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Abstract

Laryngeal disorders affect roughly 5-6% of the general human population and
larynx-related cancer alone causes around 200,000 annual deaths worldwide.
This being one of only a few areas where annual deaths are increasing, requires
effort in targeting easy, effective and accessible preventive laryngeal health care.
This research analyzes computational intelligence techniques for larynx pathol-
ogy detection, using non-invasive measurements, such as human voice recordings
and answers to specific questionnaires. The intention was to develop a technique
for voice and query data analysis, which would be capable of detecting voice
pathology and providing support in screening for laryngeal disorder.

This study is performed by using a subject’s voice recordings and answers
to specific questionnaire, obtained by otolaryngology specialists. The collected
data is gathered into 3 databases. Voice database contains sustained phona-
tion (/a/ as in word "large") recordings of 273 subjects (163 healthy and 110
pathological voices) varying in sex and age (from 19 to 85 years old), where each
recording is labeled by a clinical diagnosis, obtained from clinical voice special-
ists. There are up to three recordings done for each patient, where part of them
is also recorded with contact microphone. Query database contains data from
596 subjects (327 healthy and 269 pathological) also varying in sex and age.
All subjects from the voice database are present in the query database. Patient
classification discerns patients into healthy and pathological classes.

The methodological approach towards the analysis of voice and query data
consisted of several steps. Firstly, characterization of audio recordings was ob-
tained by using various techniques to extract diverse features from voice record-
ings. 14 different feature sets of varying size were extracted from each recording,
resulting in 927 features per recording. Secondly, 6 audio parameters (extracted
using "Dr. Speech" software) were provided by otolaryngology specialists, to-
gether with query data (answers to 25 questions). The three mentioned data
sets were used for data classification either individually or in fusion. For data fu-
sion task, new data dependent random forest-based way of available information
from multiple data sets combination was introduced.

Random forest (RF) algorithm was used as base classifier for audio data
classification and as a meta-learner in decision-level fusion cases. Both variations
were used for classification of audio recordings from two types of microphones,
which allowed assessment if contact microphones can provide useful informa-
tion for classification accuracy improvement compared to acoustic ones or used
together. Data dependent random forest-based data combination and classi-
fication technique was proposed and applied for voice data classification. In
this work, affinity analysis of the query data was used to extract rules for each
class (healthy and pathological), which allows identification if patient has larynx
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pathology. Classification of query data was performed by extracted association
rules and Decision tree (DT) algorithm.

Two distinct techniques were used to represent voice and query data vi-
sually for inspection and analysis. Voice data was mapped to 2D space using
t-SNE algorithm, which also allows analysis of subject’s similarity. Meanwhile,
graphs of probability density functions (PDFs) were obtained for analysis of
query data.

Our introduced data-dependent random forest-based technique of data
combination and classification helped to achieve the highest classification ac-
curacy of 86.37%, compared to the results achieved by using only one single
data set. The used affinity analysis highlighted 17 important questions which
allows reduction of the questionnaire. Our developed association rules tech-
nique for query data classification together with DT are completely transparent,
which allows deeper exploration of decision-making process and is very useful
for teaching/learning purposes, early preventive health care. Results of acoustic
and contact microphone comparison revealed that the acoustic microphone is
superior to the contact one. However, contact microphones may be more useful
in the noisy environments, but additional research is required to determine the
noise level when contact microphone becomes superior to the acoustic one.

Applied visual data analysis techniques is another useful contribution of
this research, which allows detection of incorrectly labeled or more thorough ex-
amination requiring subjects. PDFs provide additional information (statistical)
about a patient and serve as a learning material, as well as show which type of
data is not present in the used data set and might affect classification accuracy.
Accurate pathology detection was observed for unseen subjects with equal error
rate (EER) of 11.11% by using association rules and EER of 10.26% by using
the decision tree. When using decision-level fusion, an even lower EER of only
9.52% was achieved.

In conclusion, results of this research indicate that the developed tech-
niques can be very useful for diagnostics, education and exploratory tasks in
Otolaryngology departments.
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1. INTRODUCTION

1.1. Research Area

In this research pathological voice detection was analyzed in a context of
computational intelligence methods. Non-invasive data, such as voice recording
and questionnaire were used. New methods for voice and query data classi-
fication were proposed. Methods for visual representation of data were also
analyzed to provide additional information for deeper analysis and exploration.

The human voice is produced by a glottal excitation that is filtered by a
vocal tract, controlled by our brain and muscle movements, as well as hearing
sensory system [58]. If any of these fail to do their part, voice signal becomes
distorted. In most cases voice changes are made by vocal folds, which can lose
elasticity, gain weight, or lose the ability to close properly depending on the
disease. These changes in voice signal allow to differentiate between healthy
and pathological voice.

The newer version of same databases, used in [157, 99], was used here.
Data was extended by adding additional feature sets of new observations. The
decision level fusion of voice and query data classification was analyzed for
classification accuracy improvement.

The aim of this study was to research usage of non-invasive modalities,
such as voice recording or query data, to discern pathological voice and to
propose new techniques for classification accuracy improvement. A new associ-
ation rules-based method was introduced and applied for query data analysis.
To improve voice data classification accuracy, a novel technique for building
data dependent random forest was proposed. Both data modalities were used
separately by applying different methods and results were combined by meta-
learner. The main areas of this study are data mining and machine learning
techniques, however visual data representation was also analyzed as a tool for
better data exploration. As an additional outcome of this research, a computer
program was created for the use by otolaryngologists.

1.2. Problem Relevance

Laryngeal disorders affect around 5% [16] or 6.6% according to [59] of the
general population. Larynx related cancer alone causes roughly 200,000 annual
deaths worldwide, and this number continues to increase, while deaths from
other types of cancer are in decreasing tendencies. As we can see, preventive
laryngeal health-care technologies are required.

Laryngeal pathology detection is a rather complex task, requiring multiple
types of data analysis. Patient complaints are usually collected as answers to
questionnaires, old medical history is provided in a form of text and instrumental
analysis tools usually provide images and/or voice recordings.

As proved in many studies, non-invasive data, such as answers to question-
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naires and voice recordings, can be used for automatic analysis, which allows
early pathology detection, as well as deeper voice quality assessment. This can
be used as a diagnostic tool and as a preventive health-care measure. According
to [7, 106, 102, 47, 9, 130, 128, 52, 157], audio analysis is increasingly being
applied in this field of research. However, there are very few attempts to use
query data for this task [159, 156, 155, 13, 158, 151].

Despite growing popularity of non-invasive voice pathology diagnostic tech-
niques, they are still not applicable for use as a completely trusted tool. Many
researchers have achieved a very low rate of error, but in most cases only rela-
tively small training and testing databases were used. This indicates the need
to investigate new methods for voice pathology detection and to improve the
accuracy of currently used techniques.

1.3. Research Object

The object of this research is voice pathology detection by using voice and
query data analysis in separate and fusion matter. Non-invasiveness is the main
advantage of this data.

1.4. Objectives and Tasks

The main objective of this research is to improve voice pathology clas-
sification accuracy by developing new classification technique, which would be
capable of classifying data from multiple sources. Second objective is to improve
classification accuracy by the use of voice and questionnaire data decision-level
fusion.

Tasks formulated for this study:

1. Analyze state-of-the-art work of laryngeal pathology detection identifying
the drawbacks of techniques used.

2. Review classification techniques using voice and query data fusion and
identify their limitations.

3. Propose a new technique for combination and classification of data avail-
able in different feature sets.

4. Develop a transparent technique for voice and query data analysis.

5. Experimentally validate the proposed techniques with out of bag (OOB)
data.

6. Develop a non-invasive decision support system for voice pathology de-
tection, providing multiple approaches for graphical patient data analysis
and employing several data sources.

17



1.5. Research Methods

Many machine learning methods are proved to be useful for successful voice
pathology detection. Studies are done using GMM, HMM, k-NN, LVQ, MLP,
SVM, Random Forest, Decision Tree, discriminant analysis and other methods.
In some cases, a combination of multiple algorithms or additional data (or both
- multiple algorithms and multiple data sets), such as questionnaire answers, are
used to improve accuracy. No matter which algorithm is selected, non-invasive
laryngeal pathology detection from human voice and questionnaire data is a
complex task, which can be divided into several steps:

1. Collection of questionnaire data from patients.

2. Recording of patient voice signal.

3. Extraction of audio features from voice recordings.

4. Collected data analysis to determine healthy or pathological class.

Random Forest was selected as the main meta-learner classifier in this
work. To improve classification accuracy, voice and query data decision-level
fusion was used. The new proposed technique for building data dependent meta-
learner was applied. As a base classification algorithm, an association rules
algorithm was introduced, which was used only for query data classification.
The decision tree algorithm was used for additional classification, using only 6
basic (well-known for doctors) audio parameters and GFI parameter from query
data. This allows to provide the user with visual sample of decision tree, which
makes it easier to interpret the results. To classify voice data, the Random
Forest algorithm was used. A new technique was proposed to build a data-
dependent Random Forest which combines data from multiple data sets. For
data visualization purposes, t-SNE algorithm was used to map data to two-
dimensional space.

1.6. Scientific Novelty

The main scientific contributions of this research are these:

• The proposed novel, data dependent random forest based, technique for
combination and classification of data in multiple data sets. This new
method classifies multiple voice parameter data sets with the Random
forest algorithm and constructs another RF from previously used RFs to
provide the final result.

• The developed novel association rules-based algorithm for query data anal-
ysis. This technique relies on association rules, extracted from the ques-
tionnaire data by using affinity analysis. It is a completely transparent
technique which is very beneficial in preventive health care.
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• Visual data representation for easier patient comparison and better un-
derstanding of decision-making process. The t-SNE algorithm, graphs of
probability density functions, and visual representation of decision tree
were employed for data visualization. Proximity matrix, mapped to 2D
space allows visual comparison of patients, PDFs represents the distribu-
tion of query data and decision tree provides view of algorithm logic.

1.7. Practical Significance

Successful laryngeal pathology detection can sometimes be very difficult
even for a well-trained physician. Automated algorithms and tools, such as
used and developed in this work, can significantly improve doctors work, by
providing additional easily accessible diagnostic information. This can be used
as a single tool, to ease the patient diagnostic process, or as a tool to get
additional information about the patient: additional class from association rules,
visual graphs of the decision tree, visual views of patient position among others
(t-SNE) and patient information comparison to others. In addition to all this,
our developed software could be modified and provided for public access as a
web page or mobile phone application, which would enable anyone to check their
larynx health in just a few simple steps.

1.8. Defended Statements

1. Human voice signals and answers to specific questions contain information
about healthiness of larynx, which can be used for non-invasive pathology
detection.

2. Computational intelligence methods are capable of distinguishing between
healthy and pathological voice signals with accuracy of more than 90%.

3. The proposed data dependent Random Forest based technique for data
combination from multiple data sets and classification outperforms data-
fusion and decision-fusion techniques for the data used in the experiments
with the maximum achieved accuracy of 86.37%.

4. A pathological larynx can be successfully detected using only query data,
which represents patient voice function and quality evaluation.

5. Voice and query data decision-level fusion analysis can separate a healthy
larynx from pathological one with accuracy of 90.48%, and outperforms
classification when data is used separately.

1.9. Approval of Research Results

Results of this research were presented in:

1. Comparing throat and acoustic microphones for laryngeal pathology de-
tection from human voice, 9th International Conference on Electrical and
Control Technologies ECT-2014, 2014 May 8-9, Kaunas, Lithuania.
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2. Exploring sustained phonation recorded with acoustic and contact micro-
phones to screen for laryngeal disorders, 2014 IEEE Symposium Series on
Computational Intelligence: IEEE Symposium on Computational Intelli-
gence in Healthcare and e-health, 2014 December 9-12, Orlando, Florida,
USA.

3. Towards Voice and Query Data-based Non-invasive Screening for Laryn-
geal Disorders, 14th International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases (AIKED ’15), 2015 January 10-
12, Tenerife, Canary Islands, Spain.

1.10. Publications of the Results

The main results of this research are published in:

1. A. Verikas, A. Gelzinis, E. Vaiciukynas, M. Bacauskiene, J.
Minelga, M. Hallander, V. Uloza, E. Padervinskis, Data depen-
dent random forest applied to screening for laryngeal disorders through
analysis of sustained phonation: acoustic versus contact microphone, Med-
ical Engineering & Physics, 37, 2015, 210-218.

2. E. Vaiciukynas, A. Verikas, A. Gelzinis, M. Bacauskiene, J.
Minelga, M. Hallander, E. Padervinskis, V. Uloza, Fusing voice
and query data for non-invasive detection of laryngeal disorders, Expert
Systems with Applications, 42(22), 2015, doi:10.1016/j.eswa.2015.07.001.

3. J. Minelga, A. Verikas, E. Vaiciukynas, A. Gelzinis, M. Ba-
causkiene, A transparent decision support tool in screening for laryngeal
disorders using voice and query data, Applied Sciences, 2017, doi:10.3390/app7101096.

1.11. Structure of the Dissertation

This study begins with the review of related work in Chapter 2. Many
studies from the same field and methods used are reviewed. Chapter 3 contains
a description of data used in this study. Voice feature extraction from audio
files and query data collection is described in Chapter 4. We used t-SNE di-
mensionality reduction algorithm to map audio and query data to 2D space and
provide visualizations.

Chapter 4 is dedicated to describing voice features and data analysis meth-
ods used in this study:

• Section 4.1 describes voice parameters (features) extracted from voice sig-
nal and used for classification.

• Sections 4.2, 4.3, 4.4 and 4.5 explain classification algorithms used in this
study. Our proposed data dependent Random Forest and Association rules
as well as Random Forest and Decision Tree algorithms are explained in
detail, providing main features and steps of development.

20



• Section 4.7 covers methods of missing data control and management.

• In Section 4.11 data visualization techniques used in this study are de-
scribed and sample images are provided. Created computer program is
analyzed in detail while providing examples and deeper explanations of
visualization by t-SNE, Probability density functions and Decision Tree.

Experimental results of this study are provided in Chapter 5. Pathology
detection is evaluated in Section 5.3, while other sections cover evaluation and
results of comparison of acoustic and contact microphones, association rules,
visualization of data and decisions, computer program’s ease of use. Discussion
of the research results and conclusions are provided in Chapter 6 and Chapter
7 respectively.
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2. RELATED WORK

Acoustic and questionnaire data analysis proved to be an excellent way
to assess voice quality and detect laryngeal pathology. Query data-based de-
tection consistently outperforms voice data-based detection and according to
[151], fusion of these modalities provides even better performance. For voice
data-based classification accuracy improvement, multiple ways of voice signal
recording are used, but as mentioned in [157], in a controlled noise environment
acoustic microphone outperforms a contact one. Several studies have been car-
ried out where automatic recognition of vocal fold pathology was performed
using acoustic and questionnaire data. These studies can be separated into 3
groups:

1. Studies which analyze vocal audio data and pick out most important audio
parameters.

2. Studies which analyze questionnaire data and select most important ques-
tions.

3. Studies which construct the best performing classifier for voice pathology
detection using audio data and/or questionnaire data.

The scope of this study was to analyze all previously mentioned groups
and build a classification method with improved accuracy. As this is a contin-
ues work based on [152], the goal of this research was to improve classification
algorithms analyzed in [152] and propose new techniques to achieve higher voice
pathology detection accuracy. As an improvement for techniques used in [152],
data dependent random forest technique, newly extracted association rules clas-
sification algorithm and fusion of voice and query data in classification was pro-
posed. A computer program was developed as an additional product of this
research for the use by otolaryngologists. The program provides user not only
with the classified patient class label, but also with classification certainty, 2D
data map (created using t-SNE algorithm) and visual interpretation of decision
tree (DT). These features allow a more thorough investigation of a patient and
ensure maximum transparency of the whole classification process.

2.1. Voice function and quality assessment

Successful vocal assessment process should include such techniques as vi-
sual examination, aerodynamic measures, acoustic voice analysis and patient
self-assessment [85]. There are many techniques able to provide relevant infor-
mation about the voice disorder, however, current life conditions do not allow
the application of these techniques to everyone, and only the ones requiring
least time and effort are used for the initial patient analysis. In medicine, inva-
sive and non-invasive techniques are used for voice diagnostics, where indirect
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laryngoscopy and video laryngostroboscopy are the most important ones [159].
Usually, invasive techniques are used, but that may be very expensive and dif-
ficult to use in home-care setting [151], as well as the fact that it can result in
unnecessary patient discomfort [162, 53]. Nevertheless, in most cases all avail-
able information can be collected, and a physiological state can be successfully
assessed using non-invasive techniques. Today, automatic non-invasive voice
analysis is increasingly used as an objective method for laryngeal pathologies
detection [130, 5, 74, 61, 108, 157, 44, 164, 66, 32, 93, 167, 162]. As mentioned
in [102, 149] even voice signals, transmitted through telephone lines, can be
successfully used for this kind of analysis.

This kind of voice analysis requires signal processing algorithms to be used
for feature extraction from glottal signals (a voice signal, which is obtained be-
tween vocal folds and vocal tract to avoid vocal fold structure changes depending
on age) [95]. When the features are extracted, classification methods can be ap-
plied, to distinguish normophonic and dysphonic voices. Classification success is
greatly dependent on features extracted from voice, because some pathological
voice changes might be "visible" only in specific features.

