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Abstract: In this paper, we continue our efforts to show how maximum relative entropy
(MrE) can be used as a universal updating algorithm. Here, our purpose is to tackle
a joint state and parameter estimation problem where our system is nonlinear and in a
non-equilibrium state, i.e., perturbed by varying external forces. Traditional parameter
estimation can be performed by using filters, such as the extended Kalman filter (EKF).
However, as shown with a toy example of a system with first order non-homogeneous
ordinary differential equations, assumptions made by the EKF algorithm (such as the Markov
assumption) may not be valid. The problem can be solved with exponential smoothing, e.g.,
exponentially weighted moving average (EWMA). Although this has been shown to produce
acceptable filtering results in real exponential systems, it still cannot simultaneously estimate
both the state and its parameters and has its own assumptions that are not always valid, for
example when jump discontinuities exist. We show that by applying MrE as a filter, we
can not only develop the closed form solutions, but we can also infer the parameters of the
differential equation simultaneously with the means. This is useful in real, physical systems,
where we want to not only filter the noise from our measurements, but we also want to
simultaneously infer the parameters of the dynamics of a nonlinear and non-equilibrium
system. Although there were many assumptions made throughout the paper to illustrate that
EKF and exponential smoothing are special cases of MrE, we are not “constrained”, by these
assumptions. In other words, MrE is completely general and can be used in broader ways.
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1. Introduction

In this paper, we continue our efforts to show how maximum relative entropy (MrE) [1] links to
existing data filtering and parameter estimation approaches in data analysis. In our previous paper [2],
we showed the direct connection between MrE and the Kalman filter (KF) [3], which resulted in KF being
shown as a special case of MrE. Here, our purpose is to proceed into a joint state and parameter estimation
problem where our system is nonlinear and in a non-equilibrium state, i.e., perturbed by known varying
external forces. Traditional parameter estimation can be performed by maximizing a likelihood with
respect to the unknown parameter [4]. The algorithm is called the expectation-maximization algorithm
(EM algorithm). However, this approach is sequential, i.e., it has two steps: first, the expectation step and
then the maximization step. Both steps are executed in separate, subsequent processing operations [5].
Again, our purpose though is to perform joint state and parameter estimation in a single, simultaneous
updating step to avoid splitting the operations.

The extended Kalman filter (EKF) [6,7] is a method that is commonly used to infer simultaneously
both nonlinear state and parameter values by using an augmented vector. However, EKF does this
inference on every occurrence of the discretization interval and as Jazwinski states, “... the filter operates
sequentially, requiring no data storage.” Memory size has increased over the years, and embedded
processing units are already processing at GHz levels; therefore, the storage requirement becomes less
critical compared to the actual implementation of the filter. Practically, however, it is very important that
the filter be as stable as possible in dynamical situations when the system is perturbed by external forces,
and the system parameter is constantly changing.

To illustrate this point, a toy example of a system with a first order non-homogeneous ordinary
differential equation that could describe a resistance-inductance (RL) circuit is shown. When the circuit
is initially disconnected from a power source and suddenly it is reconnected (switched on), the initial
growth rate of the current will be proportional to the power applied and the inductance, L, and will
be more “visible” (more information regarding the parameter) at the beginning of the time series. The
resistance, R, can be calculated from the steady-state conditions (when a constant voltage source is
present), but the end of the time series will result in more information about this parameter. Thus, in
real applications, the beginning of the time series might contain more information about one parameter
of the system, while the end of that same time series might contain more information about another
parameter. Due to the iterative nature of the EKF algorithm and its Markov assumption, results from the
EKF algorithm may not be acceptable when the parameter to be inferred is more “visible” at one end of
the time series versus the other end of the same time series. Exponential smoothing attempts to solve this
problem, e.g., exponentially weighted moving average (EWMA) [8], by assuming that the time series
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follows an exponential curve. EWMA has been shown to produce acceptable filtering results in real
exponential systems [9], but it still cannot estimate both the state and its parameters simultaneously.

Variational data assimilation [10] used in numeric weather prediction applications is another method
designed to find the best fit for a mathematical model given a set of observations. As Courtier and
Talagrand state “one first defines a scalar function which, for any solution of the model over (t0, t1),
measures the “distance” between that solution and the observations” [10]. In this paper, the Euclidean
distance is derived, which is an optimization criterion, from the principle of MrE. The variational data
assimilation method uses the principles of optimal control and constrains the functional with the model
equations by incorporating them in the form of adjoint equations [11]. In our paper, optimal control
variables as defined in [10] are considered as estimates of the means of probabilistic variables, and the
origin of these constraints is explicitly shown. The optimal control signal, which perturbs the actual
physical system, is a priori given and known and defined in this paper’s filtering application. We extend
the data assimilation approach by not only performing the data assimilation (calculating estimates), but
also inferring the parameters of our mathematical model by incorporating additional information about
the real control signal.

In many systems, such as weather and climate, imposing a control signal is not possible. One
possibility to deal with this issue would be to treat it as a regular state variable and directly or indirectly
measure or infer it. Such cases are out of the scope of this paper.

The main purpose of this paper is to show how MrE can be used to simultaneously infer both the
parameters and state values, while taking into account the transient characteristic of the exponential
process. This demonstrates that an exponential smoothing filter is a special case of using MrE as a filter
with first order nonhomogenous ordinary differential constraints applied to the posterior solution.

