Available online at www.sciencedirect.com

C@k ScienceDirect Procedia

Computer Science

ELSEVIER Procedia Computer Science 39 (2014) 83 — 90

6th International conference on Intelligent Human Computer Interaction, IHCI 2014

Gamification Patterns for Gamification Applications

Darius ASeriskis, Robertas Damasevicius*

Kaunas University of Technology, Studenty g. 50, Kaunas, LT- 51368, Lithuania

Abstract

Recently, gamification has gained popularity in the development of enterprise information systems. Gamification
is usually implemented using game elements combined with game mechanics that encourage competition between
game players trying to reach some objectives or quantifiable outcome. Most games contain certain common aspects
that are frequently created or reinvented for each new game. Solutions to these aspects may vary system to system
but they have many commonalities. The concept of design patterns, which so far have proven successful in object-
oriented design and software engineering, seeks to communicate these solutions in an easy to understand manner.
We extract gamification patterns from known gamified systems and describe them using the Machinations
modelling tool and the pattern description scheme. A case study shows how patterns can be used in practice.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer-review under responsibility of the Scientific Committee of IHCI 2014
sKeywords: Gamification, modelling, game mechanics, patterns;

1. Introduction

Gamification [1] has been employed to enable attitude change and increase of user motivation. It refers to adding
‘gamefulness’ to existing systems in non-game contexts usually aiming to increase the value of a service or business
product beyond its face value, as well as to boost user engagement, loyalty, and satisfaction or otherwise affect user
behaviour [2]. Concepts similar to gamification are “gameful design” or “gameful work™ [3]. Recently, gamification
also has gained popularity in the development of enterprise information and e-commerce systems [4].

Gamification is usually implemented using game elements, such as badges and scoreboards, combined with
meaningful game rules (or game mechanics) that encourage competition between game players trying to reach some

* Corresponding author. Tel.: +370-670-58094; fax: +370-609-43772.
E-mail address. darius.aseriskis@ktu.edu, robertas.damasevicius@ktu.lt

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer-review under responsibility of the Scientific Committee of IHCI 2014

doi:10.1016/j.procs.2014.11.013

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.11.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.11.013&domain=pdf

84

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

objectives or quantifiable outcome [5].

Most games contain certain common aspects. Solutions to these aspects may vary system to system but have
many commonalities. The concept of design patterns [6], which so far have proven successful in object-oriented
design and software engineering, seeks to communicate these solutions in an easy to understand manner. Similar
concepts exist in the games domain too, e.g., gameplay design patterns [7], game patterns [8], game design patterns
[9], viral and collaborative patterns [10], etc. In this paper we argue for the gamification patterns and provide their
textual and visual description. The novelty of the proposed gamification patterns is visual specification of patterns
using domain-specific Machinations modelling language and framework [11].

The remaining parts of the paper are organized as follows. Section 2 discusses the related work. Section 3
describes gamification patterns. Section 4 presents the case study. Finally, section 5 presents conclusions.

2. Related work

The design of serious games is a complex process. Two opposing principles have to be united: achievement of
serious objectives and meaningful gameplay. This can be achieved using detailed technical modelling and
implementation [8]. However, the only way to really understand gamification is to identify its basic elements and
model structural relationships between them. Adams and Rollings identify four basic economic functions for games:
sources, drains, converters and traders [12]. Sources create resources, drains destroy resources. Converters replace
one type of resource for another, where as traders allow the exchange of resources between players or game
elements. These economic functions set up a network of economic transactions that determine the flow of a game. A
game also can be modelled as a flow of resources, and abstract aspects of games, such as player skill level and
strategic position, can be modelled through the use of resources; as well as a state machine: an initial state or
condition and actions of the player can bring about new states until an end state is reached [13].

Gamification can be specified and modelled in many ways, e.g., with formal description [14], using textual
descriptions and modelling methods, e.g., with UML diagrams [15, 16], Petri Nets [17], or other standard or custom
tools [13, 18]. MDA [19] is a formal approach, which attempts to bridge the gap between game design and
development, game criticism, and technical game research. Mechanics describes the particular components of the
game, at the level of data representation and algorithms. Dynamics describes the run-time behaviour of the
mechanics acting on player inputs and each other’s outputs over time. Aesthetics describes the desirable emotional
responses evoked in the player, when he interacts with the game system.

