
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 1, 2014

1Abstract—Visual programming languages provide a more
natural approach to specifying software/hardware systems with
complex behaviour such as robots. They are especially
important in education because they do not require formal
knowledge of programming language syntax and are attractive
to users. We present an analysis and comparison of two visual
programming environments, Lego NXT-G and Microsoft
Visual Programming Language, based on the cognitive and
usability requirements, evaluate their application in robotics-
based Computer Science education, identify main problems and
propose solutions for using visual programming languages in
the Internet-of-Things domain.

Index Terms—Electronic learning, graphical models,
programming environments, robot programming.

I. INTRODUCTION

Robotics is an exciting multi-disciplinary area that is
rapidly advancing into our everyday life. Current university
students will live in a digital society surrounded by industrial
and service robots at work, educational robots at schools,
medical and assistive care robots at hospitals, and
entertainment robots at home. The educational priorities
must shift towards teaching students how to manipulate all
digital devices (smart phones, tablet PCs, smart TVs, robots,
etc.) that surround them for their own needs. Robots can be
seen as multi-faceted tools with different roles in
engineering education as follows:
Robot as specialized computer with both computational
and mechanical facilities to perform physical movement-
oriented tasks [1];
Robot as a mobile smart thing: a mobile platform for
wireless sensors in the context of the Internet of Things
[2];

Manuscript received March 14, 2013; accepted July 2, 2013.
The work described in this paper has been carried out within the

framework the Operational Programme for the Development of Human
Resources 2007-2013 of Lithuania „Strengthening of capacities of
researchers and scientists" project  VP1-3.1-ŠMM-08-K-01-018 „Research
and development of Internet technologies and their infrastructure for smart
environments of things and services" (2012-2015), funded by the European
Social Fund (ESF).

Robot as Learning Object [3]: physical and reusable
unit of knowledge that can be used to teach the concepts
of programming, robot control and artificial intelligence;

This paper presents an analysis of educational visual
programming languages in the context of robotics-based
teaching, identifies main problems and proposes solutions
for improving visual languages and extending them to the
Internet-of-Things domain.

II. ANALYSIS OF VISUAL PROGRAMMING ENVIRONMENTS

Visual programming is a method to specify a program in a
two (or more) dimensional fashion [4], whereas in a textual
language a programmer writes and a compiler or interpreter
processes a program as a one-dimensional stream of
symbols. Visual programming language uses meaningful
graphic representation and manipulates visual information or
supports visual interaction [5] in the process of
programming. Visual elements based on imagery thinking
provide a more natural approach for specifying a program
than textual languages and the 2D representation is more
suitable for representing parallel behaviour of complex
systems consisting of multiple components such as robots.
Visual languages are especially important in education,
because their do not require formal knowledge of
programming language syntax, are visually appealing and
attractive to their users, and can be combined with additional
engagement-enhancing concepts such as gamification [6].

The Cognitive Dimensions introduced by Green and Petre
[7] provide a framework for assessment of a programming
system as follows: Closeness of mapping (closeness of
programming structures to problem domain), Consistency
(similar semantics are expressed in similar forms to allow
inference), Error-proneness (possibility of making mistakes
because of poor notational design), Hard mental operations
(thought processes required to formulate an expression made
difficult by the notation), Hidden Dependencies (important
relationships between entities are not visible), Progressive
evaluation (ability to execute the program partially, before
all of it is put together), Role-expressiveness (purpose and
role of each component is easily inferred), Secondary

Reflections on Using Robots and
Visual Programming Environments for

Project-Based Teaching
I. Plauska1, R. Lukas1, R. Damasevicius2

1Centre of Real Time Computer Systems, Kaunas University of Technology,
Studentu St. 50, LT-51368 Kaunas, Lithuania

2Department of Software Engineering, Kaunas University of Technology,
Studentu St. 50, LT-51368 Kaunas, Lithuania

robertas.damasevicius@ktu.lt

http://dx.doi.org/10.5755/j01.eee.20.1.6169

71



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 1, 2014

notation (extra information other than program syntax, that
conveys extra meaning beyond semantics), Visibility (ability
to view parts of a program simultaneously and easily).