2. Maximum Relative Entropy Filter

The maximum relative entropy method can be seen as the criterion to determine the ‘updated’
posterior state of a system given certain constraints on the posterior, including data constraints. For
a general, simple example, see [1,12], where both sequential and simultaneous updating are shown. A
posterior might not have an analytical closed form solution for determining the estimate for a parameter
if the constraints are complex or non-linear. A numerical approach has to be sought to find the estimate
in that case. However, the method can be used to update a posterior that is partially known or is partially
assumed, because it is of a tractable form, such as used in mean field approaches, [13]. MrE will be used
in a similar manner in this paper to infer both state and parameter values simultaneously.

In online applications, where the reaction of the system is required after a few milliseconds,
performance is crucial and irreducible. Closed form solutions are needed that are scalable in not only
sophisticated processing systems, but in embedded environments, as well. In the following example
information about the form of the posterior distribution is included. This helps to achieve a closed form
analytical solution for the estimates needed, which, in turn, helps to keep iteration steps at a minimum.
For example, posterior distribution can be assumed to be a Gaussian distribution or that it is known to be
of this form, but the scale is not known. By applying MrE, the distribution’s mean and variance can be
inferred, which represent the scaling parameters of the distribution.
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2.1. Maximum Relative Entropy as a Universal Approach for Filtering Applications

Let the following be either an approximate or exact mathematical model about the behavior of
the system,

f(x (t) , δ,u (t)) = 0, (1)

where f is a mathematical model’s function, x(t) is the system state vector, u (t) is a control signal,
which perturbs the system into a non-equilibrium state (this is assumed to be a known solution, but it
does not take away from the generality of the approach), and δ is an unknown system parameter vector
(which can be initially guessed or assumed). When the function, f , is differentiable, the same model is
valid at any time moment by selecting that time moment’s (discretization interval’s) probabilistic variable
xk as a mean, 〈xk〉,

f(〈xk〉 , δ,uk) = 0, (2)

where k is time index of any discretization interval. When the function arguments are not differentiable
at all points of their domain, they might have discontinuities at their boundary conditions. However,
often, smoothness in one state space variables causes discontinuities in the other state variables, which
implicitly enforces a boundary constraint. These connections are often only seen at the macroscopic
(course-grained) level. For example, the inductor’s current just before the commutation (−0) is equal to
the inductor’s current right after commutation (+0) in the RL circuit. However, the inductor’s voltage
has an abrupt change at the commutation moment, and its (−0) and (+0) values can be found implicitly
from the boundary condition of the current signal using Kirchhoff’s circuit laws. This information
becomes useful when the functional with partly differentiable functions need to be constrained. When
discontinuity points exist in the function, MrE optimization on the domain that is differentiable is used.
This results in unknowns at the boundary conditions or the discontinuity points. Some states, control
variables or parameters will be equal at time moments (−0) and (+0). This information might be seen
at the macro (course-grained) level of the system. Then, we solve every boundary condition for the
unknowns and, finally, infer the parameters of the differential equations simultaneously.

A toy numeric example with a control signal perturbing a first order nonhomogenous ordinary
differential equation system by a relay control (on/off or so-called bang-bang control) is shown below.
This type of control signal causes a discontinuity point in the domain of the differential equations system.
Simultaneous inferring of the differential equation parameters is illustrated.

If the measured time series is in a vector form, cxk, i.e., at time moments t0, t1, ..., tn observations
(data) are collected regarding the one dimensional variable x(t) as cx0, cx1, ..., cxn, then our entropy
will have the form,

S (P, Plikelihood) = −
n∑
k=1

∞∫
−∞

. . .

∞∫
−∞

P (〈xk〉 ,xk) · log

(
P (〈xk〉 ,xk)

Plikelihood (cxk,xk)

)
dxk, (3)

where the posterior distribution, P = P (〈xk〉 ,xk), would update the prior distribution,
Plikelihood (cxk,xk), so that our set of estimated values for 〈xk〉 maximizes the entropy;
Equation (3). This enforces the constraints in Equation (2) on the posterior and produces a Lagrangian,

L(P, Plikelihood) = −
n∑

k=1

∞∫
−∞

. . .
∞∫
−∞

P (〈xk〉 ,xk) · log
(

P (〈xk〉,xk)
Plikelihood(cxk,xk)

)
dxk +

n∑
k=1

λk · f(〈xk〉 , δ,uk). (4)
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The integral Equation (4) can be multidimensional. Furthermore, the exact form of the constraints
may be unknown or so-called non-parametric, i.e., their behavior is known, but the constraints’ forms
or mathematical models are undefined. Integrals should be summed over time windows to establish a
Lagrangian for the joint action in such cases. One should consider using the computationally feasible
methods of the Monte Carlo family or similar brute force sampling approaches for these cases. In our
toy example, an example with a computable solution is provided, and other complicated cases are out of
the scope of the paper.

In some cases, Equation (4) does not have a closed form solution, and one should seek a numeric
iterative approach. For example, when the mathematical models are parabolic partial differential
equations, applying the variational data assimilation method as in [11] is suggested. In our toy example,
Equation (4) has a closed form solution with some unknown parameters from our mathematical model.
These parameters are inferred by using boundary conditions, which are satisfied for the time series. If
it is assumed that the control signal that perturbs the system is known and it is further assumed that
there are two subsequent sets of time series with different perturbations, then one approach to explicitly
estimate the value of the unknown parameter δ is to find it, such that it satisfies the boundary condition
between the two time series, i.e., the last estimate of the first time series must be equal to the very first
estimate of the next time series. This is illustrated in the following section, where this is accomplished
by incorporating the differential equation’s boundary condition.

