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1Abstract—In many corona field applications, three-electrode
and multi-electrode systems with different electrode potentials
are being used. Procedure and results of numerical analysis of
direct current corona field in three-electrode corona system
consisting of ionizing wire placed between two parallel non-
ionizing electrodes is presented in this paper. Algorithm of
analysis consists of two stages. Stage 1 comprises an
electrostatic approach of field analysis without space charges.
Result of this stage is an equation of separatrix dividing the
field into 2 areas: an area of electric flux between the corona
wire and one of plane electrodes, and an area occupied by the
flux between the plane electrodes. Stage 2 involves numerical
analysis of the field in both areas. Numerical model is based on
the assumption that the space charge of corona field doesn't
change the position and shape of separatrix. Results of
modelling are validated experimentally. Proposed method of
analysis allows predicting the behaviour of multi-electrode
corona system using finite computer resource.

Index Terms—Corona, finite difference methods, numerical
analysis, space charge.

I. INTRODUCTION

Large number of two-electrode corona discharge systems
used in many applications consists of ionizing electrode
(wire, needle, etc.) and non-ionizing electrode. Corona fields
of these systems usually are assumed as plane-parallel or
axially symmetric ones. Functional possibilities of corona
devices may be enhanced by use of multi-electrode system.
Unfortunately, more complicated models are needed for
analysis of the field in multi-electrode systems. Models of an
electrostatic field in roll-type separator discussed in [1] are
published more than 20 years ago. Given models of three-
electrode system with ionized and non-ionized field areas
demonstrate the complexity of the problem. Boundary
element method is employed for analysis of the electrostatic
field distribution in the roll-type separator [2], consisting of
wire-type corona electrode, ellipse-profile non-ionizing
electrode and grounded cylindrical one. Numerical model is
proposed in [3] for solving the differential equations that
describe the combined corona-electrostatic electric fields.
The aim of the research is to overcome the limitation of the
previous works related to the fact that the employed
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programs were not capable to simulate the distortion of the
electric field due to the presence of the space charge.
Publication [4] is the further development of ideas given in
[3]. Mathematical model of the field generated between the
ionizing wire, cylindrical conducting tube and the grounded
collecting plate is based on a conformal mapping that
converts the actual boundary-free field area into a
rectangular domain with well-defined boundary conditions.
The finite-difference method is used for solving the
differential equations describing the field in this domain.

The field of corona triode consisting of parallel ionizing
wires, a grounded collecting plane electrode and parallel
grid rods between them is analysed in [5] using the finite-
element and boundary element methods combined with the
method of characteristics. The distribution of field strength,
space-charge density and current density, also the discharge
current can be controlled by changing the grid voltage and
configuration of electrode system. The total corona current
is the sum of the current directed from ionizing wires to
collecting plate and the current between wires and the grid.

An analytical model is developed to calculate the ion
number concentration and mean charge per particle in the
charging zone of the particle charger consisting of two
concentric metal cylinders and a corona-wire placed along
the axis of the cylinders [6]. Outer cylinder is connected to
the ground. The ion driving voltage applied on the inner
cylinder forces the ions through the perforated screen
openings on the inner cylinder to the charging zone.
Analysis of the field in this triode charger is performed by
use the assumption of neglected space charge due to the
ions. Electric fluxes between the emitting and collecting
electrodes as well as between the emitting and control
electrodes in [5] are related with the ionized areas of the
field.

Our concept is to develop the principle of discharge
current from the emitting electrode control without a current
related to control electrode. Electrostatic field in the system
“corona wire between two parallel plane electrodes with
different potentials” is studied in [7]. Analysis of the field is
based on the use of the superposition of complex potentials
in wire-to-plane electrode system and in the system of
parallel plane electrodes. Modes of the field-line behaviour
are determined depending upon the values of electrode
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potentials and the system configuration. Equation of
separatrix, dividing the field of the system into two areas:
the area occupied by electric flux directed from the corona
wire to the one of plane electrodes and the area of the flux
between plane electrodes was constructed in [8]. Parameters
of corona field electrometer [9] are determined as a result of
field computation by use the Deutsch´s assumption: vector
of the corona field strength differs in magnitude from the
strength of Laplacean field, but their directions coincide
[10], [11].