Defining and formalizing structural solutions to commonly recurring problems is a main idea behind patterns. A
pattern usually consists of a name, definition, general description, description on how the pattern can be used,
description of consequences of using the pattern, and relations to other patterns [6]. Kreimeier [20] proposed using
game design patterns as a way to formalize and codify knowledge about game design. Bjork and Holopainen [7]
propose gameplay design patterns as semiformal interdependent descriptions of commonly reoccurring parts of the
design of a game that concerns gameplay. Game-patterns encapsulate common design problems and solutions for
those and game designers typically combine several patterns for good gameplay [8]. In this paper we introduce
gamification patterns as semi-formal description of game rules for gamification of business information systems
based on the analysis of commonalities in existing gamified applications.

3. Gamification patterns
3.1. Methodology

For analysis and identification of gamification patterns we have selected seven different gamified applications
(Emo-bin [21], Meeco [22], Teamfeed [23], CAPTCHINO [24], Taskville [25], Power House [26], Trogon [28]).
All analysed applications have common attributes: user-centric, that means what all of them have the concept of
player in them; user interaction with the system which triggers the basic gameplay; game rules in one or other form;
game-oriented interface elements such as badges and leader boards. For each application we have created two types
of models using the Machinations game modelling framework [11] as follows: 1) Simple model — a highest
abstraction level of the system. This view shows the core system concepts. 2) Advanced model is made up of two
parts: a) static model which models as many details as possible of the system, and b) dynamic model, which is

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

modelling interaction between players. Based on the result of model comparison and analysis we have identified
common patterns of gamified systems.

3.2. Pattern description scheme
The following pattern description scheme adopted from UML pattern description [6] is used:

Intent: A short statement that describes what the pattern does, and what problem it addresses.

Motivation: A more detailed discussion of the pattern and how it works.

Applicability: What are the situations the pattern can be applied?

Structure: A graphical representation of the pattern using visual modelling language.

Participants: The elements, mechanics and compound structures that are identifiable parts of the pattern.
Collaborations: How participants collaborate.

Consequences: The results of using the pattern, including trade-offs and possible risks.

Implementation: A more detailed discussion of different techniques to implement the pattern.

Examples: At least two existing examples of the pattern in games. Preferably, the examples of all patterns draw
from a large variety of different games.

Related Patterns: What patterns are related to this pattern? Opportunities for pattern combination.

e Discussion: Any discussion about the pattern itself, its viability, suggestions, alternative constructions, etc.

3.3. Introduction into Machinations

To represent patterns graphically, we use Machinations, a visual modeling framework for game mechanics [27] that
facilitates the design, simulation and testing of the internal economy of a game at various levels of abstraction. At
the heart of the framework is a graphical notation designed to capture the dynamics of games. Machinations
diagrams are a class of Petri Nets, wrapped in a formalism that makes them more palatable to game designers. The
logic behind Machinations is what gameplay is ultimately determined by the flow of resources. Resource flows
allow to visualize how the system is constructed and what feedback structures exist in the game structure. The
Machinations diagram has four parts: nodes, connections, other elements and other concepts. There are a number of
different types of nodes: Sources provide the flow of resources, Drains remove resources from the system, Pools
allow to store resources, and Converters destroy resources to create new resources. Trader allows the exchange of
resources between players or game elements. Gates control (randomly or deterministically) resource flow. Delays
delay the resource flow. Resource connections determine how the resource flows between nodes. State connections
determine how node state changes affect other elements. Label types are a part of state and resource connections
passing specific control information.

3.4. Gamification patterns

Every gamified system model should have a source to drive the whole system. We discovered several main
source patterns for modelling gamified systems as follows:

a) ﬁ N b) @*__) @

Infinite Points Limited quantity Points

Fig. 1. (a) Infinite quantity source and (b) limited quantity source.

Infinite quantity source (see Fig. 1.a & Table 1) it this case we choose to believe what maximum number of
points is never reachable, for example the number of user actions is impossible to determine.

Limited quantity source (see Fig. 1.b & Table 1) — this imposes a system constrain that the maximum number
of points received is limited at every moment of the gameplay. It can be physical or virtual limit. For example in

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

Emo-bin there are a limited number of bottles which is limited by local vending machine.

Table 1. Description of limited quantity source and infinite quantity source patterns.

Property Limited quantity source Infinite quantity source

Intent Enforce a limit on a resource Models unlimited resource economy

Motivation This allows us to model limited economies Sometimes resources can be viewed as unlimited.
This allows us to model unlimited economies

Applicability Modelling an economy with limited number of resources Modelling economy or part of economy with no
economic restriction

Structure Uses a pool with automatic push Source node

Participants Pool node Source node

Consequences Limits economic growth Allows unlimited growth

Examples Trogon, TaskVille, Emo-bin Teamfeed, Meeco

Related Patterns ~ All All

Next to these two qualities we can add additional limitation or more realistic conditions:

Create Tasks
a) a 7@ b) T sks

%o “ "Stop
L
\\ f *> —>”9 T @
Seconds v L " B/

N 25% 3 P

v Manager ° All Tasks
rain

Remove Tasks

Fig. 2. (a) Time limit and (b) dynamic limit patterns.