2.2. Example with Nonhomogenous Differential Equation Constraints

We examine a toy system below that uses a one-dimensional time series of measurements. At time
moments t0, t1, ..., tn observations (data) are collected regarding the one-dimensional variable x(t) as
cx0, cx1, ..., cxn. We assume the observations are represented by independent probabilistic variables x0,
x1, ..., xn, and their uncertainties are equal to σ2

cx. Then, the probability density function of the joint
prior or the likelihood [2] for the time series variables is,

Plikelihood(x0, . . . , xn) =
1(√

2πσ2
cx

)n+1 exp

[
− 1

2σ2
cx

n∑
k=0

(xk − cxk)2

]
. (5)

Note: It is reasonable to see the likelihood as containing “prior” information, since it represents the
relationship that has already been established between observation values and probabilistic variables.

The goal here is to find a posterior distribution for the variables that will satisfy the constraints
(dynamics). Frequently, the unbiased model is unknown for the variable as a function of time, because it
contains unobservable nonlinearities. Further, the analytical closed form model can be more complicated
than what is known a priori about the system based on experience. Yet, often, the main behavior of
a system can be approximated by an exponential law. Thus, inferring the posterior distribution may
be done by not incorporating the dynamic constraints, which exactly represent the physical system
behavior, but by the constraints representing an exponential approximation. This type of assumption
that uses an exponential approximation allows for the closed form solutions to be found for practical
filtering applications and will be shown below, e.g., simultaneously approximating a time series with an
exponential curve, while inferring parameters of the differential equation.
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The main problem with the estimation of an exponential mathematical model is that the start and
the end processes, and thus, the data from them, are equally important. Markov assumptions cannot
then be explicitly assumed. In the resistance-inductance (RL) circuit, where the control signal is
the voltage signal for the circuit, the parameters (R and L) of the circuit can be calculated from the
transient conditions when a step control signal function is applied and the system is in a steady state.
At the beginning, the rate of current increase will give information about the inertia of the system,
which is represented by L. At the end of the transient process, the steady state of the system will
give information about the resistance of the system R. Thus, the time series is “smoothed” with an
approximate exponential law, and the estimates must be determined with a wide enough processing
window that not only covers the start of the transient process, but also so that the pattern of the saturation
effect is partially “seen” in the time series. This way, the estimates, which behave according to the
exponential law, as well as the parameters of the differential equation are inferred. In other words, the
more information that is included, the less uncertainty is left in the estimate expression after the entropy
is maximized.

Again, for illustration, assume that the following approximation for the system behavior model is,

u(t) = δ · (x(t)− xsteady) + C · dx (t)

dt
, (6)

where u (t) is the control signal that perturbs the system variable, x(t), according to Equation (6), and
where δ and C are the parameters of the first order nonhomogenous, differential equation and xsteady is
the steady state value of the variable x(t) when there is no control signal u (t) applied, assuming that the
system is in a steady state. Further, it can be assumed that the system control signal, u(t), is constant
over the duration of all discretization intervals, ∆t, at any time moment k. It can also be assume that
Equation (6) is the constraint over the probabilistic variable’s mean. In this case, the constraint is,

u(t) = δ · (〈x(t)〉 − xsteady) + C · d 〈x (t)〉
dt

. (7)

Here, the mean of some probabilistic variable is a function of time. The inference process should not
only estimate the means of the probabilistic variable at time moments k, but also take into account the
dynamics, which is given a priori. The solution of Equation (6) is represented by,

〈x (t)〉 =
u

δ
+ xsteady −

(u
δ

+ xsteady − x0

)
· exp

(
−δ ·∆t

C

)
, (8)

where x0 represents the initial condition value at some initial time. If it is assumed that the initial
conditions of the variable x(t) are the previous sample’s value and the current sample’s value is the final
value after the discretization interval passed, then Equation (8) can be rewritten as:

〈xk〉 =
u

δ
+ xsteady −

(u
δ

+ xsteady − 〈xk−1〉
)
· exp

(
−δ ·∆t

C

)
. (9)

The exponential term does not depend on the actual means, so an intermediate notation will used,
γ (δ) ≡ exp

(
− δ·∆t

C

)
, which simplifies the expression to,

〈xk〉 =
u

δ
+ xsteady −

(u
δ

+ xsteady − 〈xk−1〉
)
· γ (δ) . (10)
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The common denominator is found, and all of the terms to the left side of Equation (10) are moved,
which yields,

δ · 〈xk〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xk−1〉)) · γ (δ) = 0, (11)

The entropy is maximized to find the joint distribution that is closest to Pobs, but that also satisfies the
approximate model (knowledge about the system) in Equation (9), which is assumed is enough to mimic
the behavior of the system at the a macroscopic level. Before doing so, the general shape of the posterior
distribution will be assumed, but the scaling factors are unknown, so that,

