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Abstract: In this work, we present the possibility to reduce the amount of fluoride ions in silica gel
waste by using different techniques or to immobilize these ions by creating products of commercial
value. The leaching of fluoride ions from silica gel waste to the liquid medium was done under static
and dynamic conditions. It was determined that the removal of fluoride ions from this compound
depends on various factors, such as dissociation, solubility, the w/s ratio, reaction temperature,
leaching conditions, the adsorption properties of silica gel waste, and others. The obtained results
showed that, by applying different techniques, the quantity of fluoride ions can be reduced by 60%,
while obtained water was neutralized by calcium hydroxide. Additionally, it was determined that
silica gel waste is a promising raw material for the hydrothermal synthesis of a stable compound
containing fluoride ions–cuspidine.
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1. Introduction

The disposal of industrial by-products is becoming an increasing concern for many industries due
to the large amounts of wastes generated and increasing costs of operating landfills in combination
with the scarcity of landfill sites [1–8]. Accordingly, the recycling and reutilization of industrial waste
and by-products are a subject of great importance [9–12].

Large amounts of silica gel waste contaminated with fluoride ions are generated in the industrial
production of aluminum fluoride [13,14]. In fact, one of the main fertilizer producers in Lithuania, a
joint-stock company “Lifosa”, generates approximately 15 thousand tons per year of the mentioned
waste during the manufacture of 17 thousand tons of AlF3 [15]. In the process of obtaining AlF3,
the latter compound is formed in the reaction of neutralizing hexafluorosilicic acid with aluminum
hydroxide [13,14]:

H2SiF6 + 2Al(OH)3 → 2AlF3 + SiO2·nH2O + H2O + Q (1)

The structure of the precipitated silica gel waste depends on many variables: the duration of the
reaction, the temperature, the way in which reagents are dosed, the structure of Al(OH)3 used in the
process, and the purity of the applied fluorosilicic acid [13]. However, due to the strong bonding of
fluoride ions to the crystal structure of the latter compound, the purification of silica gel waste poses a
great challenge. Thus, because of the high cost of silica gel waste processing, it is preferably discharged
in landfill sites [13,16–18]. For this reason, long-term storage and maintenance of silica gel waste are
currently facing many environmental concerns, which are associated with the dumps and disposal
sites of this by-product due to the leaching of fluoride into the surface and underground water [13,16].
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According to literature [12,19–24], the content of toxic ions can be reduced in two ways: by removing
them from waste or by reducing their mobility in the environment–immobilization.

The removal or reduction of fluoride ions from silica gel waste is a complex process, thus there is
a lack of data in the literature. To our knowledge, in 2014, Iljina et al. tried to purify silica gel waste by
performing leaching experiments [17]. However, the results of these experiments demonstrated that
the concentration of F− ions was only decreased from 8.64% to 8.03% and the remaining amount of
fluoride ions was adsorbed by the main compound–silica dioxide. In the case of success, silica gel with
a low content of F− ions and water contaminated with F− ions can be obtained. The silica gel with
a lower content of F− ions (<5%) can be used as an SiO2 source in some industries [25–29], and only
LTD “Alufluor AB” [30] sells this product worldwide. Meanwhile, wastewater contaminated with F−

ions can be neutralized by adding Ca(OH)2 or CaCO3 [31,32]. During neutralization, the obtained
CaF2 may be reused as a raw material or an additive in several industrial applications. Mainly, CaF2 is
used for the manufacture of hydrofluoric acid and as a flux in steel or ceramic industries [31,33]. The
manufacture of HF requires a high purity of calcium fluoride, while steel or ceramic industries require
only 60–97% purity.

According to the literature, untreated silica gel waste can be immobilized in concrete stone [14,19];
however, due to effect of F− ions on the environment, the application in cement industry is limited.
Also, F− ions can be bound into stable compounds during the hydrothermal synthesis of lower basicity
calcium silicates hydrates [17,18,34]. For these reasons, it may be possible to use silica gel waste for
the synthesis of cuspidine (3CaO·2SiO2·CaF2). This compound is generally used as mold flux, which
controls the horizontal mold heat transfer and lubricates the solidified steel shell from the oscillating
mold [35,36]. According to Jung et al. [37], cuspidine is a key ingredient in the continuous casting
process to improve the quality of the cast slabs.

