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Abstract: The properties of a polydimethylsiloxane (PDMS) surface were modified by a one-step
deposition of plasma polymerized hexamethyldisilazane (pp-HMDS) by the arc discharge method.
Scanning electron microscopy, atomic force microscopy, and Fourier-transform infrared spectroscopy
analytical techniques were employed for morphological, structural, and chemical characterization
of the pp-HMDS modified PDMS surface. The changes in PDMS substrate wetting properties were
evaluated by means of contact angle measurements. The unmodified PDMS surface is hydrophobic
with a contact angle of 122◦, while, after pp-HMDS film deposition, a dual-scale roughness PDMS
surface with contact angle values as high as 170◦ was obtained. It was found that the value of
the contact angle depends on the plasma processing time. Chemically, the pp-HMDS presents
methyl moieties, rendering it hydrophobic and making it an attractive material for creating a
superhydrophobic surface, and eliminating the need for complex chemical routes. The presented
approach may open up new avenues in design and fabrication of superhydrophobic and flexible
organosilicon materials with a self-cleaning function.
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1. Introduction

Polydimethylsiloxanes (PMDS) are the most widely used silicon-based organic polymers,
commonly referred to as silicones. Because of easy fabrication, non-toxicity, biocompatibility and
biodurability they have found potential applications in various fields. The surface of PDMS is naturally
hydrophobic, but a number of efforts have been made to modify PDMS and further enhance its
hydrophobicity [1,2]. PDMS hydrophobicity plays an important role in diverse applications e.g.,
self-cleaning surfaces [3], microfluidics [4], microelectromechanical systems [5], and biomedical
applications [6].

Superhydrophobic PDMS surfaces can be fabricated by pulsed laser irradiation resulting in
surface modification with a static contact angle (CA) value of 170◦ [7]. However, the whole irradiation
procedure is highly time-consuming, thus limiting the scalability of this method. A more reliable
and effective practice includes the deposition/formation of a thin film on the surface of the material
to obtain the desired functionality. Plasma treatment is attractive as the processing time is short,
the process involves low temperature, and procedures are relatively simple. Importantly, a single-step
technique is desired for obtaining superhydrophobic and self-cleaning surface functionalities.

In this contribution, we fabricated a superhydrophobic PDMS surface via plasma polymerized
hexamethyldisilazane (pp-HMDS) thin film deposition by arc discharge. To the best of our knowledge,
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the technique adopted here has been not reported for the fabrication of superhydrophobic PDMS
surface using hexamethyldisilazane monomer as a precursor. HMDS is well known as being widely
used for hydrophobic coatings on various hydroxyl-bearing surfaces [8,9]. HMDS chemical activity
derives from the presence of a highly reactive nitrogen atom within the compound. The presented
one step deposition of in situ polymerized hexamethyldisilazane is simple and scalable, and thus can
provide a new strategy for the large scale fabrication of superhydrophobic surfaces with a self-cleaning
function on flexible substrates.

2. Materials and Methods

The addition-curing silicone rubber Elastosil RT 601 A/B with a viscosity of 3500 mPa·s at 23 ◦C
(Wacker Chemie AG, Múnich, Germany) was used as received for flexible films fabrication. HMDS of
analytical grade (≥99%, Sigma-Aldrich, Saint Louis, MO, USA) was used as received.

The experimental setup of arc plasma reactor and technological conditions have been reported
previously [10]. Briefly, a rod-shaped graphite anode and cathode were placed at the center of the
discharge chamber. A quartz cuvette containing HMDS solution was positioned 20 mm from the
anode, and PDMS substrate was placed at a distance of 15 mm from the electrodes. The chamber
was connected to a vacuum line backed by a rotary pump. Arc-discharge was generated between
anode and cathode using a DC transferred arc process using ~4.3 mA current and ~25 kV voltage. The
deposition time was varied up to 60 s.