Pposterior(x0, . . . , xn) =
1(√

2πσ2
〈x〉

)n+1 exp

[
− 1

2σ2
〈x〉

n∑
k=0

(xk − 〈xk〉)2

]
, (12)

where it is assumed that the variance of the means σ2
〈x〉 is constant for each variable, respectively, for

illustrative purposes. Then, the entropy to be maximized is,

S(Pposterior, Plikelihood) = −
n∑
k=0

∞∫
−∞

. . .
∞∫
−∞

Pposterior(x0, . . . , xn) · log
(
Pposterior(x0,...,xn)
Plikelihood(x0,...,xn)

)
dΩ. (13)

This is maximized to derive the Lagrangian,

L(Pposterior, Plikelihood) = −
n∑
k=0

∞∫
−∞

. . .
∞∫
−∞

Pposterior(x0, . . . , xn) · log
(
Pposterior(x0,...,xn)

Plikelihood(x0,...,xn)

)
dΩ

+
n∑
k=1

λk · (δ · 〈xk〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xk−1〉)) · γ (δ)) ,
(14)

where dΩ = dx0 · dx1 · . . . · dxk · . . . · dxn and where λk are the Lagrange multipliers, which
enforce the constraints (dynamics) over the means of the variables under consideration. By inserting
Equations (5) and (12) into Equation (14) and integrating over the variables, the Lagrangian is
simplified to,

Ls(Pposterior, Plikelihood) =
n∑
k=0

(cxk − 〈xk〉)2 + ε

+
n∑
k=1

λk · (δ · 〈xk〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xk−1〉)) · γ (δ)) ,
(15)

where ε is an integration constant along with additive terms, which do not affect the Lagrangian in
Equation (15). This constant can be omitted, which yields the final Lagrangian,

Ls(Pposterior, Plikelihood) =
n∑
k=0

(cxk − 〈xk〉)2

+
n∑
k=1

λk · (δ · 〈xk〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xk−1〉)) · γ (δ)) ,
(16)

It should be noted at this point that the “distance” that is mentioned in [10] is the quadratic term in
the Lagrangian.
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2.3. Maximization of the Expectation

After differentiating the entropy with respect to the variables means, 〈x0〉 , . . . , 〈xn〉, a system of n+1

equations is formed, 

2 · 〈x0〉 − 2 · cx0 − γ (δ) · δ · λ1 = 0;

2 · 〈x1〉 − 2 · cx1 + δ · (λ1 − γ (δ) · λ2) = 0;

. . .

2 · 〈xn−1〉 − 2 · cxn−1 + δ · (λn−1 − γ (δ) · λn) = 0;

2 · 〈xn〉 − 2 · cxn − δ · λn = 0.

(17)

Every discretization interval constraint (which originates from Equation (11) forms the system of
n equations, 

δ · 〈x1〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x0〉)) · γ (δ) = 0;

. . .

δ · 〈xk〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xk−1〉)) · γ (δ) = 0;

. . .

δ · 〈xn〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈xn−1〉)) · γ (δ) = 0,

(18)

which together with Equation (17) form a system of 2n + 1 linear equations that have a closed
form solution.

For illustration, the solutions for the cases n = 4, n = 6 and n = 8 are provided. After this is done,
the pattern of the solution will be generalized.

In the first case (n = 4), the function f is differentiable. For illustration, we assume that there are
jump discontinuities at discretization points x0, x4, x8, x12, etc. It is not a necessity to strictly enforce
this assumption, but it is made so that the sequence of actions necessary for this approach are clear. At
the jump discontinuities in this system (control signal in the whole period of the differentiable interval
is constant), the boundary conditions claim that 〈xk (−0)〉 = 〈xk (+0)〉, i.e., the boundary condition
is of the Dirichlet type. Then, for every differentiable period of the function, we have two systems
of equations, 

2 · 〈x0〉 − 2 · cx0 − γ (δ) · δ · λ1 = 0;

2 · 〈x1〉 − 2 · cx1 + δ · (λ1 − γ (δ) · λ2) = 0;

2 · 〈x2〉 − 2 · cx2 + δ · (λ2 − γ (δ) · λ3) = 0;

2 · 〈x3〉 − 2 · cx3 + δ · (λ3 − γ (δ) · λ4) = 0;

2 · 〈x4〉 − 2 · cx4 − δ · λ4 = 0,

(19)

and: 
δ · 〈x1〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x0〉)) · γ (δ) = 0;

δ · 〈x2〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x1〉)) · γ (δ) = 0;

δ · 〈x3〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x2〉)) · γ (δ) = 0;

δ · 〈x4〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x3〉)) · γ (δ) = 0,

(20)
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which results in to a system of nine equations and mine unknowns consisting of five state variables and
four Lagrange multipliers,

2 · 〈x0〉 − 2 · cx0 − γ (δ) · δ · λ1 = 0;

2 · 〈x1〉 − 2 · cx1 + δ · (λ1 − γ (δ) · λ2) = 0;

2 · 〈x2〉 − 2 · cx2 + δ · (λ2 − γ (δ) · λ3) = 0;

2 · 〈x3〉 − 2 · cx3 + δ · (λ3 − γ (δ) · λ4) = 0;

2 · 〈x4〉 − 2 · cx4 − δ · λ4 = 0;

δ · 〈x1〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x0〉)) · γ (δ) = 0;

δ · 〈x2〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x1〉)) · γ (δ) = 0;

δ · 〈x3〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x2〉)) · γ (δ) = 0;

δ · 〈x4〉 − u− δ · xsteady + (u+ δ · (xsteady − 〈x3〉)) · γ (δ) = 0.