Other comparison criteria have been formulated by
Howard [8]: Intended audience, Paradigm, Ease of use,
Visual representation, Reusability, Data structures and types,
Effective use of screen area, Effective use of colours, Clarity
of graphical symbols, Interactive capabilities.

Next we analyse a subset of visual languages used in
educational setting for teaching robot programming.

A. Microsoft Visual Programming Language
Microsoft Visual Programming Language (MVPL) is a

part of Microsoft Robotics Developer Studio (MRDS).
MVPL is a robotics-oriented data flow language that
generates code to execute robotics programs designed with
MRDS. In MRDS, every action is performed by a service, a
basic building blocks that controls a particular software or
hardware entity. Each service expresses an isolated
behaviour that is defined independently and can interact with
other services. MVPL provides 10 general-purpose building
blocks, called basic activities (Fig. 1(a)) and many various
application (or robot) specific blocks as well as blocks used
to simulate hardware, called services (Fig. 1(b)). Some
blocks have additional parameters that can be configured.

Fig. 1. Common VPL blocks.

The example program in Fig. 2 is written for the LEGO
NXT robot to use ultrasonic sensor for collision avoidance
while driving. The NxtUltrasonicSensor block sends
the sonar data every time it gets a reading. The If block
then activates one of three execution branches. The first
branch is activated when the robot is really close to an
obstacle; then, the Data block sends a defined rotation value
to the NxtDrive block, which controls the robots driving
motors. The robot is instructed to turn left 45 degrees. The
second branch is activated when the obstacle is in mid-range.
Two defined drive power values (0.3 left and 0.6 for right
wheel) are joined to a named list by the Join block and
sent to the NxtDrive block, forcing the robot to turn
moderately left. The last branch is active when there is no
obstacle detected, and the same drive power is applied to
both wheels, forcing the robot to go ahead. Different types
of control data can be sent to the same NxtDrive block.
This is achieved by configuring the data connection. The
NxtBrick block is not connected, but it is necessary in
order to configure the NXT robot.

MVPL is simple enough even for a novice user to get

started quickly, however, it has enough functionality to
construct complex programs. Large number of additional
services makes it possible to control many types of robots.
Modelling capabilities make it easy to experiment even
without having a real robot. However, the dataflow concept
can make it harder to move to the sequential languages (like
C++ or Java), which are de facto standard for programming.

Fig. 2. Example of VPL program.

B. Lego Mindstorms NXT
NXT-G is a visual programming language and

environment developed by Lego for Lego Mindstorms NXT
robotics kit. The language is aimed at children as well as
adults with no programming background. The language is
block-based: each physical Lego block contains hidden
digital implementation, and can be chained together to
perform a sequence of behaviours. Sensor blocks receive
inputs from outside world and send data to other blocks [9].

NXT-G blocks (Fig. 3) are of six categories: a) Common -
action Move and other commonly used blocks from other
groups; b) Action - general robot control actions such as
Motor control, Sound or Display; c) Sensor - blocks
that allow to control and get data from the sensors; d) Flow -
flow control blocks such as Wait or Loop; e) Data - blocks
that allow to define variables and perform mathematical or
logical operations with them; f) Advanced - additional action
blocks like File access. Each block can be additionally
configured using a simple Configuration menu (see Fig. 4).

Fig. 3. Lego blocks and sensor blocks.

Fig. 4. Configuration menu of Move block.

Figure 5 shows a program which implements the same
robot control algorithm using a supersonic sensor as in

72



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 1, 2014

Fig. 2 The main difference from MVPL is that all blocks in
the diagram are invoked sequentially and there are flow
control blocks such as Loop (similar to looping statement in
textual languages). The program in Fig. 5 has one infinite
Loop block which contains the remaining functionality.
Inside the Loop block, there is a Switch block, which can
be tied to a selected sensor (supersonic sensor in this
example), reads and compares the data from that sensor to a
defined value, selects one of two branches according to the
result. As the Switch block only allows one comparison,
two nested blocks are required in order to define three
branches similar to Fig. 2. The Move blocks control the
drive powers of two motors for steering the two-wheeled
robot.

