b ≈ κ

γ
c ≈ 0. The value of the error δ1 in

this case is:
δ1 = (1/3) ·

(
Caκ

µ
a + Cbκ

µ
b + Ccκ

µ
c

)
(63)

For spherical particles, δ1 is in the interval [0, k]. It reaches the maximum value for
magnetic particles.

Expression of error δn for nonconductive magnetic particles: These equations are correct for
nonconductive γp << γf magnetic particles with µp >> 1: κ

γ
a = −1/(Ca − 1), κ

γ
b = −1/(Cb − 1),

κ
γ
c = −1/(Cc − 1), and Aγ

a = Aγ
b = Aγ

c = 0. Value of the error in this case δn is:

δn =
1
3

(
3 +

1
Ca − 1

+
1

Cb − 1
+

1
Cc − 1

)
k (64)

Value of error δnm when admixtures are non-magnetic (µp = 1): We note the common error for
non-magnetic particles by δnm. These equations are correct for the following case: Aµ

a = Aµ
b = Aµ

c = 1,

δd = 0, δp =
[

1
3
(

Aγ
a + Aγ

b + Aγ
c
)
− 1
]
· k, δB = 0, and δJ = −

[
1
3
(

Aγ
a + Aγ

b + Aγ
c
)
− 1
]
· k

1−k . We obtain,
after summation:

δnm = −
[

1
3
(

Aγ
a + Aγ

b + Aγ
c
)
− 1
]
· k2

1− k
≈ −

[
1
3
(

Aγ
a + Aγ

b + Aγ
c
)
− 1
]
· k2 (65)

In case of non-conducting, for example, gaseous admixtures, we have Aγ
a = Aγ

b = Aγ
c = 0 and

δnm = −k2/(1− k). In Reference [18], Bernier and Brennen obtained electrode signal of electromagnetic
flow meter Ua = U0/(1− k) for flow with a concentration of air bubbles k, where the U0 signal for
the same fluid flow Q0 without air. As the total flow of suspension is Q0(1 + k), the signal must be
U0(1 + k).

Therefore, the suspension is measured with error δBB = U0

(
1 + k− 1

1−k

)
/U0 = − k2

1−k . This
result coincides with the result obtained in this paper: δBB = δnm. Analogical results are obtained in
References [19,20] too.

The measurement error for non-conducting or spherical non-magnetic particles has appreciable
value when the volume concentration of particles exceeds 5%. The measurement uncertainty
for conductive and elongate particles can be appreciable in case of lower particle concentration.
For particles with high conductivity, Equation (59) will be δnm|γp→∞ ≈ −

[
1
3 (Ca + Cb + Cc)− 1

]
· k2.

8. Modelling

We calculated range of meter transfer coefficients KFmaxmax and KFnmax variation in the case of very
conductive and nonconductive magnetic particles, correspondingly, using program package MATLAB
(7.0.1, MathWorks, Natick, MA, USA). The values Ca, Cb, Cc were calculated using Equation (6) and
the values of factors KFmaxmax and KFnmax using Equation (19), when c > b > a and ratios e = b/a and
g = c/b were varied in the intervals [0.1, 0.95] with the step size of 0.05. Results are presented in
Figures 4 and 5.

It can be seen that shape of the particle had a small influence on the measurement error of
magnetic particles when the particles were not conductive. The maximum possible measurement error
was determined practically using particle volume concentration in this case.

When particles were conductive, the shape of the particle had a great impact on the
measurement error.
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Measurement error for non-magnetic admixture particles was proportional to the second power
of relative volume concentration k2, but it can be valuable for a small concentration in the case of
very elongated particles. For example, let us say metallic non-magnetic particle, whose shape is
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a rectangular parallelepiped 0.1 × 1 × 10 mm3, is in an active fluid volume of an electromagnetic
flow meter. This particle can be approximated as an ellipsoid with ratios of semi axes: e = b/a = 10
and g = c/b = 10. The value of factor KFnmax was equal to 130.7 (see Figure 5). Extra measurement
error was equal to 1% if the relative volume concentration was equal to 0.87% in this case. Very
elongated and very conductive magnetic particles with γp >> γm and µp >> 1 were especially
dangerous. We obtained from Figure 5 that for very conductive magnetic particles with dimensions
0.1 × 1 × 10 mm3, KFmaxmax ≈ 1434 and δmaxmax ≈ 1434 k. Let this particle get into an active zone
of electromagnetic flow meter with a rectangular 30 × 20 mm2 channel and plain electrodes with
width l = 10 mm. The active fluid volume, in which the main part of electrode signal was formed, was
evaluated as τa ≈ 30× 20× 10 = 6000 mm3. The particle volume was 1 mm3 and volume concentration
was k ≈ 1/6000 ≈ 1.67 × 10–4. Therefore, in the time interval when the particle flows in the active fluid
volume, the extra measurement error was δmaxmax ≈ 24%.

9. Discussion and Conclusions

Analysis made in this paper allows for the reliable assessment of the error of an electromagnetic
flow meter with admixtures in EMFM, depending on particles’ shape, and electric and magnetic
properties, if concentration of admixtures in the fluid does not exceed 5–10%. By approximating
particles as ellipsoids, a variety of different particle forms may be evaluated. Admixtures may be solid,
liquid, or gaseous. Analysis was made with the assumption that fluid flow was turbulent and particles
of admixtures were spinning. The maximum error was caused by long and narrow magnetic particles
with higher electrical conductivity than of the fluid. If the ratio between length and width a/b was also
a ratio between width and height b/c that exceeded 10, error may exceed the relative concentration of
particles k up to 1000 times. Cases like this are almost impossible in turbulent flow, as long and narrow
particles break up in such a flow. However, if the concentration of magnetic conductive particles is
sufficient, the error is not less than 6k. The latter value was obtained for spherical particles. If the
ratio between the longest and the shortest axis of particle cross-section did not exceed 3, the error was
δmaxmax ≈ (11–12)·k. Therefore, if the concentration of such particles is high enough, the accuracy of
measurement significantly drops.

In case of laminar flow because of very long particles error should not increase highly as oblong
particles orientate along the flow.

Conclusions reached in the analysis were verified using MATLAB software. Verification of the
results done by other authors [18–20], both in measuring and modeling flows with air bubbles, are
especially valuable.

Recently, special attention is paid to the application of electromagnetic flow meters for measuring
flows of several phases [8–13]. Results of this analysis may be successfully applied there too.

In the near future, the authors are going to verify results using finite elements method using
ANSYS and to verify the model with existing experimental results obtained in the standardized test
rigs for EMFM calibration. Also, the authors will focus on applying analyzed methods for multiphase
flows with significant concentration of different phases.
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writing the paper.
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