(21)

After some manipulations, the final solution for the two state variables 〈x0〉 and 〈x4〉 is:

〈x0〉 = cx0 · 1
1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx1 · γ(δ)

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx2 · γ(δ)2

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx3 · γ(δ)3

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx4 · γ(δ)4

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

−
(
u
δ

+ xsteady
)
· −γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4

1−γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4
,

(22)

and:
〈x4〉 = cx0 · γ(δ)4

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx1 · γ(δ)5

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx2 · γ(δ)6

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx3 · γ(δ)7

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx4 · γ(δ)8

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

−
(
u
δ

+ xsteady
)
· −γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4

1−γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4
.

(23)

Values 〈x0〉 and 〈x4〉 belong to the very first differentiable period of the time series when a control
signal u is a constant, i.e., ufirst = const. Thus, the closed form solutions for〈x0 (+0)〉 and 〈x4 (−0)〉
values have been found.

After introducing the following coefficients for convenience,

αk =
γ (δ)k

n=4∑
i=0

γ (δ)2i

, (24)

β0 =

n=4∑
i=1

(−1)i γ (δ)i

n=4∑
i=0

(−1)i γ (δ)i
, (25)

β4 =

n−1=3∑
i=0

(−1)i γ (δ)i

n=4∑
i=0

(−1)i γ (δ)i
, (26)
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and Equations (22) and (23) can be written as,

〈x0 (+0)〉 = cx0 · α0 + cx1 · α1 + cx2 · α2 + cx3 · α3 + cx4 · α4

−
(ufirst

δ
+ xsteady

)
· β0,

(27)

〈x4 (−0)〉 = cx0 · α4 + cx1 · α5 + cx2 · α6 + cx3 · α7 + cx4 · α8

−
(ufirst

δ
+ xsteady

)
· β4.

(28)

For this first differentiable period, the coefficients effective at the jump discontinuity of the control
signal from ufirst to usecond at the fourth discretization interval are introduced,

Afirst = cx0 · α0 + cx1 · α1 + cx2 · α2 + cx3 · α3 + cx4 · α4 − xsteady · β0, (29)

Bfirst = −ufirst · β4. (30)

The expression of 〈x4 (−0)〉 can be rewritten as:

〈x4 (−0)〉 = Afirst +
Bfirst

δ
. (31)

The next differentiable period from the fourth to eight discretization intervals, where again we have
n = 4 (this is not necessary, but the same value is used for illustration purposes). This yields the closed
form expressions for the state variables at the jump discontinuities,

〈x4 (+0)〉 = cx4 · α0 + cx5 · α1 + cx6 · α2 + cx7 · α3 + cx8 · α4

−
(
usecond

δ
+ xsteady

)
· β0,

(32)

〈x8 (−0)〉 = cx4 · α4 + cx5 · α5 + cx6 · α6 + cx7 · α7 + cx8 · α8

−
(
usecond

δ
+ xsteady

)
· β4.

(33)

After introducing convenience coefficients for 〈x4 (+0)〉,

Asecond = cx4 · α4 + cx5 · α5 + cx6 · α6 + cx7 · α7 + cx8 · α8 − xsteady · β0, (34)

Bsecond = −usecond · β4, (35)

the expression for 〈x4 (+0)〉 is arrived at,

〈x4 (+0)〉 = Asecond +
Bsecond

δ
. (36)

From a macroscopic level, there is a Dirichlet boundary condition with jump discontinuity at the
fourth discretization interval, which states that 〈x4 (−0)〉 = 〈x4 (+0)〉 . The following equation is solved
to determine δ,

Afirst +
Bfirst

δ
= Asecond +

Bsecond

δ
(37)

which yields,

δ =
Bsecond −Bfirst

Afirst − Asecond
. (38)

One might ask: if the illustrative coefficients Afirst, Bfirst, Asecond and Bsecond that were selected are
all functions of δ, then is the calculation of Equation (38) valid? Generally not if the rate of change of δ
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is of the same order as the discretization interval’s size. For this example, it is a priori known that some
external disturbances affect our system through changing the value of δ, i.e., it is actually a function of
time, δ (t). However, in many physical systems, the parameters’ rate of change is much smaller than
the rates of change of the state and control variables. Specifically, in a current application of this, the
rate of change of δ (t) in our system was ten-times smaller than the duration of differentiable period.
This allowed us to assume that γ (δ) was constant, because any change in δ resulted in approximately
a ten- to one hundred-times smaller change in γ (δ) compared to the change effecting Equation (37).
Therefore,the algorithm can start from a certain value of δ, find the δ using Equation (38), then put it
back into expressions Equations (24)–(31), with the recalculated estimates of the means at the boundary
condition defined by discontinuity point. Normally, after 3–5 iterations, the value of δ converges to the
acceptable precision.

When δ converges to an acceptable value, the remaining estimates of , 〈x1〉, 〈x2〉 and 〈x3〉 are
calculated. Thus, some information from observations is precalculated and then applied to the boundary
conditions. This yields the exact values for the differentiable points, which are in between the
discontinuity points.