In clinical practice of voice pathology detection, sustained phonation is
used for patients’ voice quality assessment, because they circumvent linguistic
artefacts [121, 146], are time-effective and reduce variance in sustained vowels
[167, 163]. According to [90, 94, 53, 121] most important parameters include fun-
damental frequency, jitter, shimmer, amplitude perturbation quotient (APQ),
pitch perturbation quotient (PPQ), harmonics to noise ratio (HNR), normal-
ized noise energy (NNE), voice turbulence index (VTI), soft phonation index
(SPI), frequency amplitude tremor (FATR), glottal to noise excitation (GNE)
and Mel-frequency cepstrum coefficients (MFCC). Fundamental frequency, jit-
ter and shimmer are the easiest to extract parameters, so they are used very
often. Fundamental frequency is the lowest frequency of the sinusoidal waves
and it is used to measure the pitch of a voice signal [148]. Jitter and shimmer,
accordingly, represent the variation in frequency and amplitude of voice fluctu-
ations. According to [148] findings, if shimmer value is too high, patient might
have a speech disorder. In some studies, together with previously mentioned
parameters, Cepstral Peak Prominence (CPP) is used as well. It is claimed that
CPP is the most powerful predictor of perceived hoarseness [10]. Also, according
to [166] this parameter correlates well with breathy speech. Some researchers
are using voice analysis tools or libraries providing sets of audio features like
openSMILE or MPEG-7.

Researchers try to use different voice parameters to find a better way for
pathological voice detection. For example, [107] use only first two formants from
two Arabic vowels. Classification is done using vector quantization (VQ) and
artificial neural networks (ANN) separately, in order to compare them. The
achieved 78.72% best accuracy looks not as promising as the 92.86% achieved
by [130]. Another high accuracy was achieved by [121], where it varies from 87%
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to 100% depending on the disease and sex of the patient. Authors applied such
techniques as principal component analysis (PCA), kernel principal component
analysis (kPCA) and auto-associative neural network (NLPCA). These results
look very impressive, especially taking into account that the database of more
than 2000 patients (212 pathological) were used. However, less than 11% was
pathological, therefore it might be possible that these high-accuracy results were
achieved due to data set imperfection. Highly satisfactory results were achieved
by [109], where authors managed to reach accuracy of 99.994%. Support vector
machine (SVM) and MPEG-7 audio low level features after reduction by Fisher
discrimination ratio (FDR) were used, however the database contained audio
recordings of only 226 patients.

Very often, random forest (RF) is used a base classifier for voice pathology
detection and provides very high accuracy. As [62] shows, by using RF it is
possible to achieve classification accuracy as high as 100%. Publicly available
Saarbruecken Voice Database (SVD) was used for these experiments and only 28
audio features were extracted. [111] used database of 3126 audio recordings for
sounds of heart classification. These recordings are not voice sounds, however
the audio features are very similar. RF application in this research provided
best achieved accuracy of 92%.

In some studies, authors try to use different techniques for accuracy im-
provement, like data set optimization (reduction) or utilization of less often used
classification algorithms. For example [120] reduced their voice parameters vec-
tor to only 17 features and use confusion matrix for classification. Their best
achieved classification accuracy was 83.7%. [29] achieved 100% classification ac-
curacy while discriminating between healthy and pathological classes and 87%
discrimination accuracy between nodules and Reinke’s edema. Such high classi-
fication accuracy was probably achieved due to extremely small database, con-
sisting of only 47 patients. In [6], authors apply Auto-Correlation and Entropy
features for voice pathology detection. They employ 3 different publicly avail-
able voice databases: Disordered Voice Database (MEEI), Saarbrucken Voice
Database (SVD), Arabic Voice Pathology Database (AVPD). Achieved accura-
cies of 99.69%, 92.79%, and 99.79% respectively, looks very impressive. The
same three previously mentioned databases were also used by [8]. Fisher dis-
crimination ratio (FDR) was applied for parameters vector reduction and SVM
was used for classification. Best obtained accuracies were 99.68%, 88.21% and
72.53% for SVD, MEEI and AVPD databases respectively. Others experiment
using different types of recording equipment, most commonly - contact micro-
phone. However, as noted in [157], the contact microphone does not bring any
additional information useful for the classification of voice signals, and is out-
performed by an acoustic microphone.

Questionnaire data collected by otolaryngologists is another source of data
that can be used for voice pathology detection. As noted in [151], responses
to some specific questions may contain information, which is not available in
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acoustic analysis. There are many questionnaires dedicated to voice quality
assessment, however they are rarely used for preventive larynx health care. [68]
analyses Pediatric Voice Symptom Questionnaire (PVSQ), [122] developed Vocal
Fatigue Handicap Questionnaire (VFHQ), and they prove both questionnaires to
be useful voice assessment tools, nevertheless, both these questionnaires are used
only for voice quality evaluation. [151] shows, that query data based laryngeal
pathology detection perpetually outperforms acoustic analysis and the fusion of
both data sets improves the performance even more. Query data can also be
described as self-assessment data, which captures patients’ perception of their
own voice problems [85]. This also includes information about the impact of
voice problems on the patients’ daily lives, and provides additional information
regarding other evaluation methods [75].

Some researchers are creating and using new voice evaluation techniques,
such as vocal tract discomfort scale (VTDS) in [84]. Likert scale of seven points
is used in VTDS to measure patient vocal discomfort using eight sensory symp-
toms: burning, tightness, dryness, aching, tickling, soreness, irritation and lump
in the throat [84]. Each of these items has to be given a value from 0 to 6 and
has a cut-off value, which indicates a presence of the symptom. The use of a
VTDS scale allows easy development of the questionnaire and data validation
process, because each required value can be a numerical answer to the question.
Researches like [86] and [127] adapt the VTDS scale for German and Italian
speaking patients respectively. Their results show that this scale is reliable,
consistent, and has high clinical validity.

Another questionnaire used in some of the studies is developed by Hogikyan
and Sethurman, and is called Voice-related Quality of Life (V-RQOL) [79]. This
questionnaire contains 10 questions addressing the impact of voice on daily ac-
tivities [30]. Each answer is a numerical value ranging from 0 to 100, where lower
value indicates higher impact. Findings of [103] gives grounds for application of
the V-RQOL as a reliable tool for screening occupational voice disorders.

Researchers use different techniques for query data classification. [147]
generates association rules by modified apriori algorithm for medical data clas-
sification. Despite the initial statement that association rules mining is useless
in a domain like medicine, [147] manages to achieve best average classification
accuracy of 96.48%. [1] took a completely different approach and used RF for
query data classification. Depending on the data aggregation technique, the
average achieved accuracy varies around 80%.

As we can see from the results of other researchers, Random Forest and
Support Vector Machine algorithms can be distinguished as the best perform-
ing classification algorithms for audio features classification. Such results as
99.994% by [109], 100% by [62], 92% by [111] or 86.62% by [157] indicates high
potential of these algorithms, which is why RF or SVM should be highly con-
sidered for classification task in voice pathology detection. As mentioned in
[18, 17, 39, 48], RF shows high performance and accuracy when dealing with
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high dimensional data, which makes it suitable for classification of data used in
this research. Query data classification results show, that high classification ac-
curacy can be achieved using only questionnaire data. However, as [54, 159, 151]
shows, a combination and classification of query and voice data provide even
better results, which indicates the high potential of this technique to achieve
higher accuracy than other existing techniques.

There are many commercial voice analysis tools that are being used by
laryngologists, such as LingWaves, Computerized Speech Lab and Dr. Speech.
Even though Dr. Speech is very popular due to its low price and good docu-
mentation, it is not specifically clear how to use analysis results available from
the software [134]. As far as we know, there is no existing tool which would be
capable of analyzing both voice and query data in laryngeal pathology detection.

2.2. Acoustic and contact microphones

The human voice can be captured using different types of microphones.
Acoustic microphones (AM) are the most commonly used, and capture the voice
in the same manner as the human ear. Contact microphones (CM) are able to
capture the voice, because vibrations of vocal folds are transmitted through the
vocal tract and reaches the surface of the skin [12, 110]. Schematics of how each
type of microphone is used are shown in Figure 2.1. As mentioned in [138], the
microphone used for human voice recordings should capture frequencies from the
lowest possible up to the highest perceivable by the human ear – 16000-20000 Hz.
Multiple researchers show that the contact microphone is useful for extraction of
voice fundamental frequency [66], voiced speech sound pressure levels estimation
[139], recording subglottal pressure waves [116], neck surface vibrations mapping
during vocalized speech [114] and detecting glottal vibrations [139].

Background noise highly affects the validity and reliability of acoustic mea-
surements [38, 37]. As it is shown in multiple studies, the CM is less sensitive to
background noise because of its vicinity to the voice source [110, 139, 160, 142].
Audio recordings made with contact microphone have different frequency con-
tents, which indicates that some parts of information might be lost. Multi-
location contact microphone usage is suggested by [110], to minimize informa-
tion loss, because some frequencies can be recorded better in other locations
than throat. It is also suggested by [38], that for valid reproduction of results in
audio analysis, acoustic environment should have a signal-to-noise ration of at
least 30 dB. This requirement can be easily fulfilled by performing all recordings
in a sound-proof booth. However, when recording has to be done in an ordinary
environment, this solution is not feasible.

Several studies proved that in cases where background noise is non-stationary,
contact microphones can significantly improve classification accuracy [113, 35,
34]. A combination of recordings done by both types of microphones helped
[41] to achieve speech recognition accuracy of 80%. An increase in performance
while combining features of one type extracted from both types of recordings

26



Figure 2.1 Acoustic (left) and contact (right) microphone usage schematics

was mentioned by [104]. Significant improvement of throat-only speech recogni-
tion by using a new framework introduced by [45], which learns joint sub-phone
patterns of contact and acoustic microphone recordings using a parallel branch
HMM structure.

2.3. Audio feature set extraction

Effective voice pathology analysis requires feature extraction in order to
separate healthy and pathological voices. Some researchers use features from
multiple data sources, such as audio recordings or questionnaires, while others
use different representations of voice signal and features extracted from them.
To obtain standard features or feature sets from voice signal, many available
tools can be used, such as Dr. Speech, LibXtract, YAAFE, jAudio, Librosa,
Marsyas, Aubio, Essentia, Meyda or MIRtoolbox. These are the most commonly
used tools and complete list contains a lot more [101, 36, 20, 46]. As mentioned
in [101], these tools usually come in one of the following formats:

• Stand-alone application.

• Plug-in for a host application.

• Software library.

Many such tools are developed every year, where some of them are com-
pletely new and others are extended or improved versions of older ones. Each
tool offers a various functionality requiring different levels of computer usage
skills. However, standard tools and features often provide unsatisfactory (not
high enough accuracy) results, so researchers are developing new calculated fea-
tures and feature extraction techniques.

Over the past years, certain measures of voice signal have been intro-
duced, such as fundamental frequency (f0), pitch perturbation (jitter), ampli-
tude perturbation (shimmer), harmonic to noise ratio (HNR), normalized noise
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energy (NNE), signal to noise ratio (SNR) and mel-frequency cepstral coeffi-
cients (MFCC) [53]. MFCC coefficients are derived from the type of cepstral
representation of the audio recording, and in most of the studies they are used in
combination with other features [11, 161, 58]. Jitter and Shimmer are probably
the most popular, so they are used in many studies and voice analysis tools,
which explains otolaryngologists’ familiarity with them.

For pathology detection improvement HNR and NNE features are used
by [117, 90, 166, 125, 71]. Harmonic to Noise Ratio shows relative level of
spectral noise in voice recording, which has lower value in pathological voices
[71]. According to [166, 125], high level HNR indicates less noise. NNE together
with HNR is widely used to evaluate voice quality [117]. As a pathological
voice loses its quality, previous features can improve pathology detection. In
some studies, first Rahmonic (R1) feature is used, which is proportional to the
geometric mean of harmonic-to-noise ratio [10]. This means that R1 describes
the voice quality globally.

2.4. Query data feature extraction

Multiple types of questions can be provided in questionnaires requiring
different types of answers. Depending on the task, which questions are used
for, answers can be numerical values, text or checkboxes. Numbers can be
selected from a provided range (for example when patient is asked to evaluate
its voice quality from 0 (being worst) to 10 (being healthy)), or written freely
(such as age). Textual answers allow us to provide more detailed responses, but
are more complicated to analyze. Today, most of textual analysis methods are
still manual, which is expensive and time-consuming [115, 80]. Researchers are
developing various automatic text analysis techniques, where machine learning
approach looks the most promising [100, 3]. Checkboxes may allow selecting
multiple answers for one question, which also provides more detailed response,
but analysis requires more complicated techniques.

Questions used in this research are provided in Table 3.2. As it can be
seen, most of the answers are single numerical values, and two questions re-
quire textual answers of predefined words (Yes, No, Man, Woman). Answers,
expressed as numbers, require no additional modifications and are left as they
are. Meanwhile, an automatic technique is used to transform textual responses
to numbers. Answers of type Yes/No are expressed as 1 for Yes and 0 for No.
Answers of type Man/Woman are expressed as 0 for Man and 1 for Woman.
After editing required answers, we get single numeric data vector for each ques-
tionnaire, which can be used in classification algorithm.

2.5. Query Data validation

Before taking any further action and trying to use questionnaire data for
classification, the consistency and completeness of it has to be ensured. In some
cases, certain parts of data might be missing, therefore policy for handling such
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situations must be prepared and applied.
According to [83, 165, 112, 64, 50, 140] in some cases it is possible to

use various techniques to fill missing data, such as expectation-maximization,
multiple imputation, K-nearest neighbors (k-NN), Fuzzy c-means (FCM), Self-
organizing map imputation (SOMI), Random Forest (RF), association rules.
Each time when missing data are imputed, performance of imputation algorithm
must be evaluated, because missing data imputation has to improve classifica-
tion accuracy [64]. However, this technique is not suitable when the amount
of missing data is excessive and values are not numerical. It must be taken
into consideration that the estimation of missing values is quite unreliable and
different imputations might lead to completely different classification results
[50].

If a large part of respondents skipped the same questions, it would be more
appropriate to remove those questions and analyze the data set without them.
When there are only few answer collections where some responses are missing,
usually it is the best solution to remove those collections from data set [77]. As
noted in [50], this solution is acceptable only when the amount of missing data
is relatively small (e.g. less than 5% of whole data set).

As [77] suggests, in certain occasions we can use all the questionnaires, even
if some of them are incomplete. In this case we would have different sample sizes
for each question. Unfortunately, this scenario is not suitable for correlation or
regression studies, that is why in this work the most suitable approach was taken
and incomplete questionnaires were removed.

2.6. Data and decision level fusion

Data fusion is used to achieve a complete data set from different sources
which do not contain the same data [168]. Often it is possible to collect different
types of data for single classification task, and in order use it all in computational
intelligence methods, the data has to be joined into a single data set. It is also
known that integration and analysis of data from multiple sources can be used to
develop insights that are more detailed and more accurate than those resulting
from single data source [136]. There are two most commonly used data fusion
techniques: data-level fusion and decision-level fusion.

Data level fusion, often called feature level fusion, can be described as
basic integration of two data sources [60]. Both heterogeneous sets of data must
contain the same number of subjects, about which the data is collected. Then
all the data is copied to a single collection, while joining by the identifier of the
subject. When one data set contains less subjects than the other, some kind
of data imputation technique has to be applied in order to resolve missing data
problem.

Decision level fusion can be defined as the process of fusing information
from individual data sources after each data source has undergone a prelim-
inary classification [123]. According to [144, 123], it can improve recognition
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performance compared to simple individual classifiers. However, selection of
classification algorithms has to be done carefully, because it is possible to run
into a situation where selected classifiers are so bad that the combined result is
worse than that of some of the individual classifiers [123]. Decision-level fusion
is used when multiple classification algorithms can be applied or data level fu-
sion does not provide enough accuracy. It also allows using multiple types of
data sources, even when some of them cannot be fused into a single one.

Many decision-level fusion techniques are used by different researchers.
Often results from base classifiers are combined by using linear opinion pool
(LOP), the logarithmic opinion pool (LOGP), fuzzy k-means (FKM), fuzzy vec-
tor quantization (FVQ), median radial basis function (MRBF) network. How-
ever, usually the most simple technique is used where the final class is obtained
from meta-learner classifier. According to [144], three types of decision level
fusion can be distinguished:

1. Abstract Level Fusion. The most simple decision level fusion, where final
decision is achieved by combining outputs of base classification algorithms
to a test sample. Most commonly, the majority voting method is applied
here, but often an obtained test sample is used in another classifier (meta-
learner).

2. Rank Level Fusion. Outputs of each used classifier are sorted in decreasing
order of confidence so that each class has its own rank. Fusion is performed
by summing up ranks of each class and final decision is given by choosing
class of the highest rank.

3. Score (Measurement) Level Fusion. When using this technique, fusion
rules on the data vectors are derived to represent the distance between
the test and training subjects. Each classifier’s output is represented by
scores or measurements. Fusion is achieved by combining vectors of scores
and decision is given by the class that has the smallest value.

2.7. Visual voice and query data analysis

In some cases, results provided by classification algorithms is not accurate
enough and deeper data analysis is required. Data visualization is an impor-
tant part of exploratory data analysis and helps to better understand the data
which is used [43]. When high dimensional data is used, modern visualization
techniques can be applied for data visualization in lower, but still meaningful
dimensions [87]. In other situations, statistical data distribution visualization
might provide additional insights.

In this study, voice data is in high dimensionality, therefore a visualization
algorithm with dimensionality reduction is required. High-dimensional data
visualization is still an important active research field [70, 55, 141] provid-
ing several algorithms, such as SP matrices, parallel coordinate plots, Isomap
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Figure 2.2 Typical workflow of data projection to 2D space by first constructing
K-nearest neighbor graph

and t-distributed stochastic neighbor embedding. Most commonly used algo-
rithms (including t-SNE) first construct similarity structure which then is used
to project data to 2D space. An example of such workflow is provided in Figure
2.2.

t-SNE algorithm was used for voice data visualization in the present study.
According to [154], this algorithm has shown great performance working both
with real world and with artificial data. This algorithm defines data similari-
ties in terms of conditional probabilities in the high-dimensional data space and
their low dimensional projection [76]. Another useful feature of this algorithm is
the ability to embed new observation onto a beforehand generated map. Voice
data, mapped to 2D space, provides useful information allowing to spot misclas-
sified, incorrectly labelled data or data mapped very closely but originating from
different sources [99]. Misclassified or incorrectly labelled data can be spotted,
when observation of one class appears (in the 2D data map) inside or close to
the group of observations from another class.

