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Abstract: The process of designing microwave devices is difficult and time-consuming because the 

analytical and numerical methods used in the design process are complex. Therefore, it is necessary 

to search for new methods that will allow for an acceleration of synthesis and analytic procedures. 

This is especially important in cases where the procedures of synthesis and analysis have to be 

repeated many times, until the correct device configuration is found. Artificial neural networks are 

one of the possible alternatives for the acceleration of the design process. In this paper we present a 

procedure for analyzing a hybrid meander system (HMS) using the feed-forward backpropagation 

network (FFBN). We compared the prediction results of the transmission factor  21
S f  and the 

reflection factor  11S f , obtained using the FFBN, with results obtained using traditional analytical 

and numerical methods, as well as with experimental results. The comparisons show that prediction 

results significantly depend on the FFBN structure. In terms of the lowest difference between the 

characteristics calculated using the method of moments (MoM) and characteristics predicted using 

the FFBN, the best prediction was achieved using the FFBN with three hidden layers, which 

included 18 neurons in the first hidden layer, 14 neurons in the second hidden layer, and 2 neurons 

in the third hidden layer. Differences between the predicted and calculated results did not exceed 

7% for the  11S f  parameter and 5% for the  21S f  parameter. The prediction of parameters 

using the FFBN allowed the analysis procedure to be sped up from hours to minutes. The 

experimental results correlated with the predicted characteristics. 

Keywords: hybrid meander system; microwave device; receiver antenna; feed-forward 

backpropagation network; artificial neural network 

 

1. Introduction 

The manufacture of microwave devices usually consists of several stages: (1) synthesis of 

physical and geometrical parameters using analytical and numerical iterative methods [1–4], (2) 

analysis of synthesized models using analytical and numerical iterative methods [5–9], and (3) 

experimental verification [10–14]. This procedure is usually time consuming, especially when the 

approximate parameters are not known and many synthesis iterations are required [15,16]. The most 



Electronics 2019, 8, 85 2 of 13 

 

time-consuming stage is the repetition of experimental verification, as this requires the 

manufacturing of another experimental prototype of the device. A less time-consuming alternative is 

to repeat the analysis of the synthesized model. However, this still requires substantial time and can 

take many hours [17,18]. Calculation time using the analytical methods is quite short, but the 

preparation procedure and the development of a specific mathematical model for every particular 

design of a microwave device is a long process and requires a great deal of domain knowledge [6]. 

Recently, artificial neural networks (ANNs) were successfully used for modeling microwave 

devices [19–22]. ANNs have been used in both synthesis and analysis [23–25]. The advantage of using 

ANNs is the elimination of complex analytical and numerical iterative calculations, which allow for 

a quicker manufacturing of microwave devices. The disadvantage of ANNs, on the other hand, may 

be their long training time, which depends on training data, training algorithms, and the initial 

selection of connection weights [26]. 

The parametric optimization of a microwave device can also be performed using evolutionary 

optimization methods such as genetic algorithms (GAs) [27–29], but such methods are slow and may 

have convergence problems. 

The analysis and synthesis procedures of a particular design of meander microwave systems 

may take from several minutes up to several days [30]. In most cases, it is not possible to extract the 

appropriate parameters of the meander system the first time. In this way, the entire design cycle of 

the meander system can take even longer, as it is necessary to find the optimal design parameters of 

the meander system in the synthesis stage of investigation through multiple repetitions. Long 

computation time then becomes a problem [16]. Another problem can arise when the dispersion 

equation, using analytical methods, has either no solution or several solutions, requiring the selection 

of the correct one using iterative calculations. These problems could also be solved using neural 

networks. 

Here we propose a new technique based on the use of an ANN to predict characteristics present 

in meander systems. The main advantage is that the rapid estimation of the design parameters allows 

the analysis and design of the meander systems to be performed in real-time as opposed to the long 

computations which are required when using analytical and numerical methods. The particular 

model of the hybrid meander system used for the investigation [30] included several new 

modifications, which allowed the use of the analyzed hybrid meander system in small pocket devices. 