Let us analyze the example with n = 6. Similarly to previous example, we derive our boundary
solution for the system of 13 equations as,

〈x0〉 = cx0 · 1
1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx1 · γ(δ)

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx2 · γ(δ)2

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx3 · γ(δ)3

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx4 · γ(δ)4

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx5 · γ(δ)5

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx6 · γ(δ)6

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

−
(
u
δ

+ xsteady
)
· −γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4−γ(δ)5+γ(δ)6

1−γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4−γ(δ)5+γ(δ)6
,

(39)
〈x6〉 = cx0 · γ(δ)6

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx1 · γ(δ)7

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx2 · γ(δ)8

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx3 · γ(δ)9

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx4 · γ(δ)10

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

+ cx5 · γ(δ)11

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12
+ cx6 · γ(δ)12

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8+γ(δ)10+γ(δ)12

−
(
u
δ

+ xsteady
)
· −γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4−γ(δ)5+γ(δ)6

1−γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4−γ(δ)5+γ(δ)6
.

(40)
The convenience coefficients are then redefined as:

αk =
γ (δ)k

n=6∑
i=0

γ (δ)2i

, β0 =

n=6∑
i=1

(−1)i γ (δ)i

n=6∑
i=0

(−1)i γ (δ)i
, β6 =

n−1=5∑
i=0

(−1)i γ (δ)i

n=6∑
i=0

(−1)i γ (δ)i
, (41)

which yields,
Afirst = cx0 · α0 + cx1 · α1 + cx2 · α2 + cx3 · α3 + cx4 · α4

+ cx5 · α5 + cx6 · α6 − xsteady · β0,
(42)

Bfirst = −ufirst · β6, (43)
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Asecond = cx6 · α6 + cx7 · α7 + cx8 · α8 + cx9 · α9 + cx10 · α10

+ cx11 · α11 + cx12 · α12 − xsteady · β0,
(44)

Bsecond = −usecond · β6. (45)

The δ is determined by the same procedure with the 3–5 iterations that were used with Equation (38)
and n = 4.

For the third example of n = 8, the convenience coefficients that are affected are only shown,

αk =
γ (δ)k

n=8∑
i=0

γ (δ)2i

, β0 =

n=8∑
i=1

(−1)i γ (δ)i

n=8∑
i=0

(−1)i γ (δ)i
, β8 =

n−1=7∑
i=0

(−1)i γ (δ)i

n=8∑
i=0

(−1)i γ (δ)i
, (46)

which yields,

Afirst = cx0 · α0 + cx1 · α1 + cx2 · α2 + cx3 · α3 + cx4 · α4

+ cx5 · α5 + cx6 · α6 + cx7 · α7 + cx8 · α8 − xsteady · β0,
(47)

Bfirst = −ufirst · β8, (48)

Asecond = cx8 · α8 + cx9 · α9 + cx10 · α10 + cx11 · α11 + cx12 · α12+

+ cx13 · α13 + cx14 · α14 + cx15 · α15 + cx16 · α16 − xsteady · β0,
(49)

Bsecond = −usecond · β8. (50)

2.4. Generalization of the Estimation Algorithm

After seeing the pattern of solutions in Equations (47)–(50), we generalize for any even number, n
discretization intervals of the differentiable period. The convenience coefficients are redefined for the
solution pattern,

αk =
γ (δ)k

n∑
i=0

γ (δ)2i
, (51)

β0 =

n∑
i=1

(−1)i γ (δ)i

n∑
i=0

(−1)i γ (δ)i
, (52)

βn =

n−1∑
i=0

(−1)i γ (δ)i

n∑
i=0

(−1)i γ (δ)i
. (53)

The mean estimate expressions for the boundary conditions, i.e., for the first 〈x0 (+0)〉 and the last
〈xn (−0)〉 means of the time series are as follows,

〈x0 (−0)〉 =
n∑
i=0

αk · cxk −
β0 · u
δ
− β0 · xsteady, (54)
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and:

〈xn (+0)〉 =
n∑
i=0

αk+n · cxk −
βn · u
δ
− βn · xsteady. (55)

The value of the parameter γ (δ) is not affected by the change in δ nearly as much as the effect that δ
produces in equation Equations (54) and (55). This is because the discretization interval, ∆t, is usually
chosen as small as possible (typically limited by embedded hardware resources), and the total duration of
the time series (the processing window of simultaneous updates or the part of f of differentiable points)
is also relatively small. Different control signals ufirst and usecond for two subsequent time series with
jump discontinuities between, δ, can be calculated based on the fact that the last estimated mean of the
first processing window is equal to the first estimated mean of the next processing window. In other
words, if Equations (54) and (55) can be rewritten into the form,

〈xn (−0)〉 = Afirst +
Bfirst

δ
, (56)

and:
〈x0 (+0)〉 = Asecond +

Bsecond

δ
, (57)

where 〈xn (−0)〉 = 〈xn (+0)〉. The value for δ is found using Equation (38). After the estimate for δ
is determined from Equation (38), the parameter γ can be recalculated and then used to calculate the
mean estimates according to the expression in Equations (54) and (55) again; and then, calculate δ again
by using Equation (38), and so on. This algorithm usually requires 3–5 iterations to converge to the
acceptable precision of δ, regardless of the uncertainty of the input variables. Acceptable precision in
our case is the situation when a new iteration changed the δ value by 0.1%. At this point, we assume that
it is no longer necessary to proceed with further iterations, because the information gain about the value
would become negligible.