For query data visual analysis, Probability Density Functions (PDFs) were
used. PDFs have a wide range of applications, including anomaly detection, two-
sample comparison, binary classification and clustering [26]. In our study, PDFs
are used to create and visualize distributions of query and several audio data
parameters (in a statistical sense). Provided graphs give better understanding
about the position of analyzed observation - closer to healthy or pathological
group. As recommended in [133], probability density functions are calculated
using Epanechnikov kernel smoothing.

2.8. Computer software usability evaluation

Computer programs are a very important part of the medical diagnostics
process. First, health care information systems were introduced in early 1970’s
[92] and are increasingly used since. Therefore, continuous assessment and im-
provement of such computer programs is required. As mentioned in [129], such
evaluation requires analysis of a user’s understanding of the software, because
user satisfaction guarantees successful implementation.

Because of the area where medical computer software is used, it requires
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Table 2.1 Usability definitions in various Standards

Standard Usability definition

ISO/IEC9126-1, 2000 The capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions.

ISO9241-11, 1998 The extent to which a product can be used by speci-
fied users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use.

IEEE Std.610.12-1990 The ease with which a user can learn to operate, prepare
inputs for, and interpret outputs of a system or compo-
nent.

great usability and high quality [118]. As mentioned in [118], usability (often
called "ease of use") can be applied to any object that is used for some tasks.
It also can be explained as how easily, effectively, efficiently and satisfactorily
computer program allows to achieve your task. Computer program usability
is defined by International Standardization Organization (ISO) as "the extent
to which a product can be used by specified users to achieve specified goals
with efficiency, effectiveness, and satisfaction in a specified context of use" [69].
Other definitions from various standards are provided in Table 2.1.

According to [96], computer program quality can be defined in two ways:

1. The degree to which the whole system, it’s component or a single process
meets the specified requirements.

2. The degree to which the whole system, it’s component or a single process
meets the needs or expectations of a user.

The second definition indicates that system quality and usability are sim-
ilar. It is still a big debate in which one affects the other, and opinions depend
on the research domain. However, it is proved that system usability and quality
are related to each other [118]. There are many techniques developed for suc-
cessful software quality and usability evaluation, but the latter one usually is
considered more important. It reveals user satisfaction, which highly depends
on program quality (higher satisfaction - better quality), so at the same time it
provides evaluation results for both - quality and usability. ISO 9241 standard
is widely analyzed in many studies and is the most commonly used technique
for computer software usability evaluation. In this research we are using ISO
9241-11, which is better known as "ISO 9241-11:1998 Guidance on usability".
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3. VOICE & QUERY DATA

Non-invasive data, such as voice recordings and questionnaire answers,
were used in this study. Data was provided by the Department of Otolaryngol-
ogy from Lithuanian University of Health Sciences. All data was divided into 3
different data sets - two for audio data, and one for query data. In cases where
data of different types was used, validation techniques were applied, which are
more thoroughly described in section 4.7.

3.1. Voice data

Audio recordings of sustained phonation of the vowel /a/ (as in English
word "large") were used for representation of subject’s voice information. The
decision to use steady-state phonation was made because it is simple, time
effective, reduces variance in sustained vowels, and enables reliable computation
of acoustic features [167, 163]. Moreover, [93] mentions that sustained vowels
are not influenced by speech rate and stress, usually does not contain voiceless
phonemes, fast voices onsets and terminations, prosodic fluctuations in pitch
and amplitude. All voice signals were digitally recorded in a sound-proof booth
using an acoustic microphone AKG Perception 220 (AKG Acoustics, Vienna,
Austria) with frequency range from 20 Hz to 20 kHz. Microphone was placed
10 cm away in front of the subjects mouth, keeping about 90◦ microphone-to-
mouth angle and all subjects were seated (Figure 3.1). WAV audio format was
used (mono PCM, 16 bit samples at 44 kHz rate). For each subject there were
1-3 recordings done (0.5 to 3 s length).

10 cm

Figure 3.1 Set up scheme for patient voice recording

The database contains 273 mixed gender and age (19 to 85) subjects (dis-
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tribution visible in Figure 3.2) as in [157] (163 normal and 110 pathological
voices). Healthy voice observations were collected from healthy volunteers, who
considered their voices as normal, had no history of laryngeal diseases and had
no complaints about their voice. These subjects were also checked by otolaryn-
gologists, using laryngostroboscopy method, to ensure that there were no patho-
logical alterations in the larynx. Likewise, the recordings of these individuals
were evaluated as normal by clinical voice specialists.

Voice database

HM 19%

HF 41%

PM 16%

PF 23%

Query database

HM 18%

HF 37% PM 20%

PF 25%

Figure 3.2 Distribution of healthy and pathological males and females in voice and
query data sets. HM - Healthy Males, HF - Healthy Females, PM - Pathological Males,
PF - Pathological Females.

The pathological voice group included patients with mass lesions of vocal
folds (nodules, polyps, and cysts) and diffuse lesions of vocal folds (papillo-
mata, hyperplastic laryngitis with keratosis, and carcinoma). Information from
laryngostroboscopy and direct microlaryngoscopy was used to visually evaluate
the severity level of the pathology (from 1 to 3) and provide initial diagno-
sis. Histological examination of laryngeal samples taken during endolaryngeal
microsurgical intervention was used for final diagnosis confirmation.

For some experiments in this research we used different modifications of
audio recordings. While analyzing our suggested association rules algorithm
and comparing query data classification accuracy with voice data (or fusion
data) classification accuracy, we used either raw (V0) audio signals for feature
extraction or signals after pre-processing (V1, V2). We used longest continuous
sequence of frames detection and only active frames were retained for further
analysis. Two types of voice activity detection were used:

1. Simple voice activity detection used in [52]. It works by filtering absolute
value of standardized signal by convolution with Gaussian window with
the size of 750 frames. Standardized signal is divided by 4, and only
resulting values above 0.04 of such filtering are used as indicators of voice
activity.

2. Statistical model-based [135] activity detection available by vadsohn in
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Table 3.1 Settings for vadsohn function

Parameter Value

qq.pr 0.5
qq.ts 0.4*length(s)/fs
qq.tn 0.1*length(s)/fs
qq.ti 0.1
qq.tj 0.1
qq.gx 50
qq.gz 0.001
qq.ne 1

Voicebox [21] toolkit. We also changed some default settings from their
defaults (see Table 3.1).

The goal of this study was to classify subjects’ voices as Healthy or Patho-
logical. That way, the severity and type of the disease was ignored, and in
the final database all pathological patients were marked the same. Subjects’
distribution by their class is shown in Figure 3.3.

Figure 3.3 Visualization of audio database. Dimensionality reduction done by t-SNE.

3.2. Query data

Query data was collected during initial patient examination by otolaryn-
gology specialists. Steps of the collection process are represented in Figure 3.4.
A paper version of questionnaire was filled out by the doctor, or a patient was
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asked to fill it out on his/her own, and later the data was transferred onto com-
puter. Afterwards, required data validation techniques were applied, to change
textual answers to numerical values (for example answer "Yes" was changed to
"1" and answer "No" was changed to "0") and remove the questionnaires with
missing data.

Figure 3.4 Query data collection process

For questionnaire data sets, the best performing questions were selected
by [13]. Database of 596 mixed gender subjects (106 healthy men, 221 healthy
women, 118 pathological men and 151 pathological women) was used. Distri-
bution can be seen in Figure 3.2. Questions used to collect data from patients
are provided in Table 3.2. Visual patient distribution by their class is provided
in Figure 3.5.

−6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

15

Figure 3.5 Visualization of the query database. Dimensionality reduction done by
t-SNE.
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Quantization was used in affinity analysis rule extraction, where responses
to questions with a wider scale (having more than seven unique values) were re-
coded into quartiles. This was performed because data used in affinity analysis
have to be categorical, which means that there should be as few unique values
as possible. Zero values were always put into a separate category and not
considered for re-coding. Initial analysis revealed that many subjects responded
to questions # 22-23 with answer 0 and in those questionnaires most of the other
answers coincided. This allowed a reduction of the final number of extracted
rules and make them more general, by replacing responses to questions # 22-25
with a single response G0, indicating that at least one of those questions was
answered by no problem answer:

G0 = (G1 = 0 ∨G2 = 0 ∨G3 = 0 ∨G4 = 0) (3.1)

Also, while performing affinity analysis and extracting association rules, we used
two data sets of query data: short version Q9 (questions # 1-9) and long version
Q26 (questions # 1-26).
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Table 3.2 Questionnaire items. SSA stands for subjective self-assessment.

# Question content Units (or scale) of measurement

1. subject’s gender {Man, Women}
2. subject’s age discrete number
3. average duration of intensive speech

use
hours / day

4. average duration of intensive speech
use

days / week

5. smoking {Yes, No}
6. smoking intensity cigarettes / day
7. smoking history years
8. maximum phonation time seconds
9. SSA of voice function quality visual analogue scale from 0 to 100
10. SSA of voice hoarseness from 0 (no) to 100 (severe hoarseness)
11. voice handicap progressing grade from 1 to 4
12. SSA of daily experienced stress level from 0 (no) to 100 (very high stress)
13. frequency of singing grade from 1 to 5
14. frequency of talking/singing in a

smoke-filled room
grade from 1 to 5

15. SSA of experienced discomfort due to
voice disorder

from 0 (no) to 100 (high discomfort)

16. SSA of "too weak voice" from 0 (no) to 100 (very clear)
17. SSA of repetitive "loss of voice" from 0 (no) to 100 (very clear)
18. SSA of reduced voice from 0 (no) to 100 (very distinct)
19. SSA of reduced ability to sing from 0 (no) to 100 (very distinct)
20. frequency of voice cracks or aberrant

voice
from 0 (no) to 100 (very often)

21. level of vocal usage level from 1 to 4
22. speaking took extra effort (G1) from 0 (no) to 5 (severe problem)
23. throat discomfort or pain after voice

usage (G2)
from 0 (no) to 5 (severe problem)

24. voice weakens while talking, vocal fa-
tigue (G3)

from 0 (no) to 5 (severe problem)

25. voice cracks or sounds different (G4) from 0 (no) to 5 (severe problem)

26. glottal function index [14, 124]
(GFI=G1+G2+G3+G4)

grade from 0 to 20
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4. METHODOLOGY

In this work, multiple classification techniques were used for voice and
query data classification in order to determine if patient is healthy or pathological.
Our learning data sets were made of n observations, where each of it contains
a vector of features (also called as predictors) and corresponding class label.
We used 3 different data sets of voice features, extracted from audio recordings.
Features from our suggested set are described in the following sections of this
chapter.

Since our created tools are going to be used by otolaryngologists in their
clinical practice, there was a task set that algorithms used for data classification
and exploration should lend themselves for providing insights into automatic de-
cisions and numerical data analysis - be transparent. To fulfill this requirement,
Decision tree and Association rules algorithms were used. Both of them are
transparent, based on parameters routinely used by otolaryngologists and can
be very beneficial for perception of various conditions and treatment planning.
The unsupervised Apriori algorithm [4] was used to mine association rules, that
would reveal the most pronounced co-occurrences of responses. As a result, sim-
ple confidence-based laryngeal disorder detection algorithm was derived from
association rules.

We used random forest as a basic model to detect laryngeal pathology and
demonstrate how information available from this "black box" type model can
be used to visually explore data and decisions. In our proposed data dependent
random forest-based technique we used RF to fuse information available from
several non-invasive data sets. In cases where data-level fusion was used, we
performed an initial data analysis, which left data sets only with full data vectors
(fused data set containing only subjects existing in all fused data sets).

Acoustic and contact microphones were compared for voice recording in
order to determine if classification accuracy of methods, used in this study,
can be improved by using different kind of microphone or features from two
recordings, one with acoustic and another with contact microphone. For this
task, Random Forest classification algorithm was used as a basic model. To
test classification accuracy improvement using data from several microphones,
different data fusion techniques were analyzed.

For data visualization purposes t-SNE (Stochastic Neighbor Embedding)
algorithm was used to map the proximity matrix from RF and query data on
to 2D space. The user is also provided with decision tree graph and proba-
bility density functions for a more detailed visual data and decision analysis.
Moreover, visual data comparison of basic patient audio parameters and ques-
tionnaire answers are available in separate windows as a feature of our created
tool.

Developed computer program usability evaluation was performed accord-

39



ing to ISO-9421 standard, which revealed whether the program is ready for
usage by specialists in their everyday work.

4.1. Voice features

For audio feature extraction from audio recordings, acoustic analysis and
signal analysis techniques were applied. Features were extracted for multiple
short segments of audio signal, which was divided into windows (also called
frames) by applying short-term parametrization. This technique provides a set
(or so-called vector) of values for each feature (for example 100 Cepstral energy
values, when signal is divided into 100 segments). Depending on a task, obtained
features can be used as they are or post-processed by applying compression or
transformation techniques.

Table 4.1 Extracted audio feature sets used in this study (927 features in total)

# Type of features Size

1. Pitch and amplitude perturbation measures 24
2. Frequency (0-5000 Hz) 100
3. Mel-frequency bands 35
4. Cepstral energy 100
5. Mel-frequency cepstral coefficients 35
6. Autocorrelation 80
7. Harmonics to noise ratio in spectral domain 11
8. Harmonics to noise ratio in cepstral domain 11
9. Linear predictive coefficients 77
10. Linear predictive cosine transform coefficients 77
11. Shape of signal envelope 128
12. Levinson-Durbin reflection coefficients 24
13. Vocal tract area irregularity 71
14. Perceptual linear predictive cepstral coefficients 154

Features in the first data set were extracted from audio recordings during
this research. To perform this task, Matlab software was used. For each sub-
ject, there are up to 3 separate audio recordings, and for that reason data set
contains more feature vectors than there were subjects. Another audio feature
set contains audio parameters from same patients from whom the query data
was obtained, and were extracted in the Department of Otolaryngology from
Lithuanian University of Health Sciences. The last data set contains features
extracted from the same recordings as in the previous data sets, but different
feature extraction techniques were used.

The first feature set is the most versatile characterization of the recorded
voice samples. It consists of 14 diverse feature subsets and contains 927 features
in total. This set of features was selected as by [52, 157] it was shown that the
use of it allows achieving significantly high accuracy. A full list of the feature
subsets and number of features in each of them is provided in Table 4.1. To

40



Table 4.2 Extracted audio features, which otolaryngologists are familiar with

# Feature

1. Fundamental frequency (F0)
2. Jitter
3. Shimmer
4. Normalized noise energy (NNE)
5. Harmonics to noise ratio (HNR)
6. Signal to noise ratio (SNR)

extract audio features from recordings, various signal analysis techniques were
used. Feature subsets from this set are described in the following sections, while
a more detailed analysis can be found in [52, 157]. For the increase of feature
diversity, the last 3 feature subsets from the list were added to the previously
used ones in [52]. All feature sets in this data set were pre-processed before
classification by centering and scaling to have zero mean and unit variance.
This set of features was used for the experiments of RF algorithm.

The second feature set is a lot smaller and contains only 6 audio param-
eters. The list of these parameters can be found in Table 4.2. These features
were extracted by otolaryngology specialists during patient examination and
voice recording. "Dr. Speech" (http://www.doctorspeech.com) software, cre-
ated by Tiger DRS Inc was used. This computer program offers a set of 23
features, such as HNR, pitch and amplitude perturbation measures, jitter and
shimmer. Audio parameters from this data set were selected, as they have a
great importance in voice pathology detection, and as it is mentioned in [99],
they are widely adopted by otolaryngologists all over the world. Moreover, the
use of these parameters with transparent techniques, such as Decision Tree or
Association rules, is of a great value for the end user, because it allows explo-
ration of data and automatic decisions.

Table 4.3 Overview of the emobase.conf file, used to extract features from audio
recordings

Low-level descriptors Statistical functionals

Intensity, loudness, 12 Mel-frequency
cepstral coefficients (MFCCs), pitch,
pitch envelope, probability of voicing,
8 frequencies of line spectral pairs
(LSP), zero-crossing rate (ZCR)

Min (or max) value and its respective
relative position within a signal, range,
arithmetic mean, 2 linear regression
coefficients and linear and quadratic
error, standard deviation, skewness,
kurtosis, quartile 1–3, and 3
inter-quartile ranges

The third feature set contains features computed by openSMILE [46]. A
base feature set of this tool is designed for emotion recognition, however, it
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was successfully used in many studies like [46, 27, 51, 132] for various kinds of
tasks, achieving accuracy of at least 70%. Such results were a reason to make
use of openSMILE in this work. Features, extracted with openSMILE, were
used while comparing audio parameters classification to query data classification
using extracted rules.

This feature set contains 26 low-level descriptors (LLDs) and the 1st deriva-
tive (delta or velocity) of each LLD. All features are specified and can be con-
figured in the emobase.conf configuration file. A collection of statistical
functionals is applied to summarize various aspects of the framebased data dis-
tribution for each LLD ant its delta. More details are provided in Table 4.3.
Data set contains 988 features in total - (26 LLDs + 26 deltas) x 19 func-
tionals. Following audio signal processing-related settings are set as default in
emobase.conf file:

• Pitch and pitch envelopes are estimated using pre-emphasis (of 0.97) and
overlapping Hamming windows. Default values for overlapping step and
Hamming window are 10 ms and 25 ms respectively.

• Other LLDs are obtained without pre-emphasis and signal is windowed
into overlapping Hamming windows. Overlapping step duration is 10 ms,
while Hamming window duration is 40 ms.

A simple moving average filter with a window size of 3 is used to smooth all
extracted LLDs. Only then they are compressed by the statistical functionals.