As a matter of fact, in the context of reducing environmental issues and enhancing economic
benefits, technologies for converting waste materials into products of commercial value are in great
demand [14,17,18,29,34,38]. However, the literature concerning the successful application of silica gel
waste contaminated with F− ions is scarce.

For this reason, the aim of this work is to reduce F− ions in silica gel waste by using different
techniques and/or immobilize these ions by creating products of commercial value.

2. Materials and Methods

2.1. Raw Materials

In this work, the following reagents were used: silica gel waste (SGW), i.e., a waste product of AlF3

production in the chemical plant of Lifosa (Kėdainiai, Lithuania), which was dried for 48 h at 50 ◦C,
with a specific surface area Sa of 281.01 m2/kg, by a CILAS LD 1090 granulometer; and calcium oxide
from Ca(OH)2 (“Stanchem”, Poland), additionally burned at 550 ◦C temperature for 1 h and ground for
30 s in a vibrating cup “Pulverisette 9” mill at 600 rpm, with a quantity of free CaO equal to 98.7%.

2.2. Methodology

2.2.1. The Chemical Analysis

A standard method of SiO2 chemical analysis. A total of 1 g of the sample was mixed with sodium
and potassium carbonate mixture (6 g) and put in a platinum crucible. The crucible was placed in a
furnace and melted at a 900–1000 ◦C temperature for 1 h. After fusion, in order to solidify the melt
on the crucible walls, the sample was placed on a 200 cm3 porcelain plate with distilled water. Then,
the distilled water was removed and a required amount of 10% of HCl was added and mixed until
almost all the CO2 gas had been released from the solution. After that, the solution in the porcelain
plate was heated on the sand bath until it evaporated. The residue formed was mixed with a few
drops of concentrated HCl acid and left to cool down. After 30 min, in order to dissolve chlorides,
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hot distilled water was added to the porcelain plate. Then, the solution with residue consisting of
SiO2 was filtered through an ash-free filter and rinsed with distilled water to eliminate chloride ions
(the presence of chloride ions was tested by adding one drop of clean filtrate and a drop of 1% AgNO3

solution on a glass). The obtained filtrate was used for the second chemical analysis of SiO2 and, finally,
both filtrate papers were put in the crucibles and heated at 1000 ◦C for 1 h. The amount of SiO2 was
calculated by using the equation:

SiO2 = (a1·100)/a, % (2)

where a1 is the mass of heated residue after the experiment, g; and a is the initial mass of the sample, g.
The determination of fluoride. A total of 1 g of sample was put on a platinum plate and mixed with

10 g of sodium and potassium hydroxide mixture (5:7 of NaOH and KOH). After that, the platinum
plate was put on the sand bath and heated till the mixture was melted. During the heating, the melt
was vigorously stirred with a platinum spatula and then, it was left to cool down. Afterwards, 150 cm3

of distilled water was poured onto the platinum plate and heated on the sand bath till the formed salts
were melted. Then, in order to bind the fluoride ions, 15 g of chemically pure (NH4)2CO3 powder
was added into the solution and evaporated till the dry salt was formed. After that, the residue was
mixed with 150 cm3 of distilled water and heated. A hot solution with precipitates was poured into a
250 cm3 flask and cooled down. Then, it was diluted with water to the indicated level and filtered off.
Before measurements, TISAB II was added to each sample (volume ratio 1:1). The concentrations of
fluoride ions in the solution were measured by using a Metler Toledo T70 potentiometer. The error of
the selective electrode for F− ions is ±1 ppm (0.0001%). The concentration of F− was calculated as the
arithmetic mean of the three individual results. The measurement deviations were below 3%.