We present the algorithm for the calculation in pseudo code:

double C a l c u l a t e D e l t a C o e f f i c i e n t (
double i n i t i a l v a l u e ,
double p r e c i s i o n ,
double [ ] o b s e r v a t i o n s ,
double C , / / i n e r t i a c o e f f i c i e n t as c o n s t a n t
double u , / / c o n t r o l s i g n a l ’ s v a l u e
double x s t e a d y , / / s t e a d y s t a t e v a l u e
double d t / / t h e s i z e o f d i s c r e t i z a t i o n i n t e r v a l

{
double d e l t a = i n i t i a l v a l u e ;
double e a r l i e r d e l t a = u n d e f i n e d ;
p r e c a l c u l a t e a rgumen t s o f e q u a t i o n s c o n t a i n i n g

a ) o b s e r v a t i o n s ;
b ) c o e f f i c i e n t C ;
c ) t h e s i z e o f d i s c r e t i z a t i o n i n t e r v a l ;
d ) c o n t r o l s i g n a l s v a l u e ;
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e ) s t e a d y s t a t e v a l u e o f v a r i a b l e ;

whi le ( t r u e ) / / l oop c o n t i n u o u s l y
{

c a l c u l a t e a l p h a and b e t a c o e f f i c i e n t s ;
c a l c u l a t e A f i r s t , B f i r s t , A sec , B sec ;
d e l t a = ( B sec−B f i r s t ) / ( A f i r s t −A sec ) ;
i f ( ( d e l t a − e a r l i e r d e l t a )ˆ2< p r e c i s i o n )

break ; / / h a l t t h e loop
e a r l i e r d e l t a = d e l t a ;

}
re turn d e l t a ;

}

Notice that there is still a singular point in Equation (38) that has to be avoided when implementing
the filtering algorithm. The coefficients Afirst and Asecond depend on the observation values, as shown
in Equations (54) and (55). Thus, the size of n needs to be such that the change in observations in the
processing window is noticeable in order to avoid this singularity in a real system, i.e., the system must be
perturbed enough or its control signal is reduced so that the change of measurements of the input channel
is noticeable. If this condition is satisfied, the MrE filter will be stable. Our physical system naturally
satisfied this requirement. In this example, during the whole measurement and estimation process, there
are no singularities.

We need to make an important theoretical note here regarding this approach as compared to
exponential smoothing used in EWMA. For this, the numeric example with n = 4 is used.

After solving the systems of equations in Equation (21), in addition to the 〈x4〉 value in Equation (23),
also the expression for 〈x3〉 is constructed,

〈x3〉 = cx0 · γ(δ)3

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx1 · γ(δ)4

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx2 · γ(δ)5

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

+ cx3 · γ(δ)6

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8
+ cx4 · γ(δ)7

1+γ(δ)2+γ(δ)4+γ(δ)6+γ(δ)8

−
(
u
δ

+ xsteady
)
· 1−γ(δ)+γ(δ)2−2·γ(δ)3+γ(δ)4

1−γ(δ)+γ(δ)2−γ(δ)3+γ(δ)4
.

(58)

From exponential smoothing [9], the next discretization interval’s estimate is calculated using,

〈x4〉 = (1− θ) · xunknown + θ · 〈x3〉 . (59)

At this point, it is unclear what the parameters θ and xunknown represent in the MrE filter and how
to resolve this by analyzing the equations Equations (58) and (23). It is clear that parameter θ is our
function γ (δ), and Equation (59) can be rewritten in the form,

〈x4〉 = (1− γ (δ)) · xunknown + γ (δ) · 〈x3〉 . (60)

Inserting Equations (58) and (23) to Equation (60), and solving for xunknown, yields,

xunknown = xsteady +
u

δ
. (61)
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All Equation (61) values are constants for a single differentiable period, as was mentioned earlier.
Thus, exponential smoothing is a special case of applying the MrE filter. Because of this, the physical
meaning of the coefficients in the exponential smoothing can be understood. Furthermore, because MrE
is more general, when the situation changes (for example, when the control force changes, or external
disturbances change the system parameter δ), it can be adapted to our exponential filter, so that it returns
unbiased estimates.

3. MrE Filtering Experimental Results

In this section, a numerical example using MrE is shown. It should be noted that the inference
of the differential equation parameters and calculation of the estimates is performed simultaneously
according to Equations (38), (51)–(57). The intermediate curve values where calculated by Equation (8).
Figure 1 presents the real time curve of estimates and the spread of the observation values. The
observations represent {cx0, . . . , cxn, . . .} values, and the estimated values are {〈x0〉 , . . . , 〈xn〉 , . . .}.

Figure 1. Noisy observations and their estimates after inferring the δ coefficient by the
maximization of relative entropy.

During this experiment, the following values for the exponential equation were selected (the physical
dimensions are relative, and all values are taken from the actual physical system) with an initial value of,
δ = 0.8, C = 1.5, xsteady = 294.15, ∆t = 0.001s, ufirst = 100 and usecond = 20. The processing was
performed on a 2.0-GHz PC, which consumed less than 10% of the total CPU time. No double precision
optimizations were implemented for the estimation routines, which means that there is a possibility to
implement an even faster MrE filter variant for embedded applications. The longest processing window
during the experiment was approximately one second. During the whole experimentation, MrE showed
stable behavior, and the estimated δ coefficient varied in the range from 0.88 to 1.17. The duration of
differentiable periods of function f varied from 50 up to 300 discretization intervals. The filter is immune
to any problems that might occur because of jump discontinuities in the function f .
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4. Summary and Final Remarks

In this paper, we developed the closed form solutions for the probabilistic variable means when
first order nonhomogenous ordinary differential equations are used as constraints for an univariate
system with jump discontinuities in the control signal using maximum relative entropy (MrE).
Further, we also showed that we can infer the parameters of the differential equation simultaneously
with the means. This is useful in real, physical systems, where we want to filter the noise from our
measurements and simultaneously infer the parameters connected to the dynamics of a nonlinear and
nonequilibrium system.