4.1.1. Pitch and amplitude perturbation measures

In this study, we used pitch and amplitude perturbation measures sug-
gested in [102] and analyzed in [52], which contain 24 features. Audio signal
was segmented into overlapping windows (segments) to calculate measures of
both pitch and amplitude. Perturbation values were estimated for each window,
where the length of the window was estimated as 3/Finf , where Finf is the min-
imum allowed fundamental frequency (pitch) F0 [89]. We used Finf = 60Hz,
which resulted in windows of 50ms long. The same as in [102, 52], each win-
dow overlapped neighboring ones by 75%. The value of fundamental frequency
Fi and corresponding amplitude measure Ai were calculated for each segment
(window) of voice signal. For pitch detection, autocorrelation was used as in
[102]. For our feature extraction, we used the continuous wavelet transform
based pitch detection technique (same as in [52]) suggested by [89]. As men-
tioned in [150], such perturbation measures as jitter and shimmer are widely
used by otolaryngologists which provide additional advantages.

4.1.1.1 Pitch perturbation features

Pitch and amplitude perturbation measure collection contains the follow-
ing pitch perturbation features:
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1. Mean frequency: Fav = (1/n)
∑n

i=1 Fi

2. Maximum frequency: Fmax = maxi=1,...,n(Fi)

3. Minimum frequency: Fmin = mini=1,...,n(Fi)

4. Standard deviation of frequency:

Fstd = (1/(n− 1))

n∑
i=1

(Fi − Fav)2 (4.1)

5. Phonatory frequency range:

PFR =
12

log2
log

(
Fmax
Fmin

)
(4.2)

6. Mean absolute jitter: MAJ = (1/(n− 1))
∑n−1

i=1 |Fi+1 − Fi|

7. Jitter: JITT = MAJ/Fav

8. Pitch perturbation quotient smoothed over three windows:

PPQ3 =
(1/(n− 2))

∑n−1
i=2

∣∣∣(1/3)
∑i+1

k=i−1 Fk − Fi
∣∣∣

Fav
× 100 (4.3)

9. Pitch perturbation quotient smoothed over five windows:

PPQ5 =
(1/(n− 4))

∑n−2
i=3

∣∣∣(1/5)
∑i+2

k=i−2 Fk − Fi
∣∣∣

Fav
× 100 (4.4)

10. Pitch perturbation quotient smoother over 55 windows: −PPQ55

11. Pitch perturbation factor:

PPF =
Np≥threshold
Nvoice

× 100 (4.5)

where Np≥threshold is the number of how many times the difference in
fundamental period between the window i and window i + 1 values is
greater than 0.1 ms in magnitude. Nvoice is the value, which describes
how many times the pitch window i value differs from the pitch window
i+ 1 value.
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12. Directional perturbations factor:

DPF =
Nδ±
Nvoice

× 100 (4.6)

where Nδ± is the value, indicating how many times the pitch perturbation
changes the algebraic sign across the windows.

4.1.1.2 Amplitude perturbation features

Pitch and amplitude perturbation measures collection contains the follow-
ing amplitude perturbation features:

1. Mean amplitude: Aav = (1/n)
∑n

i=1Ai

2. Maximum amplitude: Amax = maxi=1,...,n(Ai)

3. Minimum amplitude: Amin = mini=1,...,n(Ai)

4. Standard deviation of amplitude: Astd = (1/(n− 1))
∑n

i=1(Ai −Aav)2

5. Mean absolute shimmer: MAS = (1/(n− 1))
∑n−1

i=1 |Ai+1 −Ai|

6. Shimmer %: SHIMp = MAS/Aav

7. Shimmer in decibels:

SHIMd =
1

n− 1

n−1∑
i=1

20log

(
Ai
Ai+1

)
(4.7)

8. Amplitude perturbation quotient smoothed over three windows:

APQ3 =
(1/(n− 2))

∑n−1
i=2

∣∣∣(1/3)
∑i+1

k=i−1Ak −Ai
∣∣∣

Aav
× 100 (4.8)

9. Amplitude perturbation quotient smoothed over five windows: −APQ5

10. Amplitude perturbation quotient smoothed over 55 windows: −APQ55

11. Amplitude perturbation factor:

APF =
Np≥threshold
Nvoice

× 100 (4.9)

where Np≥threshold represents the number of how many times the ampli-
tude difference between the window i and window i + 1 values is greater
than 4% of the maximum amplitude.
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12. Amplitude directional perturbation factor:

ADPF =
Nδ±
Nvoice

× 100 (4.10)

where Nδ± is the value, indicating how many times the amplitude pertur-
bation changes the algebraic sign across the windows.

4.1.2. Frequency features

Frequency features were calculated by dividing the frequency range from
10 to 5000 Hz into n = 100 non-overlapping frequency bands of equal width.
The total spectral energy of the ith band is used to calculate the ith frequency
feature x2i:

x2i = sumωk∈BANDiF (ωk), i = 1, ..., n (4.11)

where BANDi is the ith frequency band, ωk addresses distinct frequencies,
and the Fourier spectrum F is given by the short-time FFT

F = FFT‖(v · h)‖ (4.12)

where v is the voice signal, ‖ · ‖ stands for the norm operator, and h is the
Hanning window.

4.1.3. Mel-frequency features

Spectral energy of the ith mel-window is used to calculate the ith mel-
frequency feature x3i [57]:

x3i = WiF, 1 ≤ i ≤M (4.13)

where M is the number of the mel-windows in the mel-scale and Wi is the
triangular weighting function associated with the ith mel-window. The center
frequencies of the weighting function were set to the mel-scale frequencies, so
the weighting function vanished. Different number of mel-windows M is used
by different authors. For example, in [57] this number was varying from 20 to
24. In this work the number of windows was M = 32 as in the experiments
carried out by [52] it provided the best performance.

4.1.4. Cepstral energy features

For cepstral feature extraction, time (quefrency) range of 0.2 to 25 ms (40-
5000 Hz) is divided into n = 100 non-overlapping bands of equal width. The
ith feature x4i is calculated by the total cepstral energy in the ith band:

x4i =
∑

τk∈BANDi

Q(τk) (4.14)

45



where τk addresses distinct quefrencies and Q is given by

Q = ‖IFFT (log(F ))‖ (4.15)

where IFFT stands for the inverse fast Fourier transform.

4.1.5. Mel-Frequency Cepstral Coefficients

Figure 4.1 Mel-Frequency Cepstral Coefficients extraction from a voice signal

Mel-Frequency Cepstral Coefficients (MFCC) are widely used by researchers
for audio signal characterization. MFCC can be estimated from short-term seg-
ments of input signal by applying parametric approach derived from Linear
Prediction Coefficients (LPC) or non-parametric Fast Fourier Transformation
(FFT) [161]. MFCC characterizes the energy distribution of a signal in the fre-
quency domain. When voice signal contains additional noise, MFCC values are
not very robust, so it is a common practice to normalize values in voice analysis
systems to lessen the influence of the noise.

In the beginning audio signal is divided into segments (windows) in the
time domain. Then, the amount of energy from each particular frequency range
is obtained by converting windowed signal into the frequency domain by using
FFT. For data amount reduction, triangular Mel-frequency filters are applied by
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summing filtered FFT bin values, and then Mel filter bank outputs are obtained.
Mel-scaling is performed to get higher resolution at low frequencies and lower
resolution at high frequencies.

The final step of MFCC extraction is application of discrete cosine trans-
form (DCT) to logarithm or Mel filter bank outputs. DCT represents the signal
by constant component and components of successively increasing frequency, re-
spectively called first basis function and remaining basis function. Compacted
MFCC vector of the relative frame is represented by the first components of
DCT. The very first coefficient of MFCC vector (also known as 0th or constant
component, reflecting fundamental frequency), often is excluded.

Feature extraction from windowed signal results in great amount of data.
The number of data depends on such parameters as signal length, window size
and overlap settings. The basic steps of MFCC extraction are provided in Figure
4.1

4.1.6. Autocorrelation features

The process of autocorrelation features extraction is visually presented in
Figure 4.2. The calculations which have to be performed to extract autocorre-
lation features are these:

1. Autocorrelation coefficients rτ are calculated from the voice signal v in
the interval [0 t]:

rτ =
N−τ−1∑
n=0

vnvn+τ , 0 ≤ τ ≤ tFs (4.16)

where N is the length of the vector v, Fs is the sampling rate of the voice
recording (44100s−1), and the time span t is chosen larger than one period.

2. The average fundamental period tav is estimated, which, together with
half of the period, is marked in the Figure 4.2 by the thin line and ∇
respectively.

3. Coefficients with the lag less than tav/2 are selected and the number of
these coefficients equals to tav/2Fs. In Figure 4.2 these coefficients are
shown as dots in the bottom picture.

4. Finally, selected autocorrelation coefficients are processed by smoothing
them with cubic spline smoothing algorithm [31] and sampling them over
a linear mesh in the interval [0 tav/2]. Resulting values are denoted as
r̂τi and considered as the estimation of the autocorrelation coefficient at
the lad τi, which are shown as circles in Figure 4.2.

The autocorrelation features x6i are then given by r̂τi values:

x6i = r̂τi (4.17)
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where τi, i = 1, ...,M are linearly spaced in the interval [0 tav/2]. In this
study value of M = 80 autocorrelation features was used.

Figure 4.2 Autocorrelation features extraction process

4.1.7. Harmonics to noise ratio in spectral domain

Harmonics to noise ratio (HNR) is a widely used measure of voice quality
[33, 78]. As is noted in [131], it is also very often used by otolaryngologists and
speech pathologists for voice function evaluation. Because of its popularity, this
measure is used in such commercial voice assessment software solutions as "Dr.
Speech".

HNR is given from the energy of harmonics related to the noise energy in
the voice. It can be estimated from the speech spectrum or from the speech
cepstrum. In the first case, the harmonics energy (spectral domain) has to be
filtered and removed, while in the second case the rahmonic energy (cepstral
domain) has to be filtered and removed. The Fourier transform applied to the
resulting filtered cepstrum or the filtered log spectrum in the spectral domain
case provides the noise spectrum N . Then N is subtracted from the energy of
the original log spectrum O to estimate HNR. Usually, HNR is calculated in
different frequency bands, where the ones used in this study are provided in
Table 4.4. We used the same frequency bands as in [102].

The feature x7i (HNR for the ith frequency band) is calculated by

x7i = mean(Of∈BANDi
)−mean(Nf∈BANDi

) (4.18)
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Table 4.4 Frequency bands used to calculate HNR

Band number Frequency Band (Hz)

1 0-500
2 0-1000
3 0-2000
4 0-3000
5 0-4000
6 0-5000
7 500-1000
8 1000-2000
9 2000-3000
10 3000-4000
11 4000-5000

where f addresses frequencies.

4.1.8. Harmonics to noise ratio in cepstral domain

HNR in cepstral domain components fills feature vector x8. These values
are computed in different quefrency bands in the cepstral domain. Process of
HNR values computation is described in the previous section. Feature sets x7
and x8 form two redundant feature sets, the same as x3 and x5. In this study
both HNR feature sets were used, to determine how well the classifiers are able
to learn the decision boundaries defined by each of them.

4.1.9. Linear prediction coefficients

Linear prediction features were obtained from parameters of forward linear
predictor determined by minimizing the squared prediction error. As mentioned
in [52], the pth-order linear predictor predicts the current value of the real-valued
time series v based on past samples:

v̂n = −a1vn−1 − a2vn−2 − ...− apvn−p (4.19)

where v̂n is the predicted value, ai is the ith predictor parameter, and
p is the predictor order. The feature vector x9 is given by parameters of the
predictor:

x9 = {a1, a2, ..., ap} (4.20)

According to [25, 91, 88], to model male and female voices, different values
of p may be required. In this study we used the same values as suggested in [25]
- p = 33 for female voice and p = 44 for male voice.
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4.1.10. Linear prediction cosine transform (LPCT) coefficients

The discrete cosine transform (DCT) is closely related to the discrete
Fourier transform [52]. It is often possible to reconstruct a signal from only
a few DCT coefficients with a very high accuracy. To obtain linear prediction
cosine transform feature set x10i, features are computed by the coefficients of
the DCT applied to the linear prediction coefficients:

x10i =

p∑
n=1

(
x9ncos

π(2n− 1)(i− 1)

2p

)
, i = 1, ..., p (4.21)

Comparison is the purpose of using both x9 and x10 sets of features, as in
the case of x3 − x5 and x7 − x8.

4.1.11. Reflection coefficients and vocal tract area irregularity fea-
tures

Human vocal tract can be modelled by using M tubes. This way, feature
computation is based on M th order linear prediction filter. M th order predic-
tion error Em and area of mth tube Am are computed for each frame of voice
recording. Later on, the Levinson-Durbin recursion algorithm is used:

Am = Am+1
1 + km
1− km

, m = M, ..., 2, 1 (4.22)

where AM+1 = 1 and km is Levinson-Durbin reflection coefficient. The
12th feature subset from our collection contains only Levinson-Durbin reflection
coefficients. Values for Vocal tract area irregularity subset are obtained by
calculating the mean area Am, the variance of tube area Sm and the variance of
ratio Smr for each tube. As it is mentioned in [105], to calculate these measures,
tube area values Amk are computed for different frames k of a voice recording:

Am =
1

K

K∑
k=1

Amk, m = 1, ...,M (4.23)

Sm =
1

K − 1

K∑
k=1

(Amk −Am)2, m = 1, ...,M (4.24)

Smr =
1

K − 1

K∑
k=1

(
Amk−1
Amk

− Am−1
Am

)2

, m = 2, ...,M (4.25)

where K is the number of frames in a voice recording. If we assume that
M = 24 tubes, then in total we have 24 + 24 + 23 = 71 features in 13th feature
subset.
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4.1.12. Perceptual linear predictive cepstral coefficients

The perceptual linear predictive (PLP) analysis combines spectral analysis
with linear prediction analysis [63]. However, in our study we calculate PLP
cepstral coefficients (PLPCC). This allows to take psychophysical aspects of
human hearing into consideration, according to the following steps:

1. Signal windowing. To split audio recording into separate parts, 10ms
Hamming window was used with 5ms overlap. As 44kHz audio sampling
rate was used, 10ms frame splits to 440 samples.

2. Power spectrum. Fast Fourier Transform (FFT) using 512 bins is applied
to each obtained frame for transformation to frequency domain. After
that, power spectrum is computed.

3. Bark spectrum (Eq.(3) in [63]). As it is explained in [63], the power
spectrum is warped into the Bark scale using this equation:

FBark = 6× sinh−1
(
FHz
600

)
= 6× ln

FHz
600

+

√(
FHz
600

)2

+ 1

 (4.26)

where FBark is frequency in Barks, FHz is frequency in Hertz, sinh−1

denotes the inverse of hyperbolic sine, and ln stands for natural logarithm.

4. Critical-band spectral resolution. Energy in FFT bins is collected through
1 - Bark wide overlapping triangle filter-banks. It is also equally spaced
by a 1 - Bark interval. Simulated critical-band masking curve (Eq.(4) in
[63]) from [63] was used to convolve each triangle of the filter-bank.

5. Loudness equalization (Eq.(7) in [63]). This equal loudness pre-emphasis
approximates the non-equal sensitivity of human ear at different frequen-
cies at about 40 dB level.

6. Intensity-loudness conversion (Eq.(8) in [63]). Amplitude compression
was used as another modification for human hearing approximation. The
resulting spectrum could be regarded as perceived loudness, which is mea-
sured in Son units.

7. Autoregressive modelling. The perceived loudness spectrum is approxi-
mated by the spectrum of all-pole spectral modelling: the inverse DFT is
applied to he perceived loudness spectrum; to solve the Yule-Walker equa-
tions for the autoregressive coefficients of the M th-order all-pole model,
first M + 1 values are used; the coefficients are hereafter transformed to
cepstral coefficients. In this study M = 14.
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The extraction of PLPCC was done using Matlab code from [42]. We used
audio recordings of varying length, which resulted in different number of short-
time frames, where each provided 14 PLPCCs. To summarize distribution of
cepstral coefficients, descriptive statistics were used: (1)min, (2)max, (3) range
(min−max), (4) mean, (5) median, (6) standard deviation, (7) lower quartile
(Qlower), (8) upper quartile (Qupper), (9) inter-quartile range (Qupper −Qlower),
(10) skewness, (11) kurtosis. The overall size of PLPCC feature subset resulted
in 14 x 11 = 154 features.

4.1.13. Dr. Speech

In this study 6 audio parameters were used, which were obtained by oto-
laryngologists using voice assessment software "Dr. Speech". Otolaryngology
specialists are very familiar with this software, because they are often using it
in their work. This software is based on a set of 23 features of various types. We
adopted several audio parameters from this feature set, such as jitter, shimmer,
HNR, NNE, F0, SNR, and included them into our feature database.

4.2. Decision tree classifier

Decision tree (DT) is a classifier, represented as a tree-like hierarchical
structure, containing internal nodes, leaf nodes and branches [24]. DT structure
begins with root node and two sub trees - left and right. All nodes, except leaf
nodes, have a left and right sub-tree. Each leaf node represents a class label
which serves as a classification result. Example of very basic decision tree is
provided in Figure 4.3. This DT structure is created during the learning phase.
Once the tree is created, data is taken randomly from data set and classification
accuracy is tested [81].

There are multiple methods for creating decision tree, but in this study
standard CART [19] algorithm was used. The following steps were performed
using this method:

1. In the first step whole training data set was used. All conceivable binary
splits were examined on every predictor.

2. The split with the best optimization criterion was selected in the second
step.

3. Selected split was applied.

4. All previous steps were repeated recursively for both child nodes.

Recursive split continues until concerned node contains observations of only one
class. Other stop rules are: the node has fewer observations than it is allowed,
imposed split produces node with fewer observations than allowed, or maximum
allowed number of splits is achieved [19]. When the tree is built, it is pruned to
check for over fitting and noise.
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Figure 4.3 Structure of a very basic decision tree. Triangles represent root and inner
nodes, while filled circles - leaves.