2.2.2. The Leaching of Fluoride Ions

The leaching of F− ions from silica gel waste to the liquid medium was done by applying
different techniques:

(1) Leaching of F− ions under static conditions; in order to reach the water-to-solid (w/s) ratios of
2, 4, 6, 8, and 100, 10 g of silica gel waste was mixed with distilled water and kept for 24 h at 25 and
55 ◦C temperatures. After leaching, the suspensions were filtered off, and the products were dried at a
50 ◦C ± 5 temperature for 24 h.

(2) Leaching of F− ions under dynamic conditions by using continuous distilled water (25 ◦C,
by applying vacuum 0.6–0.7 bar) flow, which was applied on 10 g of silica gel waste till the
water-to-solid (w/s) ratio reached the value of 25, 50, 100, and 200. After the process, the products
were dried at a 50 ◦C ± 5 temperature for 24 h.

(3) F− ions leaching in cycles under dynamic conditions. A total count of 20 cycles were carried
out during this experiment, in which a total amount of 10 g of SGW was treated with 50 mL of distilled
water in each step till the w/s ratio reached 100. Different temperature water was used (25, 35, 45,
and 55 ◦C) for this experiment. After each cycle, the obtained products were filtered off and dried
(50 ◦C ± 5; 24 h) at the end of the process.

2.2.3. The Application of Silica Gel Waste

The synthesis of dibasic calcium silicate hydrates by using silica gel waste was performed in the
mixture, with a molar ratio of C/S (CaO/SiO2) that was equal to 2. The hydrothermal synthesis was
carried out in unstirred suspensions, under saturated steam pressure at 200 ◦C temperature for 16, 24,
48, and 72 h by applying extra argon gas (10 bar) [39].

2.3. Instrumental Analysis

The samples were characterised by powder X-ray diffraction (XRD; with a D8 Advance X-ray
diffractometer), differential scanning calorimetry (DSC; with Netzsch DSC214 Polyma instrument),
X-ray fluorescence spectroscopy (XRF; with a Bruker X-ray S8 Tiger WD spectrometer), a grain-size
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analyzer (CILAS 1090 LD), and scanning electron microscopy (SEM; with a JEOL JSM-7600F
instrument) [17,18,34,39].

The density of samples was measured using a Quantachrome “Ultrapyc 1200e” gas pycnometer
under helium atmosphere; the number of measurements was 5 and accuracy—0.1 kg/m3. The value of
pH was measured with a Hanna instrument (Hi 9321, microprocessor pH meter, Hanna Instruments,
Woonsocket, RI, USA). The measurements of the value of pH were repeated three times, and deviations
were below 2%.

3. Results and Discussion

3.1. The Properties of Silica Gel Waste (SGW)

In the first part of this work, the properties of silica gel waste (SGW) were examined in detail.
The chemical analysis data showed that dried (50 ◦C, 48 h) SGW consists of 79.0% SiO2 and 10.0% F−

ions (Figure 1a). Yet almost the same tendency was observed by applying XRF: it was determined
that SGW contains 36.2% silica, which is equivalent to 78.9% SiO2 (Figure 1a). Moreover, 2.5% of Al3+

ions and traces of other elements are also present in the mentioned compound (Figure 1a). As other
authors’ work showed, the chemical composition of SGW strongly depends on the conditions of AlF3

manufacture [17,18].
The previous results were in a good agreement with the data of XRD analysis. AlF3·3H2O (PDF

00-035-0827, d-spacing = 0.545; 0.386; 0.329; 0.244 nm) and the amorphous silicon dioxide, which
corresponds to a broad basal reflection in a 18–37◦ diffraction angle range, were observed in the XRD
pattern of SGW (Figure 1b).

Moreover, the results of particle size distribution analysis showed that the diameter of the latter
compound particles varied in a 0.03–170 µm range, while the particles with a size of 34–72 µm were
dominant (Figure 1c). It was also determined that the surface area and density of silica gel waste were
equal to 281.01 m2/kg and 2141 kg/m3, respectively.
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Figure 1. The chemical composition (a), XRD pattern (b), and particle size distribution (c) of dried
silica gel waste. Indexes: A—AlF3·3H2O.