We predicted the electrical parameters of the hybrid meander slow-wave system using the feed-

forward backpropagation network (FFBN) and compared the predicted results with the results 

obtained using analytical and numerical iterative methods, as well as with the results of physical 

measurements. 

2. Materials and Methods 

We investigated the hybrid meander slow-wave helical (HMH) system using the analytical 

multiconductor line and numerical finite-difference time-domain methods. Such meander systems 

are applied as wide-band slow-wave structures for the retardation of electromagnetic waves in 

traveling-wave tubes, traveling-wave cathode-ray tubes, delay lines, and other microwave devices. 

2.1. Model of the Hybrid Meander Systems 

The relatively low characteristic impedance and dispersion of the phase velocity of 

electromagnetic waves are negative characteristic features of meander systems (Figure 1a). This 

characteristic impedance was increased by bending the peripheral parts of the meander electrodes 

and forming the helical turns (Figure 1b,c). Calculations of the hybrid meander system were executed 

in CST Microwave Studio® (CST MWS) using the finite-difference time-domain method. 

The main dimensions of the meander system were as follows: the width of the meander electrode 

2a = 15 mm, the step of conductors L = 2 mm, the gaps among the conductors l = 0.5 mm, the thickness 

of conductors t = 0.2 mm, the height of dielectric substrate h = 0.5 mm, and the length of the system 

Ls = 29.5 mm (Figure 2a,b). The diameter of the turns was d = 2.5 mm. The diameter of the conductors 

of the turns was the same as the thickness of the meander electrode (0.2 mm). 
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Figure 1. (a) Meander system; (b) Hybrid meander system with one turn in the peripherals; (c) Hybrid 

meander system with two turns in the peripherals visualized in the CST Microwave Studio® 

environment. 

 

Figure 2. (a) Top view of hybrid meander conductor, and (b) Cross-view of hybrid meander 

conductor, where 1 = central meander electrode; 2 = peripheral helical turns of electrode; and 3 = 

dielectric substrate. 

Although the HMH system had better characteristics when compared with an ordinary meander 

system, it also had some disadvantages. The biggest disadvantage was the use of the peripheral coils 

of the HMH system, which occupied quite a large amount of space. This was a disadvantage 

especially when employed in small portable devices. Therefore, we replaced the coils of the 

peripheral parts with inductive components and evaluated the modification in Sonnet® software 

(Sonnet Software, Inc., Syracuse, NY, USA) using the method of moments (MoM) (see Figure 3). 
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Figure 3. Meander system with inductive components in the peripheral parts, where 1 = central 

meander electrode; 2 = peripheral helical turns of electrode; and 3 = dielectric substrate. 

2.2. Prediction of HMH Characteristics 

The electrical properties of the HMH system can be expressed in terms of the S-parameters: 21S  

(transmission factor) and 11S  (reflection factor). The S-parameters can be predicted when the vector 

of the electromagnetic wave frequency consists of min max
{ ; ; },f f f f  where min

f  and max
f  are the 

initial boundaries of the vector of the electromagnetic wave frequency and f is the step of the 

electromagnetic wave frequency. The initial boundaries of the vector of the electromagnetic wave 

frequency are min
0f   GHz and max

f  = 5 GHz, and the step of the frequency is 0.02 GHz f . 

The inductance vector of the helical turns consists of i min max
{ ; ; },L L L L  where min

L and max
L  

are the initial boundaries of the vector of the inductance of the helical turns and L  is the step of the 

inductance of the helical turns. The initial boundaries of the vector of the inductance of the helical 

turns are min
L = 0 nH and max

L  = 30 nH, and the step of the vector of the inductance of the helical 

turns is 2 nH.L   

2.3. Architecture of the FFBN 

The structure of the FFBN was selected dependent on training and validation data samples and 

iterative experiments, and was adapted by changing the number of hidden layers and the number of 

neurons in each hidden layer (Figure 4). The first hidden layer had a constant number of 18 neurons 

during all experiments. This was twice as much as the input layer had. The number of neurons in the 

second and third hidden layers varied from 0 to 15 neurons (the zero value of neurons means that 

the neural network did not have a corresponding hidden layer). The best structure of the FFBN was 

selected during experiments. The activation functions of the first, second, and third hidden layers 

were hyperbolic tangent sigmoid function (tansing(·)). The input layer of the FFBN consisted of nine 

neurons. The output layer of the FFBN consisted of two neurons for the prediction of the transmission 

factor (  21
S f ) and reflection factor (  11S f ) characteristics. The activation functions of the output 

layer neurons were also hyperbolic tangent sigmoid function (tansing(·)). The FFBN was trained with 

every sample not less than 20 times. The results that best matched with previous results obtained 

using Sonnet® software were selected for further processing. 
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Figure 4. The structure of the feed-forward backpropagation network. 