The main advantage of the decision tree is that it is easy to construct and
is readily interpretable (human readable) [24]. It is a "white box" algorithm,
which can be analyzed in visual form and work as a decision support system.
As mentioned in [81], DT is also robust to outliers and missing data values. The
fact, that DT is susceptible to noisy data and only single output is allowed, is
often presented as a disadvantage of DT [24].

Many researchers successfully used decision tree classifiers for the diagnosis
of various diseases, such as breast or ovarian cancer, heart sound diagnosis and
so on [81]. In this research, a decision tree is used for voice pathology detection.
It is constructed using six audio parameters (F0, Jitter, Shimmer, NNE, HNR,
SNR) and most descriptive parameter from query data - GFI.

4.3. Association Rules

Association rules was proposed as a technique for query data classification.
The idea of this algorithm was to classify query data according to the rules, ex-
tracted from the questionnaire data used in this research. This approach would
allow having a transparent technique for voice pathology detection, requiring
no special hardware equipment. As an additional benefit, association rules ex-
traction would provide useful information indicating most important questions
and reducing the size of questionnaire.

To extract rules from our training data set, affinity analysis was used.
Affinity analysis, as described in [151], determines the relationship of observa-
tions and features in a dataset. Set of association rules, with the type of if
<antecedent> then <consequent>, is a result of such an analysis. In
this set, antecedent (A) is a specific response or set of co-occurring responses
regarding questionnaire statements, while consequent (C) is the subject’s diag-
nosis. The following measurements were calculated to evaluate importance and
usefulness of each rule:

support(A→ C) = P (A ∧ C) (4.27)
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confidence(A→ C) =
P (A ∧ C)

P (A)
(4.28)

lift(A→ C) =
confidence(A→ C)

P (C)
(4.29)

where P (condition) is the probability of condition (fraction of data having
the condition), ∧ is logical AND, support is the popularity of the rule (fraction
of data containing both A and C), confidence describes the strength or purity
of the rule (how often having A leads to C), lift is a measure of surprise (the
increased likelihood of C being found in combination with A).

Figure 4.4 Process diagram of classification by association rules

To apply extracted rule set for classification in this work we were using
simple approach, derived from prediction by weighted majority [119]. As visible
in Figure 4.4, to obtain prediction and certainty, the following 3 steps were used:

1. Confidences of ‘healthy’ rules, triggered by subject’s responses, were summed.

2. Confidences of ‘pathological’ rules, triggered by subject’s responses, were
summed.

3. The difference between summed confidences was divided by the total trig-
gered confidence to obtain a rough estimate of certainty.

Certainty was calculated as follows:

Certainty = 100 ·
∑J

i=1 Pi −
∑K

i=1Hi∑J
i=1 Pi +

∑K
i=1Hi

(4.30)

where J is the number of ‘pathological’ rules triggered, K is the number of
‘healthy’ rules triggered, P is the confidence of the triggered ‘pathological’ rule,
and H is the confidence of the triggered ‘healthy’ rule. The sign of the result-
ing certainty value helps to determine the diagnosis: a positive value means
pathological and a negative value means a healthy case.

The generated rules were filtered to leave only those having diagnosis in the
consequent and being relatively significant: support > 0.28 and confidence >
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Table 4.5 Rule coverage for mined antecedent items. Mapping of item’s short name
to the question number is as in Table 3.2. Absolute frequency, as the number of rules
the specific response participates in, is in "Healthy" and "Pathological" columns.

Responses Healthy Pathological

G0=0 11 0
H=2 11 0
C=0 6 1
Y=0 6 0
U=7 3 2
MFT=[2,12] 0 4
L=3 4 0
VAS=(63,100] 0 2
G0=0 0 1
X=(73,100] 0 1
S=(75.8,100] 0 1
R=(60,100] 0 1
W=(60,100] 0 1
D=(65,100] 0 1
Gender=F 1 0

0.9 for a healthy subject and support > 0.16 and confidence > 0.9 for a patho-
logical subject. Gravity of each specific response, or absolute frequency of each
retained antecedent component belonging to the healthy or pathological rules,
are provided in Table 4.5. Final lists of generated rules and their parameters
are provided in Table 5.6 (rules for healthy subjects) and Table 5.7 (rules for
pathological subjects). Answers to questions # 22-25 (G1 - G4) were replaced
by single variable G0 (Formula 4.31), which indicates that patient answered at
least to one of those questions by answer "no problem". As it was presented in
[151], ‘Healthy rules’ turned out to be more complex, but redundant, where the
most persistent components had the highest gravity. ‘Pathological rules’ were
found to be shorter and their components slightly more diverse.

G0 = (G1 = 0 ∨G2 = 0 ∨G3 = 0 ∨G4 = 0) (4.31)

4.4. Random Forest Classifier

A random forest (RF) classifier is a committee of decision trees [18], where
majority voting is used for tree aggregation, in order to solve classification
tasks, see Fig. 4.5. As mentioned in [82, 40], RF is fast to train and to eval-
uate, it is parallelisable, robust to noise and provides good performance for
high-dimensional data. RF is also known to be robust against over-fitting, and
generalization error converges to a limit as the number of trees increases [18].
According to [126], generalization error is determined by the correlation of in-
dividual trees and average strength of them. Out-of-bag (OOB) validation is
used to evaluate generalization performance of random forest, where only trees
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that did not use subject data for their construction, vote. Low bias and low
correlation are essential for accuracy, which are achieved by growing trees to
the maximum depth and applying randomization:

• Each separate tree of RF is grown on a bootstrap sample of the training
set.

• In tree growing process at each node only n variables are randomly selected
out of N available and only one variable, providing the best split, is used
out of n selected.

While constructing RF, n is the only parameter, which has to be selected
experimentally. If a single tree is grown using only part of the whole data
set (bootstrap data), not used data (out-of-bag data) can be used for testing
purposes of that tree. OOB also can be used for variable importance estimation,
which is useful when feature selection is applied for the data set.

k1

kB

tree1 tree2

k2

treeB

voting

k

Figure 4.5 A general random forest architecture, where k stands for class label

Data proximity matrix Φ can be obtained from RF software. To obtain
the matrix, data are run down for each tree that is grown. φij is increased by
one, if two observations - xi and xj - occupy the same terminal node of the tree.
When the random forest is grown, the proximities are divided by the number of
trees in the random forest.

A data proximity matrix, derived from RF, was used in this study for data
analysis and visualization of data and decisions. To map data and decisions
onto the 2D space, the t-distributed stochastic neighbor embedding (t-SNE)
algorithm [154] was used, as it is capable of revealing both global and local
structure in terms of clustering data with respect to similarity [76]. The t-SNE
algorithm often outperforms other state-of-the-art techniques for dimensionality
reduction and data visualization [154]. Fourteen separate RFs produce fourteen
proximity matrices (Φi). To get a general mapping, a generalized proximity
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matrix Φ was obtained as:

Φ =

∑NF
i=1wiΦi∑NF
i=1wi

(4.32)

where NF is the number of separate forests (NF=14) and wi is a weight propor-
tional to the average accuracy of the ith RF [157]. A sample t-SNE visualization
of the generalized proximity matrix can be seen in Fig. 5.2. The algorithm has a
compelling property allowing it to embed a new observation onto a previously-
generated map.

4.5. Random Forest Classifier with information fusion

In this study, we propose a new data dependent random forest-based way
to combine available data from multiple data sources. Multiple data fusion
techniques were tested, and automated feature selection based on sequential
backward elimination was applied to improve classification accuracy. As it was
mentioned by [157], feature leading to maximum increase in OOB data classifi-
cation accuracy is the criterion used for feature elimination. For all experiments
of different techniques, the same set of audio recordings (Described in Chapter
3) was used.

The data set used for training and testing of this algorithm might raise
some concerns because of its dimensionality, where number of observations is
smaller than a number of features (273 subjects with 3 recordings each, com-
pared to 927 features). According to [98], machine learning (ML) algorithms
ability to learn is compromised when high dimensional data sets are used with
small sample of observations. In such situations, it is common practice to re-
duce dimensionality in order to improve classification accuracy [97]. However, as
mentioned in [18] and proved by many researches such as [17, 39, 48], RF shows
great performance and accuracy when dealing with high dimensional data.

While constructing RF, such value as number of trees in RF - B, and the
number of variables (randomly selected) used to split node - n, has to be selected.
In this study B was set to 1000 trees per RF and n was set to n =

√
N , which is

recommended by [18]. Selection of B and n values does not affect classification
accuracy noticeably and may vary in extensive range.

4.5.1. Feature level fusion

The first of the data fusion techniques tested was the data-level fusion that
can be explained as integration of data from multiple sources [60], which in our
case are features from voice recordings and questionnaire answers. Combination
is performed simply by taking required parameters from different data sets and
combining them into single vector (one vector per each data record). In some
cases, data fusion may result in missing data errors due to absent data in one or
another data set. Solutions for such situations are analyzed in following sections
of Chapter 4. Visual example of feature level fusion is provided in Figure ??.
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Figure 4.6 Sample scheme of feature level fusion. ID is an identifier of observation
and F stands for Feature.

Such data combination in this study was also used for data visualization
and classification using Decision Tree, where 6 audio parameters are combined
with GFI parameter from query data. In this case, as mentioned in [99], extra
GFI parameter adds additional clarity for the user (one who is analyzing visual-
ization) and improves classification accuracy, comparing it to the one achieved
by using only voice parameters. In the present work such data level fusion is
also called feature level fusion, because different subsets of audio features are
fused. While using data fusion for comparison of different types of microphones,
we concatenate audio features from 14 different feature sets into a vector of 927
components. This high dimensional data is used to build a separate RF.

4.5.2. Decision level fusion

Decision level fusion can be described as an ensemble of classifiers, where
each of them has to be built independently and provides its own result. To obtain
the final result, one of several fusion techniques has to be applied. In this study
we used decision level fusion by forest voting, by averaging probabilities and by
meta RF.

Decision level fusion by forest voting can be described as a technique,
where all RFs vote for the class label of unknown observation. We use three
different strategies of voting:

1. All single RFs vote.

2. All single RFs vote, but weights proportional to the accuracy of RFs are
applied.

3. Selected single RFs vote.

For experiments of acoustic and contact microphone comparison we also
used decision level fusion by averaging probabilities. This fusion was achieved
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by averaging estimates of the posteriori class probabilities obtained from single
RFs.

To achieve fusion by meta RF, results of base classifiers have to be com-
bined in a meta-learner fashion, where results of base classifiers become features
for another (second level) classifier. When Random Forest is used as a base
classifier, we provide inputs for the meta-learner by class posteriori probabili-
ties obtained from base RFs. Given a trained RF, the posteriori probability for
an observation x to belong to the qth class is estimated as:

p(t1, ..., tL, x, q) =

∑L
i=1 f(ti, x, q)

L
(4.33)

where L is the number of trees in the random forest, x is the object being
classified, q is a class label and f(ti, q, x) stands for the qth class frequency in
the leaf node, into which x falls in the ith three ti of the forest:

f(ti, x, q) =
n(ti, x, q)∑Q
j=1 n(ti, x, qj)

(4.34)

were Q is the number of classes and n(ti, x, q) is the number of training
data coming from the class q and falling into the same leaf node of ti as x.
According to this, if we have Q decision classes, then we have Q×M inputs to
the meta learner (M is the number of base classifiers).

4.5.3. Data dependent random forest

Data dependent decision level fusion was our completely new fusion tech-
nique proposed for classification accuracy improvement. It is based on a con-
struction of a separate RF for each data set, where final result is achieved
classifying by RF, constructed of trees from the initial RF classifiers. Construc-
tion technique of the final Random Forest classifier is the main novelty of our
proposed technique. As far as we know, there are no attempts made by other
researchers to use this technique. The most popular techniques for classification
of data from multiple data sets are data fusion before classification [67, 9] or
classification by meta-classifier (2nd level classifier) [62, 111].

Visual representation of our proposed technique is provided in Figure 4.7.
By using this method, each set of observation x extracted audio parameters is
classified with separate random forest classifier. In a second phase, the neigh-
borhood ℵi(x) of m most similar to the x OOB observations are determined
from each of the Φi, i = 1, ..., n (where n is the number of RF). Later, trees cor-
rectly classifying OOB data from neighborhood ℵi(x) are selected from all RFs
and a new RF is constructed from them, which is used for obtaining final deci-
sion. Assessment of similarity between x and xj is done by measuring distance
between two terminal nodes of a decision tree occupied by these observations.
We suggest assessing similarity between x and xj using the following equation:
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Figure 4.7 Proposed data dependent random forest classification technique

pj =
1

K

K∑
k

1/(ew�gjk) (4.35)

where k runs over the K trees, for which xj is among the OOB samples, w
is a parameter and g is the number of tree branches between the two terminal
nodes occupied by x and xj . In the case where x and xj occupy the same
terminal node, g = 0 and pj will be increased by value of one. Influence of g is
controlled by the parameter w.

When making decision in RF, two options are taken into consideration:
voting and weighted voting, where the kth tree from the ith single RF is given
the weight, calculated by the following equation:

wik =
1

|ℵci (x)|
∑

xj∈ℵci (x)

1/(ew�gjk) (4.36)

where |ℵci (x)| is the number of correctly classified OOB data in the neigh-
borhood ℵi(x), while meaning of the other variables are the same as in equation
4.35.

This proposed technique was used in this study for a comparison of acoustic
and contact microphones, in order to determine the microphone (or a combina-
tion of microphones) which would provide the highest accuracy while screening
for laryngeal disorders. To characterize audio recordings from both types of
microphones for classification task, we used 14 (14 × 2 = 28 feature sets in to-
tal) different sets of features, listed in Table 4.1. Effectiveness of determining
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two classes was analyzed for each separate and combined data set. For anal-
ysis of combined data sets, multiple data fusion techniques were applied, such
as decision level with forest voting, decision level with averaging probabilities,
decision level by meta RF and data dependent decision level fusion. Data sets
of all fusion techniques (except decision level by meta RF) were used with all
features and after additional processing - feature selection, forest weighting or
forest selection.

4.6. t-Distributed stochastic neighbor embedding

t-Distributed stochastic neighbor embedding (t-SNE) is a prize-winning
technique for dimensionality reduction. It allows to visualize high dimensional
data in a low dimensional (2D) space. It is built upon earlier work on Stochastic
Neighbor Embedding by [65, 28, 56]. t-SNE uses different cost function than
SNE: it uses symmetrized version of the SNE cost function with simpler gra-
dients and Student t-distribution rather than Gaussian to compute similarities
[154]. t-SNE resolves crowding and optimization problems of SNE by the use of
heavy-tailed distribution.

Input for t-SNE algorithm is a collection of N high dimensional data vec-
tors X = x1, ..., xN . In this research data input for t-SNE is a proximity matrix
obtained from RF. In high-dimensional space, similarity of xj to xi is defined as
conditional probability pj|i where xj is picked by xi as its neighbor, when neigh-
bors are picked in proportion to their probability density defined by a Gaussian
centered on xi [154]:

pi|j =
exp(−||xi − xj ||2/2σ2)∑
k 6=i exp(−||xi − xk||2/2σ2)

(4.37)

where σ is a parameter and the values of pi|i are set to zero. For low-dimensional
counterparts yi and yj of xi and xj similar conditional probability qj|i is calcu-
lated. The joint probability is defined by the formula below:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

(4.38)

where qi|i are also set to zero. Minimization of Kullback-Leibler divergence
between the joint probability distributions P and Q are used to find the desired
mapping.

Similarity between observations is assessed by computing distance in equa-
tions 4.37 and 4.38. Yet, distance-based similarity of observations in multidi-
mensional spaces suffers from irrelevant noisy variables, which have a really
high influence. Therefore, in this work meta-learner RF of decision tree and
association rules combination was used for assessment of similarities between
observations.

Perplexity is an input parameter for t-SNE that determines configuration
of the generated 2D map. The desired perplexity value can be set and algorithm
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itself determines the number of nearest neighbors, based on the data density [76].
This means, that the number of nearest neighbors is affected by the data and
may vary after including new or removing existing data record.

Figure 4.8 Visualization of 6000 handwritten digits from the MNIST data set [154].
t-SNE (left) and Sammon mapping (right).

Selection of t-SNE algorithm for dimensionality reduction and data visu-
alization in this study is based on findings in [154]. Author compares t-SNE
with Sammon mapping, Isomap and Local-linear embedding algorithms using
MNIST data set. As the results shows, t-SNE clearly outperforms existing
state-of-the-art techniques for visualization of real-world data. An example vi-
sualization of t-SNE compared to Sammon mapping is provided in Figure 4.8.
Also, such features as ability to control the space between clusters and ability
to embed a new observation into a previously calculated 2D map, were very
appealing, considering our study.

4.7. Imputation techniques

In the database used in this study, each subject has up to 3 audio record-
ings and answers to a questionnaire. In some cases, query or audio data might
be absent, so only data from one modality is available. In this situation, voice
and query data fusion data set contains missing values. To avoid this situation,
records with missing data have to be deleted before the data fusion, or missing
values have to be filled with substitutes.

Various techniques, suggested in [83, 165, 112, 64] were considered, how-
ever, the same approach as in [151] was taken. Either complete case analysis
with listwise deletion was performed, leaving only subjects having data from all
modalities, or substitute values were used to fill missing data before fusion. We
also analyzed and compared the following techniques:

1. Median imputation. In this method, all the missing values are filled out
by calculated median of all observed decisions for the current modality.
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2. Linear regression. For this technique, we used mice package which con-
tains mice.impute.norm.nob function. Mice stands for multivariate
imputation by chained equations [153].

3. PCA-based imputation. We used imputePCA function from missMDA
package, which is described in [72]. For the selection of optimal number of
components using generalized cross-validation criterion, the estim_ncpPCA
function [73] was used.