The results of chemical composition were proved by the data of differential scanning calorimetry.
In the DSC curve, a two-step decomposition of AlF3·3H2O was observed at 146 and 165 ◦C
temperatures, in which the quantity of the heat flow was equal to: 2.78 J/g for AlF3·3H2O →
AlF3·0.5H2O + 2.5H2O and 33.62 J/g for AlF3·0.5H2O→AlF3 + 0.5H2O, respectively (Figure 2a) [40,41].
Meanwhile, the third endothermic effect, which is assigned to the dehydration of silica gel
(SiO2·nH2O→ SiO2 + nH2O), was noticed at 188 ◦C. These results were confirmed by the experiment
of water vapor adsorption: when the ratio of relative water vapor pressure (p/p0) was equal to 1.0,
the dehydration heat of silica gel waste significantly increased from 59 to 189 J/g (Figure 2b), and this
process overlapped with the endothermic effect assigned to the decomposition of AlF3·3H2O (Figure 2).
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Figure 2. DSC curves of silica gel waste samples before (a) and after water vapor adsorption (p/p0 = 1.0) (b).

To fully understand the thermal behavior of SGW, the calcination of this compound was carried out
in a 50–1000 ◦C temperature range (Figure 3). Although the typical diffraction maximum characteristic
of AlF3·3H2O slightly decreased with increasing temperature, it remained stable till 165 ◦C and fully
decomposed at 188 ◦C (Figure 3). In a higher temperature range (188–550 ◦C), a low-intensity peak
(d-spacing = 0.355 nm) at a ~25◦ diffraction angle was noticed and could be assigned to other anhydrous
aluminum fluoride phases. Besides, when the temperature of calcination was increased to 1000 ◦C,
due to the reaction between aluminium containing components and SiO2, mullite (Al4.95·Si1.05·O9.52;
PDF 00-015-0776; d-spacing = 0.341; 0.541; 0.270 nm) was formed in calcination products (Figure 3).
It is worth mentioning that F− ions are strongly bound in the structure of silica gel waste, because
the performed chemical analysis data of calcined SGW (188 and 550 ◦C) showed that the quantity of
fluoride ions in a solid is equal to ~9.8%.
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3.2. The Leaching Peculiarities of F− Ions under Static and Dynamic Conditions

In the second part of this work, the leaching peculiarities of F− ions under static and dynamic
conditions were examined by using dried SGW, when the water-to-solid (w/s) ratios varied from 2
to 200 and the temperature of the reaction was equal to 25, 35, 45, and 55 ◦C. It was determined that
under static conditions, the water-to-solid (w/s) ratio, as well as the reaction temperature, strongly
affected the stability of the main compound containing F− ions in SGW, AlF3·3H2O (Figure 4). At a
25 ◦C temperature, when the w/s ratio reached 100, the intensity of diffraction peaks characteristic of
AlF3·3H2O decreased by 3.1 times (Figure 4). It was determined that, even when the w/s ratio was
equal to 200, a small amount of the mentioned compound was present in SGW. Meanwhile, the increase
of reaction temperature positively affected the decomposition of AlF3·3H2O: when the temperature
was equal to 45–55 ◦C, and AlF3·3H2O was fully removed from the solid (Figure 4).

Furthermore, the data of the chemical analysis of silica gel waste treated under static conditions
at 25 ◦C (w/s = 100) showed that the amount of F− ions released into the liquid medium was equal to
~49% from the total amount of mentioned ions in SGW (Table 1). However, when the water-to-solid
ratio was increased two times, the amount of F− ions released into the liquid medium increased
slightly. It was also observed that, by increasing the w/s ratio from 2 to 100, the value of the pH of
the liquid medium rose by two times (Table 1). It is worth noting that a higher reaction temperature
has a positive effect on the quantity of released F− ions as it increased by 4% and 9% after treatment
at a 45 ◦C and 55 ◦C temperature, respectively. In spite of the mentioned fact, the value of the pH of
the liquid medium was kept almost the same (Table 1). It is worth mentioning that Iljina et al. [17],
reported that during the leaching of SGW, AlF3·3H2O fully decomposed when the water to solid ratio
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was equal to 500; however, the concentration of F− ions decreased slightly (~6% from total amount of
F− ions). The differences between the amount of F− ions released from SGW (~8 times lower according
to Iljina et al. [17]) can be explained by the short time of leaching (1 h), and as a result, compounds
containing fluoride ions were not destructed. In addition, more successful results were obtained by
Krysztafkiewicz et al. [42], where the F− ions concentration was reduced by eight times; however, the
initial concentration of mentioned ions was only equal to 1.6%, and there is no data about the water to
solid ratio.
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Indexes: A—AlF3·3H2O.