2.4. Training of the FFBN 

Samples of frequency characteristics of the HMH system for training the FFBN were collected 

using Sonnet® software, which performs calculations based on MoM. The HMH model was created 

in Sonnet® using the following dimensions: the step of conductors (L = 1.5 mm), the gaps between 

conductors (l = 0.4 mm), the thickness of conductors (t = 0.35 µm), the gap between the meander 

electrode and the shield (w2 = 0.6 mm), the inductance of the helical turns (inductivity of the coils, 

which varied from 0 to 30 nH with a step of 2 nH), and the frequency of the electromagnetic waves 

(which varied from 0 to 5 GHz with the step of 0.02 GHz). FR-4 material—a composite material 

composed of woven fiberglass cloth with an epoxy resin binder—was selected for the dielectric 

substrate. 

The S-parameters of  21S f  (transmission factor) and  11S f  (reflection factor) were 

calculated with Sonnet® software according to the different values of the inductivity of the peripheral 

parts of the meander. The calculated data samples were divided into training (70% of samples), 

validation (15% of samples), and testing (15% of samples) data samples. Every sample consisted of a 

1 × 9 input and a 1 × 2 target matrix. There were 250 data samples calculated with the Sonnet®  

software in total. Therefore, the sizes of the input and output matrices were 9 × 250 and 2 × 250, 

respectively. There were 175 data samples used for training, 38 data samples for validation, and 37 

data samples for testing. The number of epochs was equal to 1000 by default. The mean squared error 

(MSE) method was selected for the validation of the network. Other validation methods were not 

investigated. The performance parameter of MSE was selected by default and was equal to 10-4. The 

validation was made by the FFBN according to the performance parameter of the MSE—the FFBN 

changed its weights of connections between neurons until the desired performance parameter was 

reached. 

The training, validation, and testing processes were performed with different configurations of 

the FFBN. The MSE values (in percentage) of validation with the FFBN consisting of two hidden 

layers and the number of neurons varying in both layers are presented in Figure 5. Here the zero 

value means that the MSE value of 10−4 was reached. If the performance parameter of the MSE 

validation was not reached, it meant that the training of the FFBN was not successful. 

 



Electronics 2019, 8, 85 6 of 13 

 

 

Figure 5. Validation of the feed-forward backpropagation network (FFBN) when the network 

consisted of two hidden layers. 

The best validation results were obtained when the first hidden layer had 18 neurons and the 

number of neurons varied in the second hidden layer. We then tried to increase the number of hidden 

layers in the FFBN to three. Based on the validation results presented in Figure 5, we decided to have 

a constant number of 18 neurons in the first hidden layer and to try to vary the number of neurons in 

the second and third layers (Figure 6). 
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Figure 6. Validation of the FFBN when the network consisted of three hidden layers, when the first 

layer consisted of 18 neurons. 

The best validation results were obtained when the network had 14 neurons in the second 

hidden layer and 2 neurons in the third hidden layer. The first hidden layer was constant and had 18 

neurons. 

2.5. Analysis of the Primary Results 

The hybrid meander system was designed using Sonnet® software. Previous studies showed that 

input impedance, retardation factor, and characteristics of the transfer coefficient correlate with 
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certain results, which were obtained in [30] using the analytical multiconductor line method and the 

numerical finite-difference time-domain (FDTD) method in CST Microwave Studio® (Figure 7). 