Time limit (see Fig. 2.a & Table 2) — adds a time limit to the system. Such limit imposed over infinite quantity
source will make it bounded by a time limit.

Dynamic limit (see Fig. 2.b & Table 2) — it is a limit which is imposed by model implication. For example we
have a project manager in a software company checking all tickets before development and there is a chance what a
ticket might not be added in to pool of tickets.

Table 2. Description of time limit and dynamic limit patterns.

Property Time limit Dynamic limit

Intent Stop the game after some time has passed Control source growth

Motivation Using such pattern allows to limit game in time. Such pattern allows to add dynamic qualities to resources

Applicability To impose a time restriction or rounds, for example in ~ Normally the growth of resources is not linear and depends on
Trogon there is a limit for each round. different properties

Structure A pushing pool of limited quantity connected to a A composition of a random gate with drain and source node

drain and end condition node. End condition is connected with a pool from limited source
connected with pool with label “<1”.

Participants Pool, end condition, drain Pool, gate, drain and source

Collaborations Pool acts as a counter and is connected to a drain for Pool connects with a gate. Then follows a multiple
decreasing the counter value. When counter value is connections to drains or pools which creates the desired logic
equal to zero, the end condition is triggered. model

Consequences Changes the economy by setting up limitations to resources

Examples Trogon, Emo-bin Trogon, TaskVille

Related Patterns Limited quantity, property and chance pattern -

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

a) ﬂ = O b)

Action Score

Drain

ﬂa@-)Ve@

Source Score

Fig. 3. (a) Random result pattern and (b) drain pattern.

Random result (see Fig. 3.a & Table 3) — a connection with dice label is used. This type of pattern models an
abstract connection. For example, “An executed action is worth X points”. This allows to change part of gamified

system model with high level abstraction.

Drain pattern (see Fig. 3.b & Table 3) — allows decrease of score or counter under certain conditions. Drain
pattern is useful to model penalty rules in the gamification systems.

Table 3. Description of random result pattern and drain pattern.

Property Random result Drain pattern

Intent Aggregate logic Invert logic

Motivation Sometimes rules are too complex to model so it’s Economy grows and falls over time. This is a pattern to
easier to aggregate the whole logic into a single path simulate economic falls

Applicability Any case when a rule can be replaced by random Convert or model negative aspects of a game
number

Structure Two nodes connected with random connections Manual drain, gate and pool.

Participants Connection and any two nodes Drain, gate and pool

Collaborations Connection passes random amount of points When the gate triggers the drain the pool loses elements

Consequences Aggregates the logic into one abstraction Allows to destroy resources

Examples All cases Emo-bin, Captchino

Related Patterns - Solver pattern

) /N—

Source ~
<5
Score Counter

Source

b) £—><>

10% .
A

2
O—=—

Score

Fig. 4. (a) Constrain pattern and (b) extension pattern.

Constrain pattern (see Fig. 4.a & Table 4) allows to block certain paths in the model based on certain

conditions.

Extension pattern (see Fig. 4.b & Table 4) is a pattern of adding an additional random path under certain
conditions. This allows to extend normal behaviour with additional random bonuses.

Table 4. Description of constrain pattern and extension pattern.

Property Constrain pattern Extension pattern

Intent Control flow on certain conditions Introduce concurrent paths

Motivation Based on system state is useful to limit or open a Sometimes we need to create an extension to default
path according to state. behaviour.

Applicability Any system which contains multiple paths under Any case when default path is extended with a concurrent
certain conditions path.

Structure Manual source and pool connected with normal and Node having at least two paths and ending with one node.

state connection

87

88

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

Participants Manual source, pool

Collaborations The path is turned off then counter reaches its target
Consequences Paths can be open or closed

Examples Captchino, Trogon, Meeco

Source, gate, converter, and pool

Once a source is triggered multiple paths activate
simultaneously
Extend a path with additional concurrent path

Trogon, Captchino.

Related Patterns - Property and chance pattern

a) Falled
Ny A—>0-9°-”">A><>
65% .5 .
K& 0]
Question Answer Score A T) @ SN @
Blue Solved Score Penalty

Fig. 5. (a) Property and chance pattern; and (b) solver pattern.