Table 1. The parameters of fluoride ions leaching under static conditions.

Sample Name * The Amount of F−

Ions in Solid, %
The Amount of

Released F− Ions, %
pH of Liquid

Medium

SGW-25 ◦C-2 - 1.53
SGW-25 ◦C-4 - 1.76
SGW-25 ◦C-6 - 1.95
SGW-25 ◦C-8 - 2.06

SGW-25 ◦C-100 5.08 49.3 2.94
SGW-25 ◦C-200 4.71 53.1 3.02
SGW-35 ◦C-100 4.92 50.9 2.94
SGW-45 ◦C-100 4.68 53.3 2.92
SGW-55 ◦C-100 4.21 58.0 2.90

*: the sample names were chosen according to the conditions of the experiment: SGW-25 ◦C-2—silica gel waste
sample, when leaching temperature was equal to 25 ◦C and w/s ratio—2; SGW-25 ◦C-4—silica gel waste sample,
when leaching temperature was equal to 25 ◦C and w/s ratio—4 and etc. While the label SGW-55 ◦C-100 meant the
silica gel waste sample, when leaching temperature was equal to 55 ◦C and w/s ratio—100.
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The effect of F− ions leaching under static conditions is clearly seen in SEM micrographs:
the untreated SGW sample showed an amorphous mass of SiO2·nH2O and uncertain form
agglomerates–crystals (Figure 5a). Meanwhile, in the sample after the treatment (w/s = 100, 25 ◦C),
the mentioned agglomerates were disrupted and only globules with a size of ~0.5–1 µm of SiO2·nH2O
were observed (Figure 5b). Besides, the results of EDX analysis showed that F− ions are distributed
over the whole structure of silica gel waste (Figure 5c); while in a case of the treated sample, they are
removed from its surface and are more concentrated in the center of the particles (Figure 5d).
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According to the previous results given in Figure 3, the influence of F− ions leaching on the
properties of SGW was examined at 50 and 188 ◦C temperatures. It was determined that both the
density and loss on ignition strongly depend on the w/s ratio and temperature of the reaction.
In comparison with untreated samples, due to the structural alterations of silica gel waste during the
leaching of F− ions, the density of the latter compound significantly increased from 2140 to 2708 kg/m3

(Table 2). Meanwhile, the loss on ignition decreased with an increasing w/s ratio and temperature of
the reaction (Table 2).
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Table 2. The density and loss on ignition of silica gel waste before and after the leaching and calcination
in a 50–188 ◦C temperature range.

Sample Name * Density, kg/m3

Loss on Ignition, %

Temperature, ◦C

50 188

Untreated SGW 2141 50.81 53.39
SGW-25 ◦C-2 2263 44.33 49.70

SGW-25 ◦C-100 2457 35.16 39.23
SGW-55 ◦C-100 2708 32.28 37.55

*: the sample names were chosen according to the conditions of the experiment: SGW-25 ◦C-20—silica gel waste
sample, when leaching temperature was equal to 25 ◦C and w/s ratio—20; SGW-25 ◦C-100—silica gel waste sample,
when leaching temperature was equal to 25 ◦C and w/s ratio—100; and SGW-55 ◦C-100—the silica gel waste sample,
when leaching temperature was equal to 55 ◦C and w/s ratio—100.