 

Figure 7. (a) The results of the input impedance characteristics: 1 = our developed algorithm, 

inductance was 0 nH [30]; 2 = Sonnet®; 3 = our developed algorithm, inductance was 5 nH [30]; 4 = 

Sonnet®. (b) The characteristics of the transfer coefficient: 1 = CST Microwave Studio®, inductance was 

0 nH; 2 = Sonnet®; 3 = CST Microwave Studio®, inductance was 5 nH; 4 = Sonnet. (c) The characteristics 

of the delay time: 1 = our developed algorithm, inductance was 0 nH [30]; 2 = CST Microwave Studio®; 

3 = Sonnet®; 4 = our developed algorithm, inductance was 5 nH [30]; 5 = CST Microwave Studio®; 6 = 

Sonnet®. 

Note that only a few cases are included in Figure 7 for better understandability. Figure 7a 

represents the results of input impedance when the inductance was 0 or 5 nH. The average value of 

input impedance was the same with both the analytical multiconductor line method and the MoM, 

but there was some periodical variation in the results that were obtained using MoM in Sonnet®. 

Figure 7b represents the results of the transfer coefficient, which were obtained using the FDTD and 

MoM methods. The stop band was determined precisely by both methods, when the inductance was 

0 nH or 5 nH. The delay time was almost the same using both methods (Figure 7c). The uncertain 
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delay time results started at almost the same stop-band frequency, and the difference was only 40 

MHz. 

In summary, the results show that it is possible to replace spiral coils with inductive components 

in the peripheral parts of a meander conductor without losing the properties of the hybrid meander 

system. The positive results allowed us to design, manufacture, and experimentally investigate the 

real models of the hybrid meander system. 

3. Results 

3.1. Experimental Investigation 

The inductive components that were used in the modeling process in Sonnet® and the CST 

Microwave Studio® were replaced with contact plates in the PCB. The 10 nH inductors were soldered 

to the contact plates in order to simulate spiral coils (Figure 8a). 

 

Figure 8. The hybrid meander system: (a) PCB model and (b) manufactured prototype (zoomed 

image). 

The manufactured hybrid meander system is presented in Figure 8b. FR-4 material was used in 

the PCB. Here, the FR-4 is a NEMA-grade designation for glass-reinforced epoxy laminate material. 

The relative permittivity of FR-4 is equal to 4.6. In order to adapt to the manufacturers, a few 

parameters were adjusted as follows: the step of conductors (L = 1.5 mm), the gaps among the 

conductors (l = 0.4 mm), the thickness of conductors (t = 0.35 µm), and the gap between the meander 

electrode and the shield (w2 = 0.6 mm). Therefore, a qualitative but non-quantitative comparison can 

be made between results of the computational modeling and the experimental measurements. 

The results of our measurements show that the measured dependencies of the transfer 

coefficient on frequency were distorted. This can be explained by the fact that the output signal 

reflected off the mismatched end of the manufactured hybrid meander system, and also that insertion 

losses were high. The experimental results correlated with the results obtained during the computer-

based simulation (Figure 9a). The higher difference between results was achieved when the 

inductivity of the coils was 10 nH. The characteristics of the transfer coefficient were almost the same 

as achieved using CST Microwave Studio® and Sonnet® software when the inductivity of the coils 

was 10 nH (Figure 9b). 
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Figure 9. Modeling results and measurements of the hybrid meander systems at (a) 0 nH and (b) 10 

nH, where 1 = measurements, 2 = CST Microwave Studio®, and 3 = Sonnet®. 

According to the results shown in Figure 9, it is possible to increase pass-band and input 

impedance of the slow-wave system using the inductors in the peripheral parts of the meander 

electrodes. Variations of retardation factor and input impedance of the HMH system were relatively 

small in the wide frequency range. 