Property and chance pattern (see Fig. 5.a & Table 5) is a pattern for creating multiple paths or modelling a
certain user property. For example we need to model multiple actions in a single model, like “Buy” and “Attack”. In
this case, we leverage the economic and aggressive user properties, the higher “Attack” percentage the more
aggressive the user’s strategy is and vice versa.

Solver pattern (see Fig. 5.b & Table 5) allows to model user solving a problem. Solver pattern allows to create a

delay in the system.

Table 5. Description of property and chance pattern and solver pattern.

Property Property and chance pattern Solver pattern

Intent Model a property or random chance Models problem solving

Motivation To model simple user or entity behaviour In real world actions do not occur instantly. Normally it takes time
for the problem to be solved

Applicability Any place we want to model a chance of When we want to randomize the time it takes to accomplish a task

occurring action or user behaviour

Structure Random gate and multiple manual sources This combines the pattern of drain and chance pattern

Participants Random gate and manual sources Random gate, sources, gate and drain

Collaborations Gate triggers a source randomly This pattern combines property chance pattern with a source
which models a problem solving skill. The source is also
connected with a drain pattern to model negative consequences of
incorrect solutions this is optional for this pattern

Consequences One of multiple paths is chosen Random time is spent to solve a problem

Examples All Captchino, TaskVille, Trogon

Related Patterns ~ Solver pattern

Drain pattern, property and chance pattern

4. Case study

Trogon Project Management System (PMS) [28] is an example of enterprise Information System. The gamified
PMS has a leader-board, badge board and project forest as main elements of gamification. Every element has its
purpose. 1) The leaderboard creates competition between individual employees and allows to determine a game
winner, which should be additionally awarded. 2) The badge board (see Fig. 6) allows observing the skills of
employees. In the badge board the employees are ordered by the total number of badges collected. Each badge

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

represents a skill and has its own level. Progress between levels is displayed as a progress bar. 3) The project forest
(see Fig. 6) provides the element of scalability to represent the size of different projects.

Project Name
w GMAIL redesign

(immmai Crestivesiall CSSskall Designskill Javescrpt skall

@.9.’

Bezinner Novice gular Experienced Professional
°“-'1 snnm
COD!
G)mmnz zation Esd(&nd Cor uﬁ'ummm HTML skall Testing skall
ToasTomats NSNS\ \NN
‘ g drgate NN NS
Petas Petais N .Y

Fig. 6. Trogon elements: on the left game badges and badge levels on the right “project forest” page

The gamification model (Fig. 7) simulates a Trogon game rule: “For every task solved user gets X points. If a
badge is earned for the solved task when user gets a bonus of Y points. User gets a 2Y bonus for each task if
received more than four badges”. To simplify real live computations for finishing a tasks user receives five points. A
bonus adds a single additional point.

Recieve Badge

Points

<5

[

Fig. 7. Trogon PMS rule model

This model has two pattern usages: 1) Constrain pattern (red) allows to control flow depending on how many
badges are received. 2) Extension pattern (green) provides the necessary paths for to model earning. Every time a
badge is received a source is triggered and user points increase five points. In parallel the counter is increased by
one. For the received badge a bonus point is rewarded. As you can see there are three sources connected to counter.
The first counter to source connection has label “<5” which means while user has bellow five badges he gets only
single point. After five badges are received a new “==5" path opens and the user gets a reward of 6 points. Also the
previous path “<5” is closed. When the next badge is received path “>5" opens which awards the user with two
points. All other paths are closed. This workflow models the behaviour of the rules described in the previous
paragraph.

5. Conclusions

In this paper, we have analyzed seven gamified systems and have identified gamification patterns common to two
or more gamified applications. Each pattern has its own motivation, structure, applicability and consequences. The

90

Darius ASeriskis and Robertas Damasevicius / Procedia Computer Science 39 (2014) 83 — 90

patterns are modelled using the Machinations framework [11, 27]. This modelling tool allows rapid prototyping
ideas and testing them before implementation.

The advantage of using gamification patterns is having an abstract formal model to unify multiple formal
definitions written for different gamification applications. The abstract model is constructed from users, actions,
rules, data and interfaces which are common to analysed systems. This model connected with a graph-based
modelling language allows simple yet powerfull visualization. We also have demonstrated a case study of a
gamification pattern combination in Machinations tool used in practice in a gamified project management system.
Future work will consist of using abstract model to build a modelling tool allowing real world generation of game
layers for gamified systems.

References

1. Deterding S, Dixon D, Khaled R, Nacke L. From Game Design Elements to Gamefulness: Defining ‘Gamification’. MindTrek2011,
9-15.