Thus, it is clearly seen that after leaching under static conditions, the amount of F− ions in
SGW can be reduced from 10% to lower than 5% and such a product can be sold worldwide [30].
However, the leaching process under static conditions requires a high amount of water (w/s = 100)
and is time-consuming. For this reason, in order to reduce the water to solid ratio and shorten the
interaction time, in the next stage of this research, the leaching of F− ions was performed under
dynamic conditions.

It was examined that the change in leaching conditions had an effect on the stability of AlF3·3H2O:
under static conditions; when the w/s ratio was equal to 100, the intensity of diffraction peaks
characteristic of AlF3·3H2O decreased by 3.1 times (Figure 4), while under dynamic conditions, by
1.23 times (w/s = 100) and 1.73 times (w/s = 200) (Figure 6). The XRD results were verified by the
chemical analysis. It was determined that the leaching of F− ions into the liquid medium proceeded
heavily, as only ~16.9% (w/s = 100) and ~32.3% (w/s = 200) of F− ions from the total amount in silica
gel waste were released into the reaction medium (Table 3). This observation can be explained by the
short interaction duration between the latter compound and liquid medium (Table 3).

Table 3. The parameters of F− ions leaching under dynamic conditions at 25 ◦C temperature by using
different w/s ratios.

Sample Name * The Amount of F−

Ions in Solid, %
The Amount of

Released F− Ions, %
pH of Liquid

Medium
The Duration of

Interaction, s

SGW-25 9.60 4.2 2.45 40
SGW-50 - - 2.67 69

SGW-100 8.33 16.9 2.90 108
SGW-200 6.78 32.3 3.11 215

*: the sample names were chosen according to the conditions of the experiment: SGW-25—silica gel waste sample,
in which w/s ratio was equal to 25; SGW-50—silica gel waste sample, in which w/s ratio was equal to 50;
SGW-100—silica gel waste sample, in which w/s ratio was equal to 100; and SGW-200—silica gel waste sample, in
which w/s ratio was equal to 200.

In order to prolong the duration of the interaction, the leaching under dynamic conditions was
performed in cycles. A total count of 20 cycles were carried out during this experiment, in which a total
amount of 10 g of SGW was treated with 50 mL of H2O in each step (till the w/s ratio reached 100).
The duration of each cycle lasted approximately 25 s, i.e., the total duration of the reaction was equal
to ~500 s. It is worth mentioning that after each step, the liquid medium obtained was neutralized by
passing it through calcium hydroxide. The neutralized water was returned to the leaching of SGW.
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Figure 6. XRD patterns of silica gel waste samples after leaching under dynamic conditions at 25 ◦C.
Indexes: A—AlF3·3H2O.

As expected, due to the ~5 times longer interaction time, at a 25 ◦C temperature, the decomposition
of AlF3·3H2O is more intensive compared with the previous results (Figures 6 and 7). To completely
destroy the structure of crystalline compounds, the reaction temperature was increased to 35, 45,
and 55 ◦C. It was determined that AlF3·3H2O became unstable in SGW, when the reaction temperature
reached 45 and 55 ◦C, because only a broad peak typical to amorphous SiO2 in a 18◦–26◦ diffraction
angle range was visible in the XRD pattern (Figure 7). It is worth mentioning that a similar tendency
was obtained under static conditions (Figure 4); however, in this case, the interaction time is extremely
shortened, i.e., from 24 h at static conditions to 0.14 h at dynamic conditions in cycles.

The results of the XRD analysis were in good agreement with the data of differential scanning
calorimetry. When the reaction temperature was equal to 25 ◦C, the amount of adsorbed heat attributed
to the dehydration of AlF3·3H2O at 180 ◦C decreased by almost two times: from 33.62 to 18.26 J/g,
and at 35 ◦C—to 12.69 J/g (Figure 2; Figure 7). However, at a higher leaching temperature (45 and 55
◦C), the dehydration of AlF3·3H2O was no longer observed (Figure 7). This fact allowed us to state that
the latter compound is fully removed from silica gel waste. Moreover, due to the structural alterations
of the mentioned compound, an endothermic effect at a ~182 ◦C temperature, which is assigned to the
dehydration of silica gel waste, shifted to a higher temperature range (Figure 2; Figure 7). Besides,
the amount of adsorbed heat during this process decreased from 59.33 to 39.68 J/g as a smaller quantity
of moisture was present in this compound after leaching.