4. SVD-based imputation. This technique is provided by the pcaMethods
package [137]. We used the implementation of SVDimpute algorithm
[145], where kEstimate function was used for the selection of optimal
number of the components using cross-validation and Q2 distance.

5. Iterative model-based imputation. This technique is available in VIM pack-
age as irmi function [143]. In this work option robust=FALSE was set
in order to use non-robust variant.

Finally, in data fusion situations, we used only records containing data
from all modalities. In decision-level fusion situations, all data from all different
data sets was used. Different classification algorithms use different data sets
(voice or query data separately), therefore no missing data situations occur,
unlike in data-level fusion, and no additional data preparation tasks have to be
performed.

4.8. Classifier performance evaluation

In this work, we evaluated classifier performance as well, to show how well
it performs. For this task multiple measures, such as detection error trade-off
(DET) curve, equal error rate (EER), receiver operating characteristic (ROC)
curve, cost of log-likelihood ratio (Cllr) and area under the curve (AUC), were
calculated. These measures were estimated using an interpolated version of the
ROC through pool adjacent violators algorithm (also called ROC convex hull
method), which is available in the BOSARIS toolkit [23].

A more accurate evaluation of detection is possible because of score usage,
instead of hard decisions. By varying decision threshold of obtained detector
scores, corresponding reject and accept errors can be plotted and performance
illustrated by ROC or DET curve. A quick way to compare the accuracy of
detectors with different DET (ROC) curves is the equilibrium point, often known
as equal error rate (EER). EER is the point where the DET (ROC) curve
intersects the diagonal and:

a) false positive rate (miss rate) = false negative rate (false alarm rate), for
DET.

b) true positive rate (sensitivity) = true negative rate (specificity), for ROC.

63



For estimation of DET and EER we used an interpolated version of the
ROC through pool adjacent violators algorithm, which is called ROC convex
hull (ROCCH) method (available in [23]). According to [128], DET curve tends
to be more linear, due to logarithmic axes, so it allows easier comparison of
several systems than ROC curve.

As mentioned in [99], various thresholds can be used to convert a soft
decision into hard. ROC or DET curve can summarize the overall performance
of a detector. DET curves allow easier comparison of several systems than ROC
curves, due to the logarithmic scale [128]. Despite that, AUC measurements
from ROC are valuable comparison parameters too. According to [49], DET
curve can be represented as Function 4.39 (where pFi is false alarm probability),
which is increasing and concave.

pDi = fi(p
F
i ) (4.39)

In this study we also use another, more sophisticated, derivative of the
ROC (DET) curve, which is called the cost of log-likelihood ratio (Cllr). The
log-likelihood ratio can be described as the logarithm of the ration between two
likelihoods: the likelihood that input is produced by pathological subject, and
the likelihood that input is produced by healthy subject. In information theory
terms, Cllr measures information loss, caused by the detector. Perfect detector,
which makes no errors (also correctly notifies about the presence or absence of
pathology), will have zero loss, while all others will have positive loss (lower is
better). [23] provides more details about Cllr.

4.9. Confidence assessment of decisions

Our developed computer program provides user with confidence of a de-
cision. This value is computed using information from RF made of {t1, ..., tL}
trees. For decision making, we formulate two types of rejections, which are
based on computed posteriori probability values:

1. Similarity based rejection, where observation x is made if:

pmax1({t1, ..., tL}, x, q)− pmax2({t1, ..., tL}, x, q) < εs (4.40)

where εs is a user defined similarity threshold and pmax1 and pmax2 are
the first and the second largest posteriori class probabilities:

pmax1({t1, ..., tL}, x, q) = max
q=1,...,Q

p({t1, ..., tL}, x, q) (4.41)

This type of rejection means that decision maker cannot make a reliable
distinction between two most probable classes.

2. Dissimilarity based rejection, where observation x is made if:

pmax1({t1, ..., tL}, x, q) < εd (4.42)
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where εd is the user defined dissimilarity threshold. In this type of rejec-
tion, none of the classes are similar enough to the observation x.

4.10. Similarity assessment of observations

In the experiments of this work, similarity between two observations xi
and xj was assessed by measuring distance between two terminal nodes of the
decision tree, which were occupied by those observations. As was suggested in
[99], similarity for observations xi and xj was assessed by the equation 4.43,
provided below:

ptij = 1/(ew·gij ) (4.43)

where w is a parameter, and gij is the number of tree branches between the
two terminal nodes occupied by xi and xj . In case where single terminal node
is occupied by both xi and xj observations, g = 0 and pij = 1. Parameter
w is used to control the influence of the distance between two terminal nodes
occupied by the observations on the similarity values.

Association rules-based similarity between observations xi and xj is com-
puted according to Eq. (4.44):

prij =
2
∑

n∈U∩V pin∑U
n=1 pin +

∑V
n=1 pjn

(4.44)

where U and V are the sets of rules triggered by the observations. Respectively,
U and V are number of rules in those sets, and pin is the certainty of the nth
rule triggered by xi.

4.11. Data visualization

Desktop computer application was created as one of the results of this
study to ease patient vocal analysis. User interface (UI) is divided into 4 parts:
audio file selection, graphical visualization of data (2D map of proximity ma-
trix), textual view of analysis results and questionnaire data input window.
After analysis of an unknown observation, user is provided with the determined
class label, classification certainty obtained from the Affinity analysis and De-
cision tree, and the six voice parameters: F0, Jitter, Shimmer, NNE, HNR
and SNR. Data visualization of statistical data view is also provided by using
Probability Density Functions.

Program code is divided into two parts, each being responsible for separate
tasks. The first part is responsible for audio feature extraction, classification and
mapping proximity matrix to 2D space using t-SNE. Second part is responsible
for storing audio recordings and questionnaire data, where .wav, .mat and .data
file types are used.

The initial program window provides 2D map of audio database created
by t-SNE algorithm. When classification is done, depending on the situation
corresponding data set is visualized by t-SNE. Then unique t-SNE function is
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Table 4.6 Parameters, available to user for monitoring. Abbreviations: F0 - funda-
mental frequency; NNE - normalized noise energy; HNR - harmonic to noise ratio; SNR
- signal to noise ratio.

Parameters Description

Basic patient information PatientID, Sex, Age, Diagnosis
Voice parameters F0, Jitter, Shimmer, NNE, HNR, SNR
Questionnaire data Answers to query items (see Table 3.2)

used and subject of interest is mapped onto the same visualization. This allows
to compare the analyzed patient to the others in the database and provides
visual information to which class (healthy or pathological) this patient is closer.
2D map is created from similarities (as conditional probabilities) of data points.

Preliminary understanding of patient situations is very useful in the di-
agnosis process. Audio parameters, such as F0, Jitter, Shimmer, NNE, HNR,
SNR and questionnaire data are very well known by otolaryngologists, this is
why in this study, together with classification results, we provide audio parame-
ters and questionnaire data distribution graphics. Probability density functions
(PDFs) are used to visualize healthy ant pathological cases, where the Epanech-
nikoc kernel smoothing, as recommended in [133], was used to estimate PDFs.
These distributions evolve over time with inclusion of new subjects (patients
and controls), which provide doctors with information about trends and allow
comparing different groups of patients. This also reveals the data variety in the
dataset which allows spotting data deficiency.

Software program created in this study allows comparing audio parame-
ters and query data of multiple concerned subjects. Comparison information is
accessed by a click on a 2D map created using t-SNE. Click of a selected data
point opens a new window, where information about the patient, linked to the
point in a graph, is presented. Information which is provided in the patient’s
window was selected by otolaryngologists and is evaluated by them as most im-
portant. Table 4.6 provides a list of this data. As separate windows are opened
for each click (patient), it is possible to compare multiple patient information,
which allows to evaluate current patient more thoroughly. Information as such
is very useful for preliminary diagnosis and teaching/learning purposes.

To facilitate reasoning, the user is provided with a decision tree (DT),
which is visible in Figure 4.9. This tree is recalculated each time a new case is
added to the database, so most recent and accurate DT is shown. Decision tree
in Figure 4.9 is created using 6 audio parameters, which otolaryngologists are
familiar with, and GFI parameter from query data, which improves classification
accuracy. In the provided image, sample decision path is highlighted, which
helps exploring patient diagnosis more thoroughly.
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Figure 4.9 The decision tree created using the six audio parameters and the GFI
parameter. Sample decision path is highlighted with a thicker line.

4.12. Ease of use evaluation

In this work, a computer program was created as an auxiliary tool for
otolaryngologists. Before providing it to the end users, software ease of use and
suitability for the task has to be evaluated to make sure it is user-friendly, self-
explanatory, and meets the requirements. Evaluation was performed by taking
the ISO-9241 standard part 11 (ISO 9241-11) into account, because it is impos-
sible to evaluate the ease of use without taking into account user understanding
[129]. The whole structure of ISO 9241 standard is provided in Figure 4.10.

As mentioned in [2, 118], user satisfaction is another important detail
which greatly influences the success of software implementation. Evaluation
of the developed software was done following seven principles of the standard
9241-11:

1. Suitability for the task. Software is suitable for the task if the user can
easily understand what it can do.

2. Self-descriptiveness. This principle is evaluated by checking if software can
be understood intuitively and no or very little additional information is
needed. It also requires that any possible usage mistake would be followed
by relevant information.
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3. Controllability. Software controllability is achieved by creating user inter-
face, which allows completing the task in one sequence of steps.

4. Conformity with user’s expectations. Software conforms with user’s expec-
tations if it is consistent and complying with characteristics of the user.

5. Error tolerance. Computer program is admitted to be error tolerant if its
usage requires no additional effort except in the events of obviously faulty
usage.

6. Suitability for individualization. Software is suitable for individualization
if it allows personal configuration for each user.

7. Suitability for learning. Software is suitable for learning if minimum effort
for usage is required and help information is provided.

Figure 4.10 Structure of ISO 9241 standard. Part about software usability is marked
by a red rectangle.
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5. EXPERIMENTAL EVALUATION

The proposed methods in chapter 4 are designed to detect voice pathology
from human voice and query data. To prove that these methods are usable in
practice and can support the otolaryngologist decision, experimental evaluation
has to be performed. Design and results of the experiments are provided in the
following sections of this chapter.

5.1. Data used for experiments

For proper experimental testing, data should cover tested algorithm as
much as possible. For the experiments in this research, three types of data sets
are required: a set of audio parameters extracted by our used algorithms, a set
of audio parameters extracted by using Dr. Speech software, and questionnaire
answers filled out by patients. One of the requirements for data was that the
same recording or questionnaire cannot appear in training and testing data
sets. To fulfill the second requirement, data sets cannot contain records with
missing data. If some audio parameters or answers to questions are missing,
these records should be removed from training and testing data sets. In this
research the data described in Chapter 3 (Voice & Query data) was used for
experimental evaluation. Properties of the data sets are provided in Table 5.1.

Table 5.1 Three data sets used for the experiments

Dataset Patients Parameters Comment

Voice data 273 927 Audio recordings were provided by the Depart-
ment of Otolaryngology from Lithuanian Uni-
versity of Health Sciences and features were ex-
tracted before the experiments.

Voice data 273 6 Data set was provided by the Department of
Otolaryngology from Lithuanian University of
Health Sciences. Parameters were extracted us-
ing Dr. Speech software.

Query data 596 26 Data set was provided by the Department of
Otolaryngology from Lithuanian University of
Health Sciences. Questionnaires were filled by
the patients themselves or by the doctors.

5.2. Experiment environment

To perform the experiments Matlab was used to design and develop pro-
gram system. In order to separate logic from Graphical User Interface (GUI)
and other parts, the multi-component approach was taken. The structure of the
system is provided in Figure 5.1.

As it is visible in Figure 5.1, the system contains two main parts: GUI
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Figure 5.1 Architecture of experimental system

and backend. The latter one contains all the components for data analysis and
software usage logic. Feature extraction component is responsible for feature
extraction from the audio file. The voice recording file for this component is
provided by the user interacting with GUI. This component contains multiple
algorithms to extract audio features for two datasets: first containing 14 types
of features and second containing the same features as provided by otolaryngol-
ogists using Dr. Speech.

Different classification algorithms are applied depending on what data is
provided. RF Classifier for combined classification of voice and query data is
executed only when both, voice recording and query data, are provided. This
allows the avoidance of missing data errors and reduces time required for calcula-
tions. The Association rules classifier component is responsible for classification
of questionnaire data and is executed only if query data is provided. Decision
tree classifier is responsible for classification of the smaller audio features set
and is executed only if voice recording is provided. Data dependent RF classifier
component consists our newly proposed algorithm for voice data classification.
It is executed every time when voice recording is provided and submits its re-
sults to the GUI. t-SNE mapper component is responsible for the employment
of t-SNE algorithm to map training data and provided data to 2D map.

Graphical user interface was designed for the users interaction with the
software and it is responsible only for the audio file selection, questionnaire
answers imputation and representation of the results. Sample screenshots are
provided in Figure 5.2 and Figure 5.3. As we can see, it consists of 5 different
components. Audio file loader allows user to easily select voice recording file
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Figure 5.2 Screenshot of the main software window containing three UI parts: audio
recording selector, 2D map and textual results viewer

Figure 5.3 Screenshot of software window, where user (doctor) has to enter answers
to questionnaire

from computer disk. Questionnaire input table opens in a new window, where
text fields are provided to enter query data. Decision tree component is respon-
sible for the visualization of the constructed DT, however it is visible only when
voice recording is provided. Visualization of 2D t-SNE map is done by the 2D t-
SNE map component. This requires voice recording to be provided, because 2D
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map is generated from proximity matrix, obtained during audio features clas-
sification. Results block contains textual information about the classification
results. There are provided results from each algorithm, as well as certainty.

5.3. Evaluation of detection

Classification accuracy was evaluated using voice and query data from 48
unseen subjects (9 healthy and 39 pathological). Classification certainties were
used as scores to evaluate how good the detection is. For detection using voice
data, scores for each observation were given by the probability of the dominant
class at the terminal node which the observation is assigned to. When query
data is used for classification, a score is calculated by the Equation 4.30. To
better evaluate accuracy improvement, the classifier was tested with voice and
query data separately, as well as in decision-level fusion. Classification goodness
analysis results are visible in Figure 5.4 and Figure 5.5, where DET and ROC
curves can be seen together with EER and AUC values.
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Figure 5.4 DET curves and EER for unseen voice and query data

Achieved EER values are very encouraging despite the simplicity of the
techniques used. Using voice and query data separately, EER of 11.11% and
10.26% was achieved using association rules and decision tree respectively. Com-
bination (via weighted averaging) of results, obtained from affinity rules and
decision tree, resulted in EER of 9.52%. As expected, combination of two data
modalities improved classification accuracy. As it can be seen in DET and ROC
curves, combined classifier has the lowest false alarm probability (highest speci-
ficity) near the low miss probability (high sensitivity) mode of operation. Last
property shows significant benefit for initial screening in preventive healthcare.
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Figure 5.6 DET curve of classification performance of RF on OOB data. Systems
compared: audio modalities (V0, V1, V2), query modalities (Q9, Q26), all modalities
fusion after listwise deletion (F0), fusion of 3 modalities (V0, Q9, Q26) after iterative
model-based imputation (F1).

Classification results, achieved through experiments with association rules
and different data sets of voice and query data, provide other interesting find-
ings. As can be seen in Figure 5.6, query data performs consistently better than
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Table 5.2 Classification performance evaluation for various decision-level fusions

Type of imputation 2 modalities 3 modalities 4 modalities 5 modalities
EER Cllr EER Cllr EER Cllr EER Cllr

Listwise deletion 5.37 0.3457 5.07 0.3385 4.75 0.3374 4.84 0.3355
Median 5.58 0.3479 4.99 0.3353 4.84 0.3330 4.82 0.3326
Regression 5.97 0.3468 5.15 0.3351 5.02 0.3346 4.88 0.3347
PCA-based 5.38 0.3424 4.76 0.3314 4.76 0.3311 4.91 0.3319
SVD-based 5.37 0.3447 5.09 0.3377 5.03 0.3359 5.07 0.3341
Model-based 4.99 0.3367 4.55 0.3303 4.52 0.3313 4.71 0.3317

Table 5.3 Details for the best fusions - RF parameter q and modalities which were
used

Type of imputation 2 modalities 3 modalities

Listwise deletion 2 of {Q9, Q26} 1 of {V2, Q9, Q26}
Median 1 of {V0, Q26} 1 of {V2, Q9, Q26}
Regression 2 of {Q9, Q26} 3 of {V0, Q9, Q26}
PCA-based 2 of {Q9, Q26} 3 of {V0, Q9, Q26}
SVD-based 1 of {V0, Q26} 1 of {V2, Q9, Q26}
Model-based 2 of {Q9, Q26} 3 of {V0, Q9, Q26}

Type of imputation 4 modalities 5 modalities

Listwise deletion 3 of {V0, V1, Q9, Q26} 2 of {V0, V1, V2, Q9, Q26}
Median 3 of {V0, V1, Q9, Q26} 2 of {V0, V1, V2, Q9, Q26}
Regression 3 of {V0, V1, Q9, Q26} 2 of {V0, V1, V2, Q9, Q26}
PCA-based 4 of {V0, V2, Q9, Q26} 4 of {V0, V1, V2, Q9, Q26}
SVD-based 3 of {V0, V1, Q9, Q26} 2 of {V0, V1, V2, Q9, Q26}
Model-based 4 of {V0, V2, Q9, Q26} 3 of {V0, V1, V2, Q9, Q26}

voice data. However, the best overall result was achieved by using fusion of
voice and query data. Assessing by Cllr values provided in Table 5.2, for fusion
of 2 modalities only imputation of median and imputation by regression were a
little inferior than the listwise deletion. When fusion of more than 2 modalities
were used, all types of imputation outperformed listwise deletion. Best classifi-
cation results were achieved by using PCA-based and model-based imputation
techniques, where fusion of less than all available modalities was used.