The subject of this work is to validate an analytical-
numerical model for computing the two-dimension field of
three-electrode corona device comprising of ionized and
non-ionized areas. Our investigation consists of two steps.
Analysis of electrostatic field in three electrode system
without the space charge shown in Fig. 1 is being performed
in the first stage. Result of the analysis is the equation of
separatrix dividing the field into areas occupied by different
electric fluxes. The second stage comprises of the numerical
modelling of the corona field under the assumption that the
space charge does not influences the shape and position of
separatrix.

II. MATHEMATICAL MODEL

A. Step 1. Electrostatic Approach
Analysis of two-dimensional electrostatic field in three-

electrode system without space charge shown in Fig. 1 was
performed in [7]. Complex potential

     , , j , ,w x y u x y v x y  (1)

was determined by superposition of the homogeneous field
and the field generated by a set of parallel charged wires.
Potential function u and stream function v were obtained as:
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Electric flux related to electrodes u2 and u3 in Fig. 1 is
equal to 0 if there is a point on the axis x between these
electrodes with the zero value of the field strength [8].
Separatrix is a line denoting the geometric place of points

where the imaginary part of complex potential v(x, y) is
equal to 0. An equation of separatrix dividing the field into
two areas: an area occupied by an electric flux related to
electrodes u1 and u2 and an area with the flux between
electrodes u1 and u3 is derived in [9]. The field in the first
area is strongly inhomogeneous, and the field between
electrodes u1 and u3 is quasi-homogeneous. The view of
equipotential and field lines for the electrometric mode of
field [7] is shown in Fig. 2. It corresponds to the following
values of parameters: h1 = 10.0 mm, h2 = 40.0 mm, r0 =
0.025 mm, u1 = –10000 V, u2 = 0, u3 = –5000 V. Distances
in the field view are given in milimetres. Dashes correspond
to equipotentials and field lines are marked by continuous
ones.

Fig. 1. Configuration of the electrode system under study.

Equation of separatrix is the following [12]

0 0.k E y     (10)

Coordinates of separatrix points are given in Table I for
the step x = 1.0 mm.

Fig. 2. Equipotential and field lines of electrostatic field.
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TABLE I. COORDINATES OF SEPARATRIX POINTS.
x, mm y, mm x, mm y, mm
10.0 16.4 –10.3 0
9.0 16.4 –9.0 3.2
8.0 16.3 –8.0 7.8
7.0 16.3 –7.0 9.5
6.0 16.2 –6.0 10.0
5.0 16.0 –5.0 11.1
4.0 15.7 –4.0 12.6
3.0 15.4 –3.0 13.2
2.0 15.1 –2.0 14.1
1.0 14.9 –1.0 14.8
0 14.8 0 14.8

B. Step 2. Corona field
We use the finite difference method for the 2D numerical

modelling of the field. Rectangular mesh in Cartesian system
of coordinates is suitable for the analysis in the non-ionized
part of the field. Polar system of coordinates must be used
for analysis of corona field. The fragment of the field is
shown in Fig. 3.

Fig. 3. Fragment of the field with rectangular mesh to the left of the
separatrix and with polar mesh to the right of it.

Numerical analysis of corona field is based on the
assumption that space charges don’t change the coordinates
of separatrix points determined by an electrostatic approach.
Corona field is governed by the system of equations [13]:

0div ,
grad

div 0,
,
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(11)

where E is electric field strength, J is current density,  is
space charge density, u is potential,  is permittivity, and k
is ion mobility. We use [9] the system (11) reduced to the
Poisson’s and charge conservation equations as in [2], [4]:

divgrad ,u    (12)
2grad grad .u    (13)

Laplace’s equation describes the field in the non-ionized
area

divgrad 0.u  (14)

Finite difference approximation of this equation for the
regular mesh represents the averaging of potential values at
four surrounding points
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Irregular rectangular mesh is characterized by the
distances aS, aQ, aP and aR from the central node O to
surrounding nodes P, Q, R and S (similar as in Fig. 3).
Laplace’s equation in finite differences is of the following
form
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Finite difference approximation of Poisson′s equation in
polar irregular mesh is defined as
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Meanings of letters aS, aQ, aP and aR are the same as in
(16) – see Fig. 3. Central angle between the neighbour radii
of the regular polar mesh can be written as