A FEI Quanta 200 scanning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA,
USA) was used to collect micrographs of the investigated surface. The samples were imaged at an
accelerating voltage of 30 kV. Atomic force microscopy (AFM) experiments were carried out with
NT-206 (Microtestmachines, New Taipei City, Taiwan) in air at room temperature (22 ± 1 ◦C) using a
V-shaped silicon cantilever operating in contact mode. The surface morphology of the resulting films
was evaluated based on the AFM surface topography images and roughness parameters. Vertex 70
Fourier transform infrared (FTIR) spectrometer (Bruker Optics Inc., Billerica, MA, USA) equipped
with a 30Spec (Pike Technologies, Madison, IA, USA) specular reflectance accessory having a fixed 30◦

angle of incidence was used for the chemical characterization of the modified PMDS surface.
CA measurements were performed at room temperature using the sessile drop method. A droplet

of deionized water (5 µL) was deposited onto the investigated surface. Optical images of the droplet
were recorded with a PC-connected digital camera after 10 s of dropping and CA measurements were
carried out using an active contour method based on B-spline snakes (active contours) [11]. The contact
angle hysteresis was measured as the difference between the advancing and receding contact angle
of a sliding droplet. The test was performed by setting a droplet on a sample, which was placed on
a horizontal plate. The plate was tilted slowly until the water drop began to slide along the surface;
at this point the camera shutter was activated. The advancing and receding contact angles where
then measured.

3. Results

The morphology of unmodified and plasma polymerized HMDS (pp-HMDS) modified flexible
PDMS substrate and water droplets on the PDMS surface before and after pp-HMDS film deposition
at different times are compared in Figure 1. Cured PDMS is produced spontaneously forming
wavy structures on the surface with micro-scale amplitude and periodicity of 128 nm. SEM images
of the resulting pp-HDMS thin film surface for deposition times of 30 and 60 s are presented in
Figure 1b,c, respectively. The deposition resulted in a highly branched and crosslinked pp-HMDS
structures composed of quasi-spherical nanoparticles with size in the range of 15–60 nm. Growth in
three-dimensional assembles and formation of large nanoparticles aggregates were observed as the
deposition time increased.

These morphological alterations change the wetting properties of the PDMS surface (Figure 1). The
unmodified PDMS surface exhibits hydrophobic behavior with a static CA value not higher than 122◦.
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A considerable improvement in non-wetting characteristics of pp-HMDS film functionalized surfaces
was observed. After 30 s of deposition, the nanostructured pp-HMDS film exhibited superhydrophobic
properties with static CA values of 169◦–170◦. In this case the low value of CA hysteresis (2◦), defined
as the difference between the CA at the front of the droplet (advancing CA) and at the back of the
droplet (receding CA), was obtained. The increase of deposition times up to 60 s results in lower CA
values, i.e., CA = 159◦–161◦.
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Figure 1. SEM image of unmodified (a) and pp-HMDS film modified PDMS surfaces (b,c) and water
droplets on PDMS surface before and after pp-HMDS film deposition at different times: (a) 0; (b) 30 s;
(c) 60 s.

The presence of nanostructures in the form of quasi-spherical nanoparticles and interconnection
caused by the formation of large aggregates at longer pp-HMDS deposition time (60 s) was confirmed
using characteristic AFM topographical and surface profile images shown in Figure 2. In this case
dual-scale roughness of the surface was maintained, the pp-HMDS film surface was found to be
rough with the root-mean square roughness having a value of 96.11 nm. However, the spiky surface
morphology changes into a bumpy one and the negative surface skewness parameter value (−0.2)
indicates predominance of valleys.

As can be seen from Figure 3a, in the FTIR absorbance spectrum of unmodified PDMS the
bands at 2965 and 2906 cm−1 are assigned to asymmetric and symmetric stretching of CH3 groups,
respectively [12]. The asymmetric and symmetric bending vibrations of CH3 groups are also observed
at 1410 and 1258 cm−1, respectively. The bands at 1072 and 1007 cm−1 are characteristic of Si–O–Si
asymmetric and symmetric stretching vibrations, respectively. Asymmetric rocking at 864 cm−1 and
stretching at 785 cm−1 vibrations can be attributed to the Si–CH3 group [12].
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Figure 2. AFM image of 3D (a) and 2D (b) topography with normalized Z (nm scale), and profilogram
of pp-HMDS film at deposition time of 60 s (c).