At the beginning of leaching in cycles, the value of the liquid medium pH rapidly increased until
it reached a w/s ratio of 25 (Figure 8). However, when the duration of the reaction was extended, the
mentioned values only slightly increased and at the end of the process, they were equal to 4.4–4.7.
Presumably, at the beginning of the leaching, hexafluorosilicic acid and/or HF was removed from
SGW and by continuing the mentioned process, the amount of released F− ions strongly depended on
the solubility of compounds, which contained F− ions.
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The chemical analysis data of SGW showed that, after leaching in cycles at 25 ◦C, the quantity of
released F− ions was equal to ~45.6% (w/s = 100) from the total amount of F− ions in silica gel waste,
which was almost the same as under the static conditions (Table 1) and ~2.7 times greater than under
dynamic conditions (Table 3). The same tendency was observed at a higher temperature (Tables 3
and 4). Moreover, the reaction temperature had a positive effect on the amount of F− ions released
in the liquid medium (Table 4), because the best results (55.7%) were obtained after leaching at a
55 ◦C temperature.

Table 4. The amount of F− ions in solid after leaching in cycles at different reaction temperatures, when
the w/s ratio was equal to 100.

Sample Name * The Amount of F− Ions
in Solid, %

The Amount of Released
F− Ions, %

SGW-25 ◦C 5.45 45.6
SGW-35 ◦C 4.92 50.9
SGW-45 ◦C 4.68 53.3
SGW-55 ◦C 4.44 55.7

*: the sample names were chosen according to the conditions of the experiment: SGW-25 ◦C—silica gel waste
sample, when the reaction temperature was equal to 25 ◦C; SGW-35 ◦C—silica gel waste sample, when the reaction
temperature was equal to 35 ◦C; SGW-45 ◦C—silica gel waste sample, when the reaction temperature was equal to
45 ◦C; and SGW-55 ◦C—silica gel waste sample, when the reaction temperature was equal to 55 ◦C.

As it was mentioned before, in order to neutralize the liquid medium obtained after leaching
experiments, calcium hydroxide was used [31,32]. It was determined that calcium hydroxide reacted
with both F− and Al3+ ions as calcium fluoride (CaF2; PDF 04-002-2191, d-spacing = 0.315, 0.193,
0.165 nm) and katoite (Ca3Al2.85O2.55(OH)9.45 PDF 04-017-1504, d-spacing = 0.509, 0.333, 0.279 nm)
were identified in the XRD pattern after the experiment (Figure 9). The mentioned compounds formed
under all experimental conditions. The obtained results were in good agreement with the literature
data [31,32,42]. Meanwhile, the different results obtained by Iljina et al. [17] can be explained by their
use of a different leaching technique: SGW with CaO additive (6.5–20%) was treated under static
conditions (1 h, w/s-500), thus CaF2 crystallized in solid and cannot be distinguished.

By summarizing the leaching results, it can be stated that the removal of fluoride ions from this
compound to the liquid medium depends on various factors, such as dissociation, solubility, the w/s
ratio, reaction temperature, leaching conditions, the adsorption properties of silica gel waste, and
others. Despite the mentioned factors, the quantity of F− can be reduced more than two times and the
obtained products of SGW with a lower content of F− (>5%) and CaF2 can be reused in other industries.
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3.3. Application of SGW for the Direct Hydrothermal Synthesis of Cuspidine

It is known that toxic ions can be reduced in two ways: by removing them or by reducing their
mobility–immobilization. As the 3.2 part showed, the quantity of F− was successfully reduced to less
than 5% in SGW, while wastewater was neutralized with calcium hydroxide. Meanwhile, in order to
expand the application areas of SGW, in the third part of this work, the possibility to reuse SGW for
the synthesis of a stable compound containing F− ions was determined.