0 ,m  (18)

where m + 1 is the quantity of radial lines, for the mesh
shown in Fig. 3, m = 12. Radial coordinate r is defined as
follows

1
0 ,ir r   (19)

where 01 ,   i is the number of the node on the radial
line. Poisson’s equation for the regular polar grid is of the
following form
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Finite difference approximation of the charge
conservation equation in the polar coordinate system
contains derivatives with respect to r and φ [14]

21 1u u
r r r r
  

  
   
   

   
. (21)

Finite-difference approximations of these derivatives are
the following:
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Fig. 4. Computational scheme for the numerical analysis of the field.

Corresponding formulas for charge density derivatives are
similar:
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Dirichlet boundary conditions for electrode potentials are
the constant values of u1, u2 and u3 (Fig. 2). Boundary
condition for the node potentials on the symmetry axis y = 0
is an equality uP = uR for each node of that line. Condition
for the nodes of the free boundary line y = 0,5 l, (l is the
length of the plane electrodes), is the following

        , 1 1, 1 2, ,u i j h u i j h u i j       (26)

where h is the length of the step. These conditions are being
determined in the 1 stage of the algorithm given in Fig. 4.

Stages 2 and 3 comprise the solution of Laplace′s
equation in Cartesian coordinates for all domain of the field,
n is the number of iteration, ε′ is accuracy. Coordinates of
separatrix points are being computed in the Stage 4, and
their potentials are determined in the Stage 5. Boundary
conditions for the points of separatrix are described in
details in [15]. Initial conditions for the Laplacean field in
polar coordinates are established in Stage 6, Stages 7 and 8
are the solution of Poisson equation. We use the Kaptzov′s
assumption [12] to determine boundary conditions on the
surface of corona wire: electric field strength on the surface
E(ro) is proportional to the voltage below the corona onset
U0, and stays constant and equal to the initial field strength
value E0 determined from Peek′s formula for U ≥ U0 [16].
To fulfil this condition the space charge density on the
surface of corona wire ρ(r0) is changed iteratively
(Stage 10). Procedure closes if the potential of emitting wire
exceeds the given value (Stage 10). Current density on the
surface of plane electrode 1 is determined at the end

     1 1 1 .J x h x h k E x h      (27)

III. RESULTS OF NUMERICAL MODELLING

Input quantities for numerical modelling of the field are
the same as in electrostatic approach [17]: h1 = 10.0 mm,
h2 = 40.0 mm, r0 = 0.025 mm, distance from the edge of
plane electrodes to the x axis l = 200 mm, electrode
potentials u1 = –10000 V, u2 = 0, u3 = –5000 V. Mobility of
negative ions k- = 2.2·10–4 m2/(V·s) = const.

Total number of nodes in the Laplacean field grid is
10104 (for the step Δx = Δy = 1.0 mm), the number of nodes
in corona field grid is 671 (for central angle of polar grid φ0

= π/12). The number of nodes in the Laplacean field grid
may be essentially reduced by minifying the length l.

Distribution of the field strength E(x) on the axis of
symmetry is presented in Fig. 5. Interval of coordinate –40 ≤
x ≤ –10 mm corresponds to the field without space charge.
Field strength equals to 0 in the separatrix point x = –10 mm.
Interval of x to the right of this point gives the values of
corona field strength. Maximum value of the strength
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equal to the 211.3 kV/cm is reached on the surface of the
wire.

Fig. 5. Distribution of field strength E(x) on the axis of symmetry.

Distribution of potential on the axis of symmetry is given
in Fig. 6. Interval –40 ≤ x ≤ –10 mm corresponds to the
potential of Laplacean field, and the values of x in the rest
interval –10 ≤ x ≤ 10 mm are arguments of potential as a
solution of corona field equations. Potentials of all wire
surface points are equal to 0.

Fig. 6. Distribution of potential u(x) on the axis of symmetry.

Fig. 7. Field strength E(y) on the surface of plane electrode u1 (x =
10.0 mm).