Fig. 5. Example of NXT-G program.

As NXT-G is aimed specifically at programming the Lego
NXT robot, most of the blocks have a clearly defined
functionality which directly translates to concrete actions of
the robot which can be visually observed. This makes
programming straight-forward as compared to more abstract
MVPL, and more suited to novice users. The sequential
execution and flow control of NXT-G is closer to traditional
text programming languages than MVPL and could make it
easier to move to mainstream programming.

The disadvantage of NXT-G is its overtly iconographic
representation: NXT-G displays the numerical or logical
values of the blocks by icons or hides them altogether. To
see concrete values one has to click each block and open the
configuration window. While this might be more visually
appealing to intended users, it is harder to make sense of
larger programs with many defined values. Other
disadvantages are the representation of the FOR loop and
poor usability of some block icons.

C. Evaluation
The evaluation of MVPL and NXT-G is summarized in

Table I. Qualitative criteria are evaluated using the 4-level
measurement scale (none, weak, fair, strong).

III. VISUAL PROGRAMMING IN ROBOTICS PROJECTS

The use of visual programming languages was explored
during laboratory works of “Robot Programming
Technologies”, a course delivered at KTU Faculty of
Informatics to 4th year bachelor students.

The course was attended by 34 students. Course aims to
teach students of the basic principles of robot control and

robot programming. The main concepts to learn are state
(property of the robot), action/reaction (change of the state
of the robot due to external or internal factors), behaviour
(specific sequence of actions aimed to achieve a pre-set
objective), decision (ability to undertake a specific sequence
of actions from a set of alternatives), autonomity (ability to
function independently), communication (ability to
send/receive messages from external devices).

TABLE I. EVALUATION OF MVPL AND NXT-G LANGUAGES.
Criterion Lego NXT VPL

Intended audience Children, novice robot
programmers.

Novice programmers. Useful
for experienced programmers

in rapid prototyping.
Paradigm Sequential statements. Data flow.

Ease of use Fair. Fairly easy, intended for
novice programmers.

Weak. Requires
understanding of parallel
programming concepts.

Visual
representation

Rectangular blocks, with their
functionality and parameters

indicated by icons.

Rectangular blocks, with their
functionality and parameters

indicated mostly by text.

Reusability User can create reusable blocks
with a program inside them.

Reusable activity blocks can
have a program inside them.

Data structures and
types

Basic variables (no arrays) and
types (integer, Boolean).

Basic variables and arrays can
be created, many data types.

Effective use of
screen area

Weak. Blocks can only be stacked
horizontally and there are no
scrollbars, so larger programs

spread beyond the screen bounds

Fair. Most of screen area can
be used to build a program,

blocks can be freely arranged
and easily placed anywhere in

the programming window

Effective use of
colours

Fair. Colours are used to indicate
blocks belonging to the same

category.

Fair. Colours are used to
indicate blocks of similar or

close functionality.
Closeness of

mapping Strong. A robot specific language. Fair. A multi-purpose
language

Clarity of graphical
symbols

Weak. Heavy use of icons makes
it harder to immediately

understand function of used
blocks.

Fair. Symbols are simple and
easy to understand. Basic

functions of blocks are
indicated by text.

Closeness of
mapping

Strong. Most language blocks map
directly to concrete capabilities of

the NXT robot.

Fair. Many services map
directly to concrete

capabilities of different
robots, however, basic
activities are abstract.

Consistency Strong. Blocks from the same
group are used consistently

Weak. Similar services for
different robots can be used

very differently.

Error-proneness
Strong. The simplicity of the

language doesn’t allow for many
slips.