It was determined that in a CaO–silica gel waste–H2O mixture, when the molar ratio of CaO/SiO2

was equal to 2, after 16 h of isothermal curing at 200 ◦C, the main compound containing F− ions in silica
gel waste, AlF3·3H2O, was unstable and decomposed (Figure 10, curve 1). For this reason, due to the
interaction between fluoride, calcium, and silicon ions, cuspidine (PDF 04-015-0711, d-spacing = 0.306,
0.290, 0.287 nm) was formed (Figure 10, curve 1). Together with this compound, 1.1 nm tobermorite
(PDF 04-011-0271, d-spacing = 1.139, 0.308, 0.298 nm), katoite (PDF 00-024-0217, d-spacing = 0.513,
0.230, 0.204 nm), and traces of grossular (PDF 00-038-0368, d-spacing = 0.276, 0.226, 0.200 nm) were
also identified in XRD patterns (Figure 10, curve 1). Furthermore, basic reflections (d-spacing = 0.493;
0.193; 0.179 nm) of partially unreacted portlandite (PDF 01-078-0315) were also noticed (Figure 10,
curve 1). However, when the duration of synthesis was extended to 48 h, 1.1 nm tobermorite became
metastable and recrystallized to other synthesis products (Figure 10, curve 3). Meanwhile, cuspidine
remained stable under all hydrothermal synthesis conditions (Figure 10). The data of liquid medium
analysis showed that during the hydrothermal synthesis, F− ions were not released into the liquid
medium, but instead, were combined into a stable compound.

Thus, the experimental studies showed that the reduction of mobility and/or removal of F−

ions from the SGW can be carried out under dynamic or hydrothermal conditions. Based on the
data obtained in this study and already existing equipment in a Joint stock Company “Lifosa” [15],
a principal technological scheme for reducing the quantity of F− ions in silica gel waste or for its
immobilization has been designed (Figure 11). For the synthesis of cuspidine, the required amount
of SGW and lime is weighed (CaO/SiO2 = 2.0), and supplied to a mixer (3), in which an appropriate
quantity of water (w/s = 10) is added from the reservoir (2). The mixture of raw materials is then
supplied to an autoclave (4) and the hydrothermal treatment is carried out: the synthesis temperature
and duration are equal to 200 ◦C and 16 h, respectively. After isothermal curing, the product is filtered
off by a vacuum belt filter (6). For the leaching of silica gel waste, SGW is supplied from the weight
dispensers to a vacuum belt filter (6), where it is treated by adding a required amount of water (55 ◦C,
w/s = 100). The obtained liquid medium with F− ions is neutralized with calcium hydroxide on
the second vacuum belt filter (6). Later on, liquid medium is returned to the water reservoir (2).
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The obtained products (cuspidine, silica gel with a lower content of fluoride ions, and calcium fluoride)
are stored in products silos (7).
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4. Conclusions

1. It was determined that silica gel waste mainly consists of silicon dioxide (79%) and other
compounds containing 10% F− and 2.5% Al3+ ions. It was observed that three endothermic effects
are characteristic of this compound: a two-step decomposition of AlF3·3H2O at 146 and 165 ◦C
temperatures and the dehydration of silica gel at 188 ◦C. Moreover, the evaluation of the thermal
stability of SGW showed that AlF3·3H2O was fully decomposed at 188 ◦C, while at a higher calcination
temperature (1000 ◦C), mullite was formed due to the reaction between aluminium-containing
components and SiO2.

2. The findings revealed that, by applying different leaching techniques of F− ions (leaching
under static and dynamic in cycles conditions), it is possible to reduce the amount of mentioned ions
in silica gel waste to less than 5%. The obtained water contaminated with F− ions was neutralized
with calcium hydroxide and as a result, calcium fluoride and katoite were produced.

3. Silica gel waste is a promising raw material for the hydrothermal synthesis of cuspidine
(3CaO·2SiO2·CaF2), because this compound formed after 16 h and remained stable till 72 h of synthesis.
The data of the liquid medium analysis showed that during synthesis, F− ions were not released into
the liquid medium, but instead, were combined into a structure of cuspidine. A principal technological
scheme has been designed for the products of commercial value.
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