3.2. Prediction Results Using the FFBN 

We compared the prediction results of the  11S f  and  21S f  parameters obtained using the 

FFBN with the results of the MoM method (obtained using Sonnet® software). The prediction of S-

parameters of the HMH system was performed in three different cases: 

 Inductivity of the helical turns i
10 nH,L   

 Inductivity of the helical turns i
18 nH,L   

 Inductivity of the helical turns i
27 nH.L   

The comparison of the S- parameters of the HMH system, which were predicted using FFBN 

and calculated using the Sonnet® software, are presented in Figure 10. The lowest mean differences 

between the calculated and predicted  11S f  and  21S f  characteristics were not large—the lowest 

mean differences were only 6.74% for  11S f , and 4.79% for  21S f . The lowest mean differences 

between the calculated and predicted results were 6.77% for  11S f  and 4.98% for  21S f  when the 

structure of the network was 18 × 15 × 4 (18 neurons in the first hidden layer, 15 neurons in the second 

hidden layer, and 4 neurons in the third hidden layer of the network), and the highest mean 

differences were 79.79% for  11S f  and 78.53% for  21S f  when the structure of the network was 

18 × 8 × 6 and 10 nH inductors were used (Figure 10a). The lowest mean differences between the 

calculated and predicted results increased—but did not exceed 6.92% for  11S f  or 4.76% for  21S f

,  21S f —when the structure of the network was 18 × 10 × 3, and the highest mean differences were 

81.90% for  11S f  and 83.7% for  21S f  when the structure of the network was 18 × 7 × 9 and the 

inductivity of the helical turns was 18 nH (Figure 10b). Finally, the lowest mean differences between 
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the calculated and predicted results decreased down to 6.53% for  11S f  and 4.64% for  21S f  

when the structure of the network was 18 × 14 × 2, and the highest mean differences were 84.48% for 

 11S f  and 76.5% for  21S f  when the structure of the network was 18 × 15 × 8 and the inductivity 

of the helical turns was 27 nH (Figure 10c). 

 

Figure 10. Comparison of the calculated and predicted results of the hybrid meander system when 

inductivity of the helical turns was (a) 10 nH, (b) 18 nH, and (c) 27 nH. 

The comparison of the predicted and calculated results also showed that the cut-off frequencies 

of the  11S f  and  21S f  parameters were the same in both cases at the −3 dB level. 

The influence of the number of neurons in the hidden layers of the FFBN on the predicted results 

of the S-parameters is presented in Figure 11. The highest difference between the calculated (using 

Sonnet® software) and the predicted S-parameters were obtained when the inductivity of the helical 

turns was 18 nH (the difference between results was 82.8%). The highest difference between results 

was obtained when the structure of the FFBN was 18 × 7 × 9 (18 neurons in the first hidden layer, 7 

neurons in the second hidden layer, and 9 neurons in the third hidden layer of the network) (see 

Figure 11b). 

The lowest difference between results was achieved when the structure of the FFBN was 18 × 14 

× 2 (18 neurons in the first hidden layer, 14 neurons in the second hidden layer, and 2 neurons in the 
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third hidden layer of the network) (Figure 11c), while the inductivity of the helical turns was equal 

to 27 nH. The influence of these differences on the performance of the HMH system was small. 

 

Figure 11. Relationship between the number of neurons in the hidden layers of the FFBN and the 

prediction results when inductivity of the helical turns was (a) 10 nH, (b) 18 nH, and (c) 27 nH. 

The calculations were performed much faster than could be accomplished using the Sonnet®  

software. The prediction of the S-parameters of the hybrid meander system using the FFBN was 

performed on a computer with the following parameters: Intel Core i7-2820QM @ 2.30GHz with 16 
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GB of RAM and an NVIDIA GeForce GT 630 2 GB RAM video card. The calculation time was equal 

to 8 h using the MoM method (using Sonnet® software). The prediction time was 127.43 s using the 

FFBN, which was much faster than using the MoM method. The training process of the FFBN took 

less than 63 s. 

4. Conclusions 

We used the feed-forward backpropagation network (FFBN) to predict the parameters of hybrid 

meander systems. The mean differences between the predicted and calculated results differed by less 

than 6.74% for the  11S f  parameter, and less than 4.79% for the  21S f  parameter. The prediction 

of parameters using the FFBN was noticeably faster than the calculations using the method of 

moments (MoM). 

The results of modeling and the physical experiment of the hybrid meander system 

demonstrated that it is possible to increase the pass-band and input impedance of a slow-wave 

system using the hybrid meander system with the inductors in the peripheral parts of meander 

electrodes. The spiral coils of the hybrid meander system could be replaced with inductive 

components in the peripheral parts of the meander conductor without worsening the characteristics 

of the hybrid meander system. 
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