Algorithms, such as extended Kalman filter (EKF), may produce poor results, because its Markov
assumptions may not be applicable. An example of this was shown using a RL circuit, where important
information on one parameter is at the beginning of the time series, while other important information
about the other parameter is at the end of the time series. Thus, the Markov assumption is not
valid. This problem can be solved traditionally by using exponential smoothing, like the exponentially
weighted moving average (EWMA) method. However, this method also has problems, since it cannot
simultaneously estimate both the state and the parameters under consideration. The MrE derivation
of the exponential smoothing filter gives insight into the physical meaning of the parameters found
in the method of exponential smoothing filters and how this should be adopted when control forces
change or external disturbances change our system parameters. The exponential smoothing filter does
not involve information about abrupt changes (jump discontinuities), while MrE techniques resolve this
by handling such discontinuities. Finally, since EWMA assumes that the data series is exponential, it
does not incorporate information from other measurement channels in the same simultaneous step of
inference, which limits its applicability.

Another approach for exponential smoothing, which is similar to the one presented in this paper,
was the variation data assimilation method. It was shown in this paper that the “distance” between our
model and observations can be derived from the principles of MrE. It was also shown that we can not
only perform data assimilation, but also perform simultaneous estimation of unknown parameters of
the system.

It should be made very clear that although there were many assumptions made throughout the paper
to illustrate that EKF and exponential smoothing are special cases of MrE, we are not in general confined
by these assumptions. In other words, MrE is completely general and can be used in much broader ways.

The coefficient estimation shown in this paper can cover the estimation of inductance, dissipation
factors or the speed of an induction motor and would serve as a practical method for indirect
measurement applications, which are of great need in high-speed monitoring applications in dynamical
systems. Moreover, practically, singularities were avoided by using MrE filtering, which might lead
to the instability of the filter, as mentioned in [14]. Future work will include connecting MrE to the
unscented Kalman filter (UKF), the ensemble Kalman filter and other advanced filtering methods.

Acknowledgments

We are thankful for the discussions with Rimvydas Simutis and Robert C. Sonderegger. We are also
very thankful for the detailed, explicit and patient reviewers of this paper.



Entropy 2014, 16 4990

Author Contributions

Renaldas Urniezius conceived, designed and performed the experiments; Adom Giffin and Renaldas
Urniezius analyzed the data; Renaldas Urniezius contributed analysis tools and code; Adom Giffin wrote
the paper. Both authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Giffin, A.; Caticha, A. Updating Probabilities with Data and Moments. In Proceedings of the 27th
International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, Saratoga Springs, NY, USA, 8–13 July 2007; Knuth, K.H., Caticha, A., Center, J.L.,
Giffin, A., Rodrı́guez, C.C., Eds.; AIP: Melville, NY, USA, 2007; Volume 954, pp. 74–84.

2. Giffin, A.; Urniezius, R. The Kalman Filter Revisited Using Maximum Relative Entropy. Entropy
2014, 16, 1047–1069.

3. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic. Eng.
1960, 82, 35–45.

4. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM
algorithm. J R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–38.

5. Christopher, B.M. Pattern Recognition and Machine Learning; Springer: New York, NY,
USA, 2006.

6. Jazwinski, A.H. Stochastic Processes and Filtering Theory; Academic Press: New York, NY,
USA, 1970.

7. Crisan, D.; Rozovskii, B.L. The Oxford Handbook of Nonlinear Filtering; Oxford University Press:
Oxford, UK, 2011.

8. Brown, R.G. Exponential smoothing for predicting demand. In Proceedings of the Tenth
National Meeting of the Operations Research Society of America, San Fransisco, FA, USA,
16 November 1956.

9. Reddy, T.A. Applied Data Analysis and Modeling for Energy Engineers and Scientists; Springer:
Dordrecht, The Netherlands, 2011.

10. Courtier, P.; Talagrand, O. Variational assimilation of meterological observations with the direct
and adjoint shallow-water equations. Tellus 1990, 42A, 531–549.

11. LeDimet, F.; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological
observations. Theoretical aspects. Tellus 1986, 38A, 97–110.

12. Giffin, A. From physics to economics: An econometric example using maximum relative entropy.
Physica A 2009, 388, 1610–1620.



Entropy 2014, 16 4991

13. Giffin, A. Approximation For A Toy Defective Ising Model. In Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, Proceedings of 29th International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Oxford, MS,
USA, 5–10 July 2009; Goggans, P.M., Chan, C.Y., Eds.; AIP Publishing: New York, NY, USA,
2009; p. 79.

14. Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamical Systems; Chapman & Hall/CRC:
Boca Raton, FL, USA, 2004.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Maximum Relative Entropy Filter
	Maximum Relative Entropy as a Universal Approach for Filtering Applications
	Example with Nonhomogenous Differential Equation Constraints
	Maximization of the Expectation
	Generalization of the Estimation Algorithm

	MrE Filtering Experimental Results
	Summary and Final Remarks
	Acknowledgments
	Author Contributions
	Conflicts of Interest