More detailed information about the best combination of RF parameter q
and selected modalities is provided in Table 5.3. A longer version of question-
naire (Q26) proved to be more important. This is quite obvious, since in Figure
5.6 it can be identified as the best single modality. The second-best combination
is the short version of questionnaire (Q9) and raw recording (V0) fusion. For
PCA-based and model-based imputations the optimal number of components
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was found to be 2. The best fusions were found by setting RF parameter q to
the maximum, which conforms as unpruned bagging.

5.4. Data dependent random forest

Data dependent random forest was our newly proposed data fusion and
classification technique. During the experiments, multiple fusion techniques
were tested to compare them with our method and effectiveness of each feature
set was evaluated. As one of the results of these experiments, acoustic and
contact microphones were evaluated, in order to determine which one of them
or combination of both can help to achieve higher classification accuracy.

5.4.1. Comparison of acoustic and contact microphones

For classification accuracy, a comparison using data from both types of
microphones, detection error tradeoff (DET) curve was used. It was obtained
by using ROC convex hull approximation BOSARIS toolkit [22], and is shown
in Figure 5.7.

In this study, results from meta RF were used to generate DET curve, as
this was the most accurate fusion scheme for contact microphones. EER stands
for equal error rate for both classes (normal and pathological). The difference
between EERs of different microphones is not high, but it would be higher if
decision level fusion by meta RF had been used, which was the most accurate
for the acoustic microphone data.

As can be seen in Figure 5.7, acoustic microphone is superior to the con-
tact one. The only region where contact microphone provides better results is
the region of high miss probabilities. As it is mentioned in [157], fusion of in-
formation from acoustic and contact microphones for the data sets used in this
study is not effective. Table 5.4 provides out of bag (OOB) data classification
accuracy using different fusion schemes, which shows that even if small classi-
fication accuracy improvements are visible for some schemes, the difference in
accuracy is not statistically significant. According to these results, a decision
was made to use only acoustic microphone for further voice recordings.

All classification results presented in this section are averages of eight runs.
Each time different bootstrap samples were selected from OOB data with dif-
ferent sets of randomly selected variables. In the database used in this research,
each subject has three audio recordings, so OOB data set was generated in such
way, that none or all three samples of one subject were in it.

5.4.2. Different feature sets

Usage of different feature sets provides different classification results. Ac-
cording to the data given in Table 5.5, the acoustic microphone was superior
to the contact one with respect to 13 different feature sets out of 14, where for
most of the feature sets, the difference was statistically significant. It is worth
noting, that a single forest was created for each feature set. Numbers of total
features and selected features of each set are also provided in Table 5.5, which
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Figure 5.7 DET curves of different types of microphones. EER - equal error rate

Table 5.4 Data classification accuracy obtained by using different fusion schemes
(OOB, %)

Fusion
microphone Acoustic Contact Combined

Feature level
All features 78.67 73.81 73.87
Selected features 83.18 81.18 83.21

Decision level, forest voting
All forests 79.93 75.46 79.06
All weighted forests 82.28 78.44 80.67
Selected forests 84.63 79.93 85.01

Decision level, averaging probabilities
All forests 80.17 73.73 79.06
Selected forests 83.52 77.32 83.64

Decision level, by meta RF
84.77 81.38 85.66

Decision level, data dependent
All forests 80.55 73.98 79.43
All forests, weighted trees 84.01 78.56 83.15
Selected forests, weighted trees 86.37 80.79 86.62
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Table 5.5 Classification accuracy (OOB) and number of initial/selected features in
different data sets

# Features # All # Selected (%) # Selected (%)
Acoustic Contact

1 Perturbation 24 6 77.26 14 76.10
2 Frequency 100 13 71.30 12 70.07
3 Mel-frequency 35 7 69.16 8 70.03
4 Cepstral energy 100 27 72.51 20 69.95
5 Mel-coefficients 35 10 70.14 13 67.87
6 Autocorellation 80 13 65.09 10 64.08
7 HNR-spectral 11 8 62.17 10 59.70
8 HNR-cepstral 11 6 64.44 3 60.70
9 LP-coefficients 77 12 76.66 25 64.78
10 LPCT-coefficients 77 13 78.70 7 64.13
11 Signal shape 128 50 70.62 10 68.70
12 Reflection-coefficients 24 9 76.60 10 69.56
13 Tract irregularity 71 11 80.36 21 69.44
14 PLPC-coefficients 154 11 81.20 29 76.35

Average 14.0 72.59 13.7 67.96

shows how many features were selected to get the best classification result on
the OOB data (the same as in [157]).

Classification accuracy improved with all 14 feature sets and both types
of microphones when feature selection was used. In some cases, higher classifi-
cation accuracy was achieved by using less than 15% of features from a single
feature set. After feature selection, 196 features were left for acoustic micro-
phone and 192 for contact microphone, which is 14 and 13.7 features on average
respectively. According to the classification results, Perceptual Linear Predic-
tive Cepstral Coefficients (PLPCC) can be presented as the best feature set for
both types of microphones. In acoustic microphone case, classification accu-
racy was significantly increased using tract irregularity features built upon the
reflection-coefficients. Perturbation measurements were the second-best feature
set for the contact microphone.

5.4.3. Different fusion schemes

Several fusion schemes were analyzed in this research in order to improve
classification accuracy and compare acoustic and contact microphones. In fea-
ture level fusion scenario, RFs were built using all features (927 in total for each
type of microphone and 1854 in the combined case) and features after selection.
The results in Table 5.4 show that when all features are used, classification
accuracy is lower than when using a single feature set. However, after feature
selection, accuracy was significantly improved for both acoustic and contact
microphone data, and it was achieved higher than the best accuracy obtained
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using single data set.
Another fusion scheme which was tested was a decision level-based fusion.

In a forest voting scenario, the same pattern of behavior was observed as in the
data fusion case. Random forest weighting, according to classification accuracy
of single RF, improved overall classification accuracy. However, usage of only
selected forests improved classification accuracy even more. The least effective
decision level fusion scheme was by averaging class a posteriori probabilities,
while fusion scheme based on meta RF provided higher accuracy than forest
voting. Data dependent decision level fusion provided the best classification
results. Three different variations (all presented in Table 5.4) were tested, where
selected forests with weighted trees proved to be the most accurate. Only selected
single RFs are used to create data dependent RF which uses weighted voting to
obtain the decision.

5.5. Association rules

Association rules were filtered, and only relatively significant ones were
left. For healthy class, only the rules with support > 0.28 and confidence > 0.9
were selected, while for pathological class limits were different: support > 0.16
and confidence > 0.9. Gravity by absolute frequency of each specific response is
provided in Figure 5.8. ‘Healthy rules’ turned out to be more complex, however,
more redundant, where the most persistent components had the highest gravity.
‘Pathological rules’ were found to be shorter and their components slightly more
diverse. Detailed results of the affinity analysis are provided in Table 5.6 and
Table 5.7. As it can be seen, 11 rules for each classification class (healthy and
pathological) were created. Rule names mapping with questionnaire questions
(see Table 3.2) are done like this (marker name - question number): Gender -
1, U - 4, C - 6, Y - 7, MFT - 8, VAS - 9, H - 11, D - 15, W - 16, R - 18, S - 19,
X - 20, L - 21, G0 - 22-25.

One of the benefits of affinity analysis performed in this work, is that it
highlighted 17 most important questions from our questionnaire. This indicates
that some questions provide very little useful information and can be elimi-
nated. According to the results, the most useful parameter is GFI, which is a
combination of questions 22 to 25. If the answer to any of these questions is
"no problem", the patient does not smoke, and voice handicap progression is
marked as 2, it is an indicator that a patient is healthy. On the other hand,
any non-zero answer to GFI questions and short duration of MFT is a strong
indicator of pathology.

5.5.1. Variable importance

As mentioned before, association rules helped to determine the most im-
portant variables from our data sets. Variable importance values were deter-
mined from RF and they are shown in Figure 5.9 for query data, and Figure
5.10 for voice data. As it can be seen in Figure 5.9, 10 out of 26 (38.5%) of
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Table 5.6 Association rules (healthy subject) used in this study and extracted in [151]
from the same query database as in this study

# Antecedent of the rule Support Confidence Lift

1 H=2, G0=1, Gender = F 0.302 0.928 1.691
2 H=2, G0=1, Y=0, L=3 0.292 0.926 1.687
3 H=2, G0=1, C=0, Y=0, L=3 0.289 0.925 1.685
4 H=2, G0=1, C=0, L=3 0.297 0.922 1.680
5 H=2, G0=1, Y=0 0.341 0.919 1.674
6 H=2, G0=1, C=0, Y=0 0.337 0.918 1.673
7 H=2, G0=1, C=0 0.351 0.917 1.671
8 H=2, G0=1, Y=0, U=7 0.285 0.909 1.657
9 H=2, G0=1, C=0, Y=0, U=7 0.284 0.909 1.656
10 H=2, G0=1, L=3 0.381 0.908 1.655
11 H=2, G0=1, C=0, U=7 0.294 0.907 1.653

the query variables can increase RF accuracy by more than 1%: questions # 2,
9, 10, 15, 16, 18, 20, 22, 25 and 26. The results that are shown in Figure 5.10
indicates that 61.5% (16 out of 26) of low-level descriptors (LLDs) can increase
RF accuracy by more than 1%: MFCCs, LSP frequencies, pitch, pitch envelope,
ZCR, probability of voicing loudness.

From the query data set the most important questions for RF are based on
subjective self-assessment: experienced discomfort due to voice disorder (#15),
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Table 5.7 Association rules (pathological subject) used in this study and extracted in
[151] from the same query database as in this study

# Antecedent of the rule Support Confidence Lift

1 MFT=[2,12], G0=0 0.168 1 2.216
2 R=(60,100] 0.191 0.983 2.177
3 MFT=[2,12], C=0 0.164 0.980 2.171
4 MFT=[2,12] 0.267 0.975 2.161
5 D=(65,100] 0.190 0.974 2.158
6 MFT=[2,12], U=7 0.211 0.969 2.147
7 X=(73,100] 0.191 0.966 2.141
8 VAS=(63,100] 0.210 0.947 2.098
9 VAS=(63,100], U=7 0.169 0.944 2.091
10 S=(75.8, 100] 0.185 0.940 2.083
11 W=(60,100] 0.188 0.933 2.068
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Figure 5.9 RF permutation-based variable importance for the query data

voice function quality on visual analogue scale (#9) and strength of reduced
voice effect (#18). With respect to the voice data set, the most important
audio features for RF are MFCCs.

When comparing discriminatory information in LLD (original) with its
delta (velocity) for cases when increase of accuracy is higher than 1%, in 9
cases LLD and in 7 cases delta is more important. Original information is more
discriminatory in first 2 MFCCs, LSP frequencies, probability of voicing and
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Figure 5.10 RF permutation-based variable importance for the voice data

loudness. The velocity information is more discriminatory in higher MFCCs,
pitch, pitch envelope and ZCR.

5.6. Exploring data and decisions

To visualize data in a 2D map, a similarity/proximity matrix was created
by averaging and collecting data similarity values, calculated using equations
4.43 and 4.44. As a mapper for 2D space, t-SNE algorithm was used, with a
perplexity parameter set to 50, which was chosen empirically. The algorithm
converged after 320 iterations. Resulting visualization from t-SNE algorithm
is shown in Figure 5.11, where ‘triangles’ represent healthy cases and ‘squares’
represent pathological ones. For tracking purposes, two cases were selected from
the ‘healthy’ class, which are marked as light-filled and dark-filled circles.

2D map created by t-SNE algorithm eases selection and more detailed
comparison of different cases. As is seen in Figure 5.11, a map enables the
detection of misclassified, incorrectly labelled data, or data mapped very closely,
but coming from different classes. One example of such case is represented by
light-filled circle in Figure 5.11. This observation was assigned to ‘healthy’ class
by classifier, but was mapped to area, mostly occupied by observations from
‘pathological’ class. Observations like this are candidates for deeper analysis.

Figure 5.12 represents the proximity matrix mapped to a 2D space by
a t-SNE algorithm, which was created by meta RF using voice database. All
three voice recordings of each patient were used. It is expected that all three
recordings would be close to each other in the 2D map, however, in Figure 5.12
it can be seen that it is not always true. All three recordings of four subjects
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Figure 5.11 2D visualization of proximity matrix by the t-SNE algorithm (Voice and
query data fusion)

are shown in distinct color and are encircled to visualize that. Most likely this
is caused by the fact that meta RF operates with posteriori probabilities, so
pairwise similarities between observations are not utilized directly.

To study classification confidence, we also created a 2D map of generalized
proximity matrix, where we labelled data with a predicted class (Figure 5.13).
The size of the marker indicates confidence in decision - larger marker means
higher (pmax1 > 0.97) confidence and smaller marker means lower (pmax1 <
0.65) confidence. By comparing Figures 5.13 and 5.14, classification errors in
the upper left part of the map can be easily indicated. It is worth noting that
sometimes even erroneous decisions can be made with high confidence.

In cases where deeper analysis is required, class-conditional probability
density functions of audio and query parameters are a great help. Examples of
such functions, estimated using the Epanechnikov kernel smoothing are provided
in Figure 5.15 and Figure 5.16. As it can be seen from probability density
functions, dark-filled circle from Figure 5.11 represents a correctly classified
‘healthy’ subject.
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Figure 5.12 The proximity matrix created by meta RF from voice data set and
mapped to a 2D space
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Figure 5.13 The generalized proximity matrix mapped to 2D space. The size of the
marker reflects prediction confidence (larger marker - higher confidence). Black circles
indicate predictions of low confidence and green circles - predictions of high confidence.

84



−50 0 50
−80

−60

−40

−20

0

20

40

60

1st  t−SNE  coordinate

2n
d 

 t−
S

N
E

  c
oo

rd
in

at
e

Figure 5.14 The generalized proximity matrix mapped to 2D space where marker
color indicates healthy or pathological class
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Figure 5.15 Probability density functions of various audio parameters for healthy
(blue) and pathological (red) cases, estimated using the Epanechnikov kernel smoothing
method. Dashed line and numbers in parenthesis correspond to an exact parameter
value for a selected subject.
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Figure 5.16 Probability density functions of various query data parameters for healthy
(blue) and pathological (red) cases, estimated using the Epanechnikov kernel smoothing
method. Dashed line and numbers in parenthesis correspond to an exact parameter
value for a selected subject.
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5.7. Threats to Validity

The experiments in this research were carried out in order to evaluate the
capabilities of proposed techniques to solve the problems they were developed
for. Threats to validity of the research must be assessed to determine validity
threats and potential risks of the design and execution of proposed methods.
Validity threats in this research were evaluated by separating them into several
classes, as suggested in [15]. Assessment is presented in the Tables 5.8, 5.9, 5.10.

Table 5.8 Construct Validity Threats

Threat Management

Improperly
chosen
evaluation
measures

Performance and efficiency evaluation was not in the scope of
this research. The selection of metrics was based directly on the
problem the solution is designed to solve.

Poorly chosen
effectiveness
measures

To evaluate classification accuracy of each method used the out-
of-bag (OOB) error was calculated. How good classification algo-
rithm performs was also evaluated by calculating DET and ROC
curves. Those provided False alarm probability versus Miss prob-
ability (DET) and Specificity versus Sensitivity (ROC).

Bugs in
implementation

The solution was developed by a person with proper experience,
separate parts of the solution were used and tested in other ex-
periments, therefore risk of bugs in implementation is minimal.

Table 5.9 Internal Validity Threats

Threat Management

Poor parameter
settings

The experiment was described in detail with all parameter values
provided, which increases the reproducibility.

Lack of
discussion on
instrumentation

The implementation was described and source code of the solution
with audio recordings was provided in the DVD.

Lack of clear of
data collection
tools and
procedures

Procedure of data collection was described in detail with data
samples provided in the appendix. Collected data covered as
many real-life cases as possible.

Instrumentation Microphone for audio recording was selected by evaluating results
of other researchers, so that device with high frequency sensitivity
was selected, to capture all possible audio data.
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Table 5.10 External Validity Threats

Threat Management

Selection biases Data for the experiments was selected to cover as many scenarios
as possible. Data was collected from patients of different age, sex
and voice pathology (including healthy).

Non-comparable
experiment

The proposed techniques were described in detail; therefore ex-
periments can be done to compare the approach with other re-
search. Data used in this research is available only by directly
contacting the source, however other publicly available data can
be used for the experiments.

Multiple-
treatment
interference

There were 3 recordings done for each patient, which might raise
concern that process of previous recording might influence the
quality of the following one. However, patients were given a de-
cent amount of time to rest their voices before proceeding.

Lack of
evaluations for
instances of
growing size and
complexity

Data for this research was provided by the Department of Oto-
laryngology from Lithuanian University of Health Sciences. It
contained multiple data sets with a wide variety of properties.
However, scalability evaluation was not the focus of this research.
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5.8. Ease of use

The developed software was evaluated by otolaryngology specialists, who
were using and testing it in their everyday work. Special forms, containing 7
evaluation questions from ISO-9241 standard, were printed and provided for
our users to evaluate the software. Computer program was evaluated by three
otolaryngology specialists, because the specificity of our tool limits the number
of proper users. Collected paper forms were analyzed, and final evaluation
according to the aforementioned ISO-9241 standard part 11 was obtained by
generalization of this data. Combined evaluation is provided in Table 5.11.

Because of the specificity of the analyzed area, the software is very pecu-
liar and did not obtain the highest scores. All of the users who were testing
and evaluating the software, marked suitability for the task, self-descriptiveness,
controllability and conformity with user expectations very high. This means that
our created computer software is easy to use, requires no additional training,
and all program functionality performs as is expected. The best possible evalua-
tion of conformity with user expectations is probably the most important rating,
which shows that program usability is very high. Error tolerance has received
a bit lower evaluation, but not because it was not working well - some error ex-
planations were mentioned as "somewhat unclear". However, the assessment of
the error tolerance does not have a significant influence on the overall evaluation
of the software usability.