The deposition of polymerized pp-HMDS film leads to the obvious PDMS surface functional
group changes (Figure 3b). The broad band between 3400 and 3700 cm−1 is related to O–H stretching
in Si–OH bonds of hydrophilic silanol groups [13]. The absorbance at 3350 cm−1 is characteristic for
stretching of the N–H bond, while the doublet at 2350 cm−1 is attributed to CO2 species [10]. As in
the case of unmodified PDMS, the presence of methyl moieties in the modified surface is confirmed
by an absorption band at 1410 cm−1, related to CH3 asymmetric bending in Si–CH3 bonds, and 2965
and 2906 cm−1 bands, which are characteristic for asymmetric stretching and symmetric stretching of
the CH3 group, respectively [14,15]. A low intensity band at 1454 cm−1 is assigned to the asymmetric
bending vibrations of the CH2 group in the Si–CH2–CH2–Si link that play a substantial role in the
cross-linking process during HMDS polymerization [15]. The band located at 2250 cm−1 corresponds
to Si–H stretching vibration [16], while the band at 1629 cm−1 can be assigned to stretching of C=O [17].
Some oxygen related functional groups could arise from free radical (possibly trapped in the film
structure) reaction with the atmosphere, when the samples are removed from the reactor [18].
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Figure 3. FTIR absorbance spectra of flexible PDMS substrate (a) and pp-HMDS (b) with functional
groups assigned and schematic diagram of probable deposition mechanism (c); HMDS monomer and
pp-HMDS network fragment are shown in van der Waal’s-based representation.

4. Discussions

Generally, the hydrophobic properties of films are determined by the kind and amount of grafted
hydrophobic groups and surface roughness parameters. One step coating by in situ HMDS deposition
and polymerization is an easy and rapid method to impart non-wetting properties to the PDMS
surface. The plasma polymerization process of HMDS monomers resulted in highly branched and
crosslinked structures composed of quasi-spherical nanoparticles. After pp-HMDS film deposition,
the PDMS surface shows superhydrophobic characteristics with a CA value close to 170◦. High
hydrophobicity of pp-HMDS originates from the high amount of CH3 species and specific film surface
morphology. The pp-HMDS film functionalized surfaces exhibited Cassie–Baxter state with a “lotus
effect” observable and a low CA hysteresis of 2◦, suggesting that a water droplet is not able to wet the
spaces between surface morphological features allowing air pockets to remain at the interface. The
increase of pp-HMDS film deposition time influences the decrease of CA value. It can be attributed
to a higher solid fraction of surface morphological features in contact with the water droplet, which
decreases the concentration of air pockets trapped at the interface of pp-HMDS with the droplet.

Based on the SEM, FTIR data, and surface wetting studies, it is suggested that the HDMS monomer
molecules passing to the arc plasma region during the operational process are fragmented with partial
retention and formation of new chemical bonds. The corresponding repetition of fragmentation and
recombination reactions of HMDS monomers in arc plasma leads to the deposition of a randomly
crosslinked network structure of pp-HMDS (Figure 3c) and forms a heterogeneous surface with a
high fraction of methyl moieties retained, thus providing superhydrophobic characteristics with a
self-cleaning function.

Thus, FTIR investigations reveal multiple non-covalent interaction achieved by in situ HMDS
polymerization with physical anchoring on the polymer surface [19]. Such an interaction can be
recognized as the driving force for constructing and fabrication of superhydrophobic and flexible
organosilicon materials with a self-cleaning function.
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5. Conclusions

Herein, we successfully enhanced the non-wetting properties of a flexible polydimethylsiloxane
substrate surface via plasma polymerized hexamethyldisilazane thin film deposition by the arc
discharge method. Such a film is composed of quasi-spherical nanoparticles stacked together, which
form a branched network. The deposited nanostructured plasma polymerized hexamethyldisilazane
film exhibits superhydrophobic properties with static contact angle values as high as 170◦ and a low
contact angle hysteresis of 2◦. The PDMS surface undergoes self-cleaning and non-wetting behavior
due to the multiple non-covalent interactions attended by the incorporation in the surface layer of
methyl groups and a nano-rough surface formation. This is a facile and effective method that can
provide a new strategy for the large scale fabrication of superhydrophobic surfaces with a self-cleaning
function on flexible substrates.
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