2. Huotari K, Hamari J. Defining Gamification - A Service Marketing Perspective. Proc. of the 16th International Academic Mindtrek
Conference, Tampere, Finland, October 3-5, 2012, 17-22.

3. McGonigal J. Reality is Broken. Why Games Make Us Better and How They Can Change the World. The Penguin Press, 2011.

4. Hamari J. Transforming homo economicus into homo ludens: A field experiment on gamification in a utilitarian peer-to-peer trading
service. Electronic Commerce Research and Applications, 2013, 12(4): 236-245.

5. Deterding S. Gamification: designing for motivation. Interactions 2012; 19, 14-17.

6. Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-oriented software. Pearson Education, 1994.

7. Bjork S,Holopainen J. Patterns in Game Design. Charles River Media, 2004.

8. Kelle S.,Klemke R.,Specht M.Design patterns for learning games. International Journal of Technology Enhanced Learning, 3(6), 555-
569, 2011.

9. Kiili K. Call for learning-game design patterns. A chapter in the book: Educational Games: Design, Learning, and Applications. Nova
Publishers, 2010.

10. Wendeus JC. Designing a Viral Collaborative Tool: Patterns and Guidelines for Virality-Driven Design. MSc Thesis, Gothenburg,
Sweden, 2013.

11. Adams E, Dormans J. Game Mechanics - Advanced Game Design. New Riders Games, 2012.

12. Adams E, Rollings A. Fundamentals of Game Design. Upper Saddle River: Pearson Education Inc., 2007.

13. Grunvogel, SM. Formal Models and Game Design. Game Studies, 2005. Online http://gamestudies.org/0501/gruenvogel/

14. Bista, Sanat K, Surya, NC, Paris C. Using gamification in an online community. In Proc. of 8th International Conference
on,Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2012, 611-61.

15. Taylor MJ, Gresty D, Baskett M. Computer Game-Flow Design. ACM Computers in Entertainment, 2006; 4(1).

16. Dormans J. Visualizing Game Dynamics and Emergent Gameplay. Proceedings of the Meaningful Play Conference, 2008.

17. Araujo M, Roque L. Modeling Games with Petri Nets. In Breaking New Ground: Innovation in Games, Play, Practice and Theory.
Proceedings of the 2009 Digital Games Research Association Conference, 2009.

18. Koster R. A Grammar of Gameplay: game atoms: can games be diagrammed? Presentation at the Game Developers Conference, 2015.
Online http://www.raphkoster.com/gaming/atof/grammarofgameplay.pdf

19. Hunicke R, LeBlanc M, Zubek R. MDA: A formal approach to game design and game research. In Proc. of the AAAI Workshop on
Challenges in Game, 2004.

20. Kreimeier B. The Case for Game Design Patterns. Gamasutra, 2002, Online
www.gamasutra.com/features/20020313/kreimeier_01.htm.

21. Berengueres J, Alsuwairi F, Zak, N, Ng T. Emo-bin: How to Recycle more by using Emoticons. In Proc. of 8th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 2013, 397-397.

22. Vara D, Macias E, Gracia S, Torrents A, Lee S. Meeco: Gamifying ecology through a social networking platform. In Proc. of IEEE
International Conference on Multimedia and Expo (ICME), 2011, 1-6.

23. Singer L, Schneider AK. It was a bit of a race: Gamification of version control. In 2nd International Workshop on Games and
Software Engineering (GAS), 2012, 5-8.

24. Saha R, Manna R, Geetha G. CAPTCHINO - A Gamification of Image-Based CAPTCHAs to Evaluate Usability Issues. In Proc. of
the 2012 Int. Conference on Computing Sciences (ICCS '12), 2012, 95-99.

25. Shawn N, Sundaram S, Linn H, Kelliher A. Playing in Taskville: Designing a Social Game for the Workplace. In CHI 2011 Workshop
on Gamification: Using Game Design Elements in Non-game Contexts, 2011.

26. Reeves B, Cummings JJ, Scarborough JK, Flora J, Anderson D. Leveraging the engagement of games to change energy behavior. In
Proc. of International Conference onCollaboration Technologies and Systems (CTS), 2012, 354-358.

27. Dormans J. Machinations Diagram Tutorial. Portfolio of Joris Dormans, 2013. Online
http://www jorisdormans.nl/machinations/wiki/index.pshp?title=Tutorial 1

28. ASeriskis D, Damasevicius R. Gamification of a Project Management System. Proc. of Int. Conf. on Advances in Computer-Human

Interactions (ACHI2014), 2014, 200-207.