Suitability for individualization and suitability for learning were evaluated
worse than other items. However, it was expected, because there is no individ-
ualization, and no help file or online resource is available. It seems that in this
kind of work, software individualization is not necessary and self-descriptiveness
compensates the need for help.

Despite lower evaluation of a couple of criteria, the overall rating of soft-
ware is quite high. None of the items were evaluated as wrong, invalid, incorrect
or unfinished, so the software can be named as suitable for the task it was made
for.
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Table 5.11 Software evaluation by 7 principles of the ISO 9241 standard part 11.
General evaluation from filled out forms.

ISO-9241 principle Evaluation

Suitability for the task Software has all the features necessary to
achieve the task effectively and efficiently.

Self-descriptiveness All functions are understood in an intuitive way
and no additional usage information is neces-
sary.

Controllability Software is implemented in the way that a user
can do only one task at a time, and steps order
is controlled by disabling features that are not
available at the current moment.

Conformity with user expectations Software is designed with doctors as users in
mind, so UI is simple and easily understandable.

Error tolerance The software is equipped with an error reporting
system, which indicates usage faults and shows
error messages to the user. However, some of
the messages are not very clear for first-time
users.

Suitability for individualization Personal configuration is not allowed, however
UI is very minimal and does not require that.

Suitability for learning The software is suitable for learning. User in-
terface is self-descriptive, easy to use and re-
quires no help. Provided results are useful for
educational purposes, clinical decision-support
allows comfortable comparison of various sub-
jects. Unfortunately, there is no help file and
online resources to read about software func-
tionality.
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6. DISCUSSION

There are around 200,000 annual deaths worldwide only from larynx-
related cancer, and laryngeal disorders affect about 5-6% of human population.
Preventive health care techniques are required, which would be easily accessible
and would not require expensive medical equipment. Some studies show that
classification of voice data can achieve classification accuracy as high as 100%
[62, 121]. Query data analysis results are also promising, because they consis-
tently outperform voice data based detection [151]. In this research we analyze
voice and query data classification individually and in decision-level fusion.

Many researchers test different algorithms trying to improve voice data
classification accuracy. Depending on the algorithm, amount of voice record-
ings and features used, classification results differ significantly - from 72.53%
achieved by [8] up to 100% achieved by [62, 121]. We proposed a new data
dependent random forest based technique for combination and classification of
multiple data sets, which led to the achievement of 86.37% classification accu-
racy. This technique outperformed our other tested data-level and decision-level
fusion techniques with 1.6% - 3.19% of accuracy improvement, however did not
manage to achieve as high results as mentioned by some other researchers. Such
a difference in classification accuracy may occur due to many reasons, such
as differences between classification algorithms, features extracted and voice
recording databases. As seen in the related work analysis, many voice record-
ings databases used by other researchers are not well balanced (the number of
pathological and healthy patients differs several times), which might increase
average classification accuracy, while accuracy for separate classes can be much
lower. Our results are similar to the ones reported by [152, 120, 8], and prove
that non-invasive voice data can be successfully used for pathology detection
with relatively high accuracy.

Our findings also show that voice pathology detection can be successfully
performed using only query data. We introduced new association rules-based
classification algorithm, solely designed for query data, which achieved an EER
of only 11.11%. This algorithm outperforms many others reviewed in related
work analysis, however improvements are needed to achieve results as high as
96.48% achieved by [147]. This classification technique can be very helpful in
preventive health care, as no invasive or medical equipment is required, and
classification can be performed even remotely. Only a few attempts have been
made previously to use query data for voice pathology screening [159, 156, 155,
13, 158, 147, 84], verifying the validity of our study, as well as the limited
possibilities of our result comparison with the findings of different researchers.
Association rules extraction provided an additional benefit, by revealing the
17 most important questions from our used questionnaire, which allows us to
reduce the total number of questions by discarding non-important ones.

91



The voice and query data classification in decision-level fusion provided
the best classification results compared to classification of this data separately.
The achieved EER of 9.52% coincided with the findings of other researchers
[99, 151, 159] and justified the theory that voice and query data fusion can
improve classification accuracy. These results allowed us to make an assumption
that even better classification accuracy may be achieved. This motivates the
development of new techniques, so that doctors could be equipped with accurate
non-invasive tools for laryngeal disorder treatment.

Apart from the major findings, the acoustic and contact microphone com-
parison revealed that in a controlled noise environment, the acoustic microphone
should be used without any other consideration. These results are broadly con-
sistent with the findings of [104]. However, in noisy environments, the contact
microphone could be more beneficial, but additional research has to be done in
order to determine the noise level when it becomes superior to the acoustic one.

As an additional result of the work of this research, a computer program
utilizing all proposed and applied techniques was developed. It is now used
by otolaryngology specialists in their everyday work and helps them to achieve
decisions about patient diagnosis. As far as we know, currently there is no
alternative software with similar capabilities.

Future studies with a larger amount of learning data would be of interest.
The variety of subjects might allow the increase of classification accuracy or
reveal the problematic cases where additional experiments or new techniques
are required. Also, it would be useful to explore the decision-level fusion by
meta-learner using other combination techniques.
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7. CONCLUSIONS

1. The review of non-invasive techniques used for voice pathology detection
showed that many techniques exist for this task, however classification
accuracy remains an obstacle while trying to apply these techniques in
everyday work of medical specialists. This indicates that more research is
required to improve the accuracy of these techniques.

2. Proposed data dependent Random Forest based technique for combination
and classification of data from multiple data sets increased classification
accuracy by 1.6% - 3.19%, compared to other our tested techniques. The
maximum achieved accuracy of 86.37% indicates high potential of our
method, but further improvements are necessary for even higher accuracy
improvement.

3. The newly constructed algorithm from our extracted association rules
achieved Equal Error Rate of only 11.11% . This confirmed the finding
of related work analysis that successful voice pathology detection can be
performed using only query data which represents patient’s voice quality
and function evaluation.

4. Voice and query data classification by combination of meta-learner achieved
Equal Error Rate of only 9.52%. This was a 1.5% improvement, com-
pared to the best achieved result when classifying both types of data
separately. Base classifiers, Association rules and Decision tree, being
completely transparent, provide the required transparency and helps in
preventive health care and for learning purposes.

5. Dimensionality reduction by T-distributed stochastic neighbor embedding
allowed to visualize initial data and classifier decision in a single two-
dimensional image, which helps to analyze data and decisions. Statistical
representation of data by Probability Density Functions is useful for deeper
patient analysis and allows to indicate data deficiency, serves as a learning
material.
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A. APPENDIX 1. SAMPLES OF VOICE AND QUERY DATA

The samples of data used in this research are provided here. Voice record-
ings, smaller voice parameters data set and query data set were provided by the
Department of Otolaryngology from Lithuanian University of Health Sciences.
Audio features set containing 14 different parameters set was extracted during
this work. Data sets examples are visible in the tables of this section. Table
A.1 represents the smaller audio features data set, extracted using Dr. Speech
software. Table A.4 contains sample data of questionnaire answers. Due to the
number of questions, column names are abbreviations, which are explained be-
low the table. Tables A.2 and A.3 represents very small part of the bigger audio
features data set, which contains 14 subsets. Healthy class in this data set is
represented as 0, while pathological as 1. Because of the size of data vectors,
both these tables represent only a fraction of two subsets. Other data samples
are provided in the compact disk with the printed version of this work.

Table A.1 Sample of voice parameters data set obtained from the Department of
Otolaryngology in Lithuanian University of Health Sciences

ID F0 Jitter Shimmer NNE HNR SNR

A1478 184.32 0.17 1.23 -13.30 26.50 25.51
A1479 135.49 0.28 2.21 -5.84 23.84 22.03
A1480 294.11 0.17 2.56 -12.32 26.09 24.19
A1481 222.04 0.46 3.63 -6.65 19.76 17.33
A1482 209.31 0.20 2.14 -11.20 24.11 21.82
A1483 168.51 2.23 11.18 -2.18 11.88 11.11
A1484 123.18 0.37 4.39 -8.38 20.56 18.62
A1485 199.79 0.29 3.33 -6.88 20.79 20.37
A1486 212.15 1.24 6.13 -1.23 11.93 10.36
A1487 160.04 0.92 4.89 -0.64 13.75 12.69
A1488 221.84 0.20 1.16 -18.24 28.74 26.47
A1489 214.07 0.65 3.42 -8.86 20.29 17.61
A1490 161.54 0.53 2.07 -13.03 26.95 24.97
A1491 122.58 0.69 7.65 -5.90 11.73 10.72
A1492 146.69 0.69 6.75 -1.89 12.46 11.13
A1493 206.02 0.18 1.78 -17.54 27.99 27.03
A1494 180.03 0.11 0.96 -14.97 30.96 30.41
A1495 150.97 0.13 2.44 -12.32 22.85 20.00
A1496 236.64 0.17 1.41 -18.22 26.82 25.46
A1497 145.54 0.18 3.53 -2.38 18.38 17.13
A1498 236.20 0.27 1.80 -6.03 25.40 23.54
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Table A.2 Pitch and amplitude perturbation measures

Patient ID Class 24 values

1199 1 -0.42588087468409; 0.06295904442376; -0.32303881733636; -0.09946876700287; 0.75004554375730; -0.09095639953627; -0.14950021880513; (...)
1199 1 -0.45165462281808; 0.16204993069158; -0.67847076287199; -0.08305895374887; 1.38880502022426; -0.08266252003320; -0.09208425864879; (...)
1199 1 -0.43020400924416; -0.12970632825778; 0.32867946402321; -0.12970913558570; -0.50140231667013; -0.09490088047865; -0.17334666994302; (...)
1200 1 -0.67236024633712; -0.25183244510107; -0.35613000025748; -0.13771659498922; -0.84172321574243; -0.11685437401108; -0.29687110944609; (...)
1200 1 -0.65423436364500; -0.24727455159494; -0.40920742692198; -0.14181285387868; -0.74767178894007; -0.11631251609984; -0.29395264200610; (...)
1200 1 -0.66031372626529; -0.24985728281385; -0.31282339189441; -0.14065342910466; -0.86204370043884; -0.11654819932601; -0.29533629731144; (...)
1201 1 0.12853529078441; 0.13344637589262; -0.75473934009339; 0.00181012837375; 1.40882895577203; -0.02981411026518; 0.04287949694721; (...)
1201 1 0.27411287507322; 0.11260259734606; -0.67247039575851; -0.05392161034262; 1.25268364161567; -0.07065648806490; -0.14866078007015; (...)
1201 1 0.19177985467932; -0.08637415055892; -0.83974162678703; 0.11668146991554; 0.77304925747088; 0.05906141998845; 0.39356651454674; (...)
1202 0 -0.03682356083672; -0.13528272259397; -0.73766706491185; -0.08135573493329; 0.39939426862060; -0.08007791466683; -0.15084051187694; (...)
1202 0 0.04193197420634; -0.08156863847417; -0.08894620362835; -0.07195285378778; 0.02534183284374; -0.08831288879825; -0.19773104727753; (...)
1202 0 0.05694975441061; -0.13127940163870; 0.34254711888960; -0.10232465501476; -0.51847152842657; -0.08301244211684; -0.17570876666110; (...)

Table A.3 Frequency (0-5000 Hz)

Patient ID Class 100 values

1199 1 0.35123106070114; -0.19087691084707; 2.69169231353402; 0.26284184543908; -0.77239268279710; 0.92565296852507; 0.88686848529351; (...)
1199 1 -0.01857455931662; -0.24083635400203; 2.24318835296675; -0.40574179029635; -0.77548759027342; 0.52846454718026; -0.27002166304126; (...)
1199 1 -0.45554134797792; -0.32388879984949; 1.32320907678020; -0.09147010061406; -0.76427353415719; 0.21588596275694; 0.27138665520437; (...)
1200 1 -0.51954312219819; -0.26638605190933; 0.01966876723238; -0.68040550062549; -0.44858223995407; -0.60953224912423; -0.31011394050109; (...)
1200 1 -0.40113877811176; -0.28510750452270; 0.29401302534230; -0.66185400477567; -0.27445618357101; -0.57009886589454; -0.25923258633567; (...)
1200 1 -0.58223982265605; -0.30047533715509; 0.31552096978702; -0.69061331657024; -0.34631429833247; -0.60107469178241; -0.28950362564914; (...)
1201 1 -0.03284429731602; -0.28610439672784; -0.42106531997562; -0.44829897240903; 0.88980800973292; -0.47735136067947; -0.08894834160417; (...)
1201 1 -0.52091825966780; -0.23578697793296; -0.26564888291571; -0.37802769051723; 2.32385875102039; -0.36885160251058; 0.04760751835851; (...)
1201 1 -0.57048897953561; -0.22078065620133; -0.30762294775041; -0.18454028958153; 0.17541857632231; 0.47491037132857; 0.61269386991323; (...)
1202 0 -0.39201805946287; -0.31289367201102; -0.45078551501341; 1.05438768468396; 0.61609672288636; -0.49558609026390; -0.45554163365168; (...)
1202 0 -0.47681677982497; -0.30982311550434; -0.45422027522851; 1.23752907215856; 2.49322050714764; -0.46919558411282; 0.17526855238644; (...)
1202 0 -0.44743221189594; -0.23478911239912; -0.40287344374541; 0.01914528026729; 2.72508530773459; -0.42657693620150; -0.00527595945739; (...)
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Table A.4 Sample of query data set obtained from the Department of Otolaryngology in Lithuanian University of Health Sciences

ID G A D LVU SHD D/W S DUR C/D VA VH ST SG TS VD WV LOV VR RS VC GFI1 GFI2 GFI3 GFI4 GFI MFT

A1477 1 31 8 3 10 5 4 2 0 30 3 78 1 1 67 67 3 72 8 67 2 0 2 1 5 18
A1478 2 59 2 4 6 7 1 0 6 18 3 42 3 1 65 65 8 54 62 67 3 2 2 3 10 12
A1481 2 77 3 4 3 7 2 0 0 70 2 20 2 1 0 0 0 0 0 0 0 0 0 0 0 22
A1482 2 39 22 4 6 7 2 0 0 70 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 20
A1485 2 70 9 4 2 7 2 0 0 46 4 72 1 1 12 71 0 60 55 18 1 2 1 0 4 8
A1486 2 26 2 4 7 5 1 10 10 12 3 62 3 2 52 85 95 67 60 80 2 1 4 3 10 12
A1488 1 47 2 4 8 7 1 33 15 27 3 50 2 2 60 45 50 18 30 47 2 1 3 3 9 15
A1489 2 48 3 4 10 7 2 0 0 46 2 18 3 2 10 19 0 0 0 24 0 0 0 0 0 19
A1490 1 50 3 3 3 7 2 0 0 60 2 47 1 2 4 5 5 5 5 17 0 0 0 1 1 18
A1491 1 49 3 4 4 7 4 5 0 100 2 40 1 1 4 4 4 7 0 8 0 0 0 0 0 15
A1492 2 50 3 3 13 7 1 20 20 41 2 47 3 7 6 5 13 0 9 6 0 0 0 0 0 19
A1493 1 42 7 4 6 7 1 20 20 55 2 30 2 1 22 22 5 15 22 25 2 1 1 1 5 10
A1494 2 24 3 4 8 7 2 0 0 63 2 60 5 1 5 6 15 10 7 20 0 0 0 0 0 17
A1495 2 50 3 3 10 7 2 0 0 75 2 65 2 3 9 3 11 3 4 12 0 0 0 1 1 22
A1498 1 40 11 4 3 7 1 20 20 5 3 30 1 3 95 95 80 87 85 85 4 0 5 5 14 8
A1502 2 54 7 4 5 7 1 40 20 45 2 40 3 1 40 38 30 35 77 80 2 2 2 2 8 6
A1503 2 64 2 3 7 7 2 0 0 47 2 25 2 2 27 37 0 17 35 11 1 1 1 1 4 13
A1504 2 44 6 3 5 7 2 0 0 47 3 43 3 2 45 45 5 40 93 43 1 1 3 2 7 8
A1505 1 47 7 3 4 7 4 0 0 48 3 48 1 3 90 92 80 84 82 85 5 1 5 5 16 11
A1506 2 23 1 3 12 7 1 6 15 40 2 17 3 4 24 53 16 31 55 65 2 3 3 2 10 16
A1507 2 46 2 3 12 7 2 0 0 51 3 85 4 1 96 20 40 45 60 65 1 1 1 1 4 22
A1508 1 28 2 3 5 7 2 0 0 62 4 60 2 1 47 57 47 57 59 63 3 0 4 4 11 18
A1511 2 61 4 3 4 7 1 45 4 37 3 40 2 1 85 80 17 26 70 75 2 1 4 4 11 16
A1512 2 57 2 3 8 7 4 1 0 50 3 50 2 2 50 10 5 7 50 13 2 2 2 0 6 12

Table column name mapping to real names: ID - Patient ID, G - Gender, A - Age, D - Diagnose, LVU - Level of vocal usage, SHD - Speech (hours per day), D/W - Speech (days per
week), S - Smoking, DUR - Smoking duration in years, C/D - Cigarets per day, VA - Voice assessment index, VH - Voice handicap index, ST - Stress, SG - Singing, TS - Talk time in
smoke filled room, VD - Voice disorder, WV - Weak voice, LOV - Loss of voice, VR - Voice range, RS - Reduced singing, VC - Voice cracks, GFI1 - Speaking takes extra effort, GFI1 -
Throat discomfort or pain after voice usage, GFI3 - Voice weakens while talking, voice fatique, GFI4 - Voice cracks or sounds different, GFI - (GFI1 + GFI2 + GFI3 + GFI4), MFT -
Maximum phonation time.
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