Fair. Mostly textual data and
parameters representation can

cause typos.

Hard mental
operations

Fair. Programing is mostly
straight forward; however, more

complex programs can be a
challenge.

Fair. Although there are more
abstract blocks, it can make

programing complex
operations easier.

Hidden
Dependencies

Strong. Dependencies in lower
levels are made obvious by icons

in the highest level.

Weak. The functionality and
inner dependencies of most of

the services is not
immediately obvious.

Progressive
evaluation

Fair. Created programs can be
encapsulated in special block and

reused later.

Fair. Created programs can be
encapsulated in special block

and reused later.

Role-expressiveness Strong. Roles of most of the
blocks are obvious.

Fair. Basic activities are
abstract. Many services
express concrete roles.

Secondary notation

Fair. Variables can be named;
much of extra information is

represented by icons. Comments
can be written in program window.

Fair. Expressed mostly in
text; however, this can make

complex programs more
understandable than in NXT-

G.

The robot hardware used during lab works included two
LEGO NXT robots with NXT Intelligent Brick, a brick-
shaped computer (32-bit ARM7, 256 KB flash memory,
64 KB RAM, and secondary 8-bit AVR with 4 KB flash
memory, 512 B RAM) with 100 × 64 pixel monochrome
LCD display and 4 buttons to navigate a user interface. The
Brick can control up to three motors and input from four
sensors (light, sound, ultrasonic, touch) via RJ12 cables. The
Brick also has built-in Bluetooth for transfer of programs
and data.

The Arduino 4WD Mobile Platform provides a 4 wheel
drive system with ATmega328 microcontroller board and 4

73



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 1, 2014

DC Motors. The platform can be connected to a computer
with a USB cable or powered using the AC-to-DC adapter or
battery. Control is implemented using the SSC-32 protocol.

The Lynxmotion 5LA Robotic Arm robotic arm has a
rotational base joint, a vertical shoulder joint, a vertical
elbow joint, a vertical wrist joint, a rotational wrist joint, and
a two-fingered end-effector (gripper). The base can rotate
360° horizontally, while other joints can rotate 180°
vertically. The grip can do holding and putting action. The
control is also implemented using the SSC-32 protocol.

The course takes a project-based approach to teaching
robotics. The approach involves giving students a robot to
assemble, adding sensors, and providing increasingly
complex challenges. Students are left to work on their lab
assignments in teams. Learning typically follows the
following scenario: 1) A group of students are presented
with a problem and learning materials required for solving it.
2) The students study learning materials and select/adopt
appropriate solutions under the guidance of the teacher. 3)
The students construct, model and deploy a robot to
empirically validate the solution. 4) The students present
their solution to other students and the teacher at workshop.

TABLE II. SUMMARY OF ROBOTICS PROJECTS.
Project topic Robot Language No. of

students
Line following 1 Lego Mindstorms NXT NXT-G 4
Line following 2 Lego Mindstorms NXT NXT-G 4

Obstacle evading using
ultrasonic sensor Lego Mindstorms NXT NXT-G 4

Sub-total (NXT-G) 12
Symbol drawing Arduino 4WD MVPL 3

Lawn mowing algorithm Arduino 4WD MVPL 4
Sub-total (MVPL) 7

Control of robotic arm 1 Lynxmotion 5LA Text-based 4

Control of robotic arm 2 Lynxmotion 5LA Text-based 4
Sub-total (Text-based) 8

For the final project of the course, the students had to
arrange into groups of at least three persons and complete a
project with a selected robot. The use of visual programming
language was not enforced but highly recommended; groups
could choose any language to program their robot. Projects
completed in the course are summarised in Table II. The
analysis of students’ choice of language for their projects
shows that 44 % of students have selected Lego NXT-G as
compared to 26 % of students that have selected MVPL, and
30 % of students – the text-based language (Arduino C).

IV. CONCLUSIONS

Three main problems of visual programming languages
were identified: scalability, readability and speed of input.