Dependence of the field strength upon the values of
coordinate y on the surface of plane electrode u1 (x =
10.0 mm = const) is shown in Fig. 7. Field strength is equal
to 0 in a point y = 16.4 mm, i.e. in the boundary point of
separatrix. Field strength values in the points to the left of
mentioned point correspond to the solutions of electrostatic
field without space charges, and the values of field strength

in the points to the right of mentioned one are the solutions
of corona field equations.

Figure 8 presents a graph of space charge density ρ(y) on
the surface of plane electrode u1. Space charge density ρ(y)
equals to 0 in all points y  16.4 mm.

Fig. 8. Space charge density ρ(y) on the surface of plain electrode 1.

Figure 9 shows the schematic diagram of experimental
set-up. Potentials of all electrodes are shifted by the constant
u1 = 10000 V in comparison with those used in numerical
modelling: u1 = 0, u2 = 10000 V and u3 = 5000 V.

Fig. 9. Schematic diagram of experimental set-up.

Adjustable direct current high voltage power supply units
4 and 5 are used to maintain given values of electrode
potentials. Unit 4 is connected to the wire 2, and the one 5 is
connected to the plane electrode 3. Plane electrode 1 is
grounded via microammeter 6 destined for measurement of
the total electrode current. Narrow conductive strip 7 is
attached to the plane electrode 1 and insulated by means of
dielectric layer 9. Microammeter 8 connected to the strip 7 is
used for measurement of the current density. Position of the
strip 7 in respect of the origin of coordinate system can be
adjusted by means of the micrometric screw (not shown in
Fig. 9). Rotation of the screw causes the movement of the
plane electrode 1 with the attached strip 7 in direction of
coordinate axis y.

Corona current density distribution on the surface of plane
electrode 1 experimental data are given in Fig. 10 (dots).
Computer modelling data are also presented here (asterisks).
Current density is determined from (27) using ρ and E values
given in Fig. 7 and Fig. 8.The value of coordinate y =
16.4 mm corresponds to the boundary point of separatrix on
the surface of the plane electrode 1. Measured value of this
coordinate is 17.2 mm. Discrepancy between the measured
and theoretical values of coordinate y determining the
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position of boundary point of separatrix is 4.6 %.

Fig. 10. Distribution of current density on the surface of plane electrode 1.

Total current of plane electrode 1 is determined by
numerical integration of current density

 
s

0
2 d ,

y
I J y y  (28)

where ys = 16.4 mm. Measured value of corona current
determined from (28) is 420 A/m, corresponding computed
value of corona current is 441 A/m. Discrepancy of these
values is 4.8 %. Differences between the measured and
computed values of total corona current alike between the
values of boundary point coordinates on the surface of plane
electrode 1 may be caused by the main assumption of
computer modelling, by the used constant value of ion
mobility and by the finite accuracy of measuring devices.

IV. CONCLUSIONS

Numerical method for analysis of electric field in three-
electrode system “corona wire between two plane electrodes
with different potentials” consisting of ionized and non-
ionized areas is proposed. The method involves two stages.
Laplacean field of the electrode system is being analysed in
the first stage where an equation of separatrix dividing the
field into areas with electric fluxes related and not related to
the corona wire is derived. In the second stage, finite
difference method is used for numerical solution of
Laplace′s and corona field equations. Equality of Laplacean
field and corona field potentials in the nodes of separatrix is
the boundary condition for this line. Boundary condition for
nodes of separatrix is based on the main assumption of the
paper that the space charge of corona field doesn′t change
the position and shape of separatrix determined in the stage
of electrostatic approach. Validation of numerical modelling
data is performed by measuring the corona field density on
the surface of plane electrode in the ionized area. Difference
between measured and computed values of coordinate that
defines position of separatrix boundary point is 4.6 %.
Values of measured and computed corona current in the
ionized area differs by 4.8 %. Proposed model is accurate
enough for computer simulation to be able to solve
effectively problems of corona field in multielectrode
systems of practical interest. This method is suitable for

analysis of corona field in other multielectrode systems, such
as “a set of corona wires between parallel plane electrodes”,
“corona wire or a set of wires between cylindrical and plane
electrodes”, etc. Moreover, from practical point of view, the
study of the Laplacean field distribution in the first stage can
guide the designer to predict the behaviour of multi-
electrode corona system using finite computer resource.
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