The scalability problem arises as with increasing program
size, visual languages become less usable and face the so-
called Deutsch Limit [10], which states that ‘you can’t have
more than 50 visual primitives on the screen at the same
time’. The solution of this problem requires more effective
methods of using screen area (e.g., automatic layout) and
going beyond the 2D representation to achieve more
effective representation of program’s structure without
introducing unnecessary over-complexity.

The readability problem arises due to inherent parallelism
in the robotics domain and complexity of input/output
relations between blocks which lead to difficulties in under-

standing a program. Many students found visual languages
harder to read and understand than textual ones, especially
for larger programs. However, this is not sufficient to
conclude that visual languages are inherently harder to read
than textual. The already formed habits of the students could
have made them biased. The problem can be addressed by
using colours and other graphical effects (e.g., animation)
more effectively beyond simple separation between groups
of blocks to represent different views of a program.

The speed of input for visual programming languages still
remains below that of textual languages using the keyboard,
which may be a reason why professional programmers prefer
text-based languages. The problem could be addressed by
introducing more design automation and raising the level of
abstraction above simple structures of structural
programming (such as loops) to the idiom or pattern level.

The graphical representation of building blocks in MVPL
and NXT-G is different. MVPL has minimalist design, with
plain blocks and textual configuration parameters. NTX-G is
colourful and represents almost all additional parameters by
icons. This presents problems for both: MVPL is less
visually appealing and friendly to novice users, while NXT-
G might be considered both too difficult to understand and
too childish to someone with programming experience. The
NXT-G programs proved to be very large in real projects.
Overall, students found programming with NXT-G more
cumbersome than with textual programming languages (all
students had previous programming experience).

Both MVPL and NXT-G examined in this paper lack
identification and interaction capabilities which are needed
to integrate a robot into the Internet of Things (IoT). They
are aimed at controlling a single robot from a computer. To
make these languages suitable for the IoT applications, other
services providing robot identification, data exchange,
interaction, and data sending to web services are needed.

REFERENCES

[1] B. Donald, J. Jennings, D. Rus, “Minimalism + Distribution =
Supermodularity”, Journal of Experimental & Theoretical Artificial
Intelligence, vol. 9, no. 2–3, pp. 293–321, 1997. [Online]. Available:
http://dx.doi.org/10.1080/095281397147130

[2] C. Turcu, C. Turcu, V. Gaitan, “Merging the Internet of Things and
Robotics”, Recent Researches in Circuits and Systems, pp. 499–504,
2012.

[3] R. Burbaite, R. Damasevicius, V. Stuikys, “Using Robots as Learning
Objects for Teaching Computer Science”, in Proc. of the 10th World
Conf. on Computers in Education (WCCE 2013), Torun, Poland,
2013, to be published.

[4] B. A. Myers, “Visual programming, programming by example, and
program visualization: a taxonomy”, in Proc. of the SIGCHI Conf. on
Human Factors in Computing Systems (CHI 86). ACM, New York,
NY, USA, 1986, pp. 59–66.

[5] E. J. Golin, “A method for the specification and parsing of visual
languages”, Ph.D. dissertation, Brown University, 1990.

[6] J. J. Lee, J. Hammer, “Gamification in Education: What, How, Why
Bother?”, Academic Exchange Quarterly, vol. 15, no. 2, 2011.

[7] T. Green, M. Petre, “Usability Analysis of Visual Programming
Environments: A Cognitive Dimensions Framework”, Visual
Languages and Computing 7, pp. 131–174, 1996. [Online].
Available: http://dx.doi.org/10.1006/jvlc.1996.0009

[8] E. V. Howard, “Visual Programming: Concepts and
Implementations”, M.S. thesis, Miami University, 1994.

[9] K. A. Nguyen, “A case study on the usability of NXT-G
programming language”, in Proc. of 23rd Conf. in Psychology of
Programming, 2011.

[10] A. Begel, LogoBlocks: A graphical programming language for
interacting with the world (AUP), MIT Media Lab, 1996.

74




