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1Abstract—This paper proposes and describes orientation
invariant surface classification system used for connectors
labelling. The presented system was tested by classifying sides
of 8 different electrical wire connectors for automated ink-jet
print labelling. Connectors were randomly placed on the
conveyor, and the system identified their visible sides regardless
of the orientation and camera’s viewpoint variation. All
connectors in one batch were of the same type. Identified wire
connector information was further fed to the industrial robot
arm, which then could take free oriented connector and face it
to the ink-jet printer on the required side. For classification
task, four different classifiers were experimentally compared:
Artificial Neural Network, Decision Tree, K Nearest
Neighbours, and Quadratic Discriminant Analysis. The first
order statistic and Scale-invariant feature transform were used
for feature extraction from the images. The approach proposed
allowed identification with 100º% accuracy depending on the
selected level of uncertainty. Experimental results have shown
that quantity of unrecognized samples for most connectors
varied only in the range of few percents.

Index Terms—Image classification, image matching, object
recognition, robot vision systems.

I. INTRODUCTION

Automatic industrial sorting systems are widely spread
and used for many classification tasks. Such systems are now
common in food processing [1], [2], surface defect detection
[3], [4], garbage recycling [5], letter sorting [6], etc. Many
of them are based on the object’s surface optical properties
but use a different kind of sensors such as CCD cameras,
spectroscopy [7], stereo vision, infrared light, and others.
Optical sensors can capture colour, shape, texture, and other
optical features; in many cases, it is a multiclass [8], [9]
identification problem. Optical properties depend on lighting
conditions; therefore, isolating objects from environment
and implementing artificial lighting sources may be one of
the most important key points of the system to work
properly. Such systems usually have strict requirements for
their performance. They should be able to process requested
number of objects fast enough and as accurate as possible.

In wiring industry, before assembling any type of
electrical wire connectors, they should be first marked
physically. For this task, a conveyor and ink-jet printer are
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used to label small batches of connectors. Each batch is
composed only of the same type of connectors. This process
has not been automated yet and performed manually.

It is impossible to use any orienting devices with
vibratory-bowl feeders, because the number of connectors in
each batch is small and each type of connector varies in size,
geometry, etc. The system with robot arm and computer
vision may be the solution for automation; connectors then
could be reoriented fast without human interaction. Such a
system should have the ability to identify the side and
orientation angle of the connector viewed by a video camera.
Then, a robot arm could undertake the pick-and-place task of
correct positioning of a connector for ink-jet printing. The
presented approach focuses on connector side identification.

To the best of our knowledge, there is no way to estimate
the level of uncertainty in classification precisely. The
performance of the classifier depends on data; if samples
from different classes correlate, misclassification errors may
occur. Although there are some attempts [10], [11] to
estimate uncertainly level but those solutions still do not
give 100 percent accuracy. Our approach proposed is based
on idea that some sides of connectors are easily classified
correctly by visual properties such as surface area or mean
of greyscale intensity values. For the rest sides, we used one
of the popular orientation and viewpoint invariant method -
Scale-invariant feature transform (SIFT) [12].

The paper contains five main sections. In the second
Section, theoretical background is overviewed. The third
Section gives more information about used data and the
experiments. Experimental results are presented in Section
IV. Finally, conclusions are given in Section V.

II. THEORETICAL BACKGROUND

The approach suggested (Fig. 1) is based on assumption
that some sides of connectors can be classified with zero
misclassification error (MCE) using just a few first order
statistical (FOS) features such as mean or standard deviation
calculated from greyscale intensity values. FOS features are
orientation invariant and fast to compute; however, they are
estimated on individual pixel values, ignoring the spatial
interaction between image pixels. Decision Tree (DT) was
chosen as a classifier, because experiments show that this
method was the fastest and still accurate enough.
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Fig. 1. The abstraction of proposed algorithm using pseudo code
fragments.

Visually some sides of the same connector are like
mirrored version of the same image or differ by tiny details
only; therefore, FOS features are not sufficient in
distinguishing these sides. In such cases, the advantage of
global spatial information obtained by SIFT method is
additionally applied for feature extraction.

For each connector, a subset of different features was
selected by SFS (Sequential Feature Selection) [13]
dimensionality reduction method. Fewer features still give
the same accuracy results, but the model is smaller and
classification is faster. The most useful FOS features in
experiments were surface area, mean, standard deviation,
harmonic mean, median, central moments, kurtosis,
skewness, mode, and percentiles extracted from the
greyscale images.

For the FOS features classification, four different
classifiers were compared: ANN (Artificial Neural
Network), DT (Decision Tree), KNN (K Nearest
Neighbours), and QDA (Quadratic Discriminant Analysis).
Accuracy of all the classifiers is around the same, but DT
shows the best performance. MCE is evaluated using
holdout method.

To make it easier to reproduce our result, the pseudo code
is given. The flow of the algorithm is shown in Fig. 1 and
functions are given bellow. vl_sift() and vl_ubcmatch() are
functions provided by VLFeat open source library for
Matlab. The first one extracts SIFT features and descriptors;
the second matches SIFT descriptors of two images. The
actual code was written in Matlab; therefore, pseudo code is
similar to Matlab syntax and has the same or similar function
names.

The initialization procedure starts all preparation needed
for calculations such as: defining necessary constants;

reducing data feature space; defining which classes should
be joined for the best DT performance; training or loading
DT; calculating orientations of each sample in the training
set; extracting SIFT features and descriptors for all training
set samples.
INITIALIZATION()
1 s = CONST // image closing size
2 t = CONST // edge detection threshold
3 p = CONST // SIFT peak threshold
4 e = CONST // SIFT edge threshold
5   th = CONST // Features matching threshold
6 vt = CONST // Voting threshold
7 vm = CONST // Minimal matches required
8 trainSet = loadTrainSetForSIFT()
9 featureTypes = {area, mean, mode, …}
10 reducedTypes = SFS(featureTypes)
11 j = {a b; …} // joined classes
12 DT = loadDecisionTree()
13 F = D = F1 = D1 = angles = {Ø}
14 for sample in trainSet
15 angles = angles U {orientation(sample)}
16 [F1,D1] = vl_sift(sample,p,e)
17 F = F U {F1} // SIFT features
18 D = D U {D1} // SIFT descriptors

In segmentation function, the image is converted to
greyscale and binary images. The image is segmented firstly
by detecting edges; secondly, closing edges
morphologically; and finally filing any holes in that segment.
Any other pixels outside the detected object are labelled as a
background and are replaced with white colour.
SEGMENTATION()
1 I = getFrame() // get image from video camera
2 G = 0.299I(R) + 0.587I(G) + 0.114I(B) // to greyscale
3 B = fillHoles(close(edges(G,t),s)) // find object
4 G(find(B == 0)) = 255 // background is white
5 return G, B // greyscale and binary images

Classification by DT is performed on the features
extracted by SFS. The result of classification by DT is a
class label, i.e., “1-front”, “2-bottom”, “3-left”, and etc.
Variable C represents a class as a result from the classifier. If
C belongs to joined classes list j defined in initialization
function, the result from DT is fed to SIFT method for a
validation.
CLASSIFICATION-BY-DT(G,B)
1 idx = G(find(B < 255)) // values of all object pixels
2   X = {Ø}
2 for featureType in reducedTypes // create a vector
3 X = X U {getFeature(featureType,idx)}
4 return classify X vector using DT

The last piece of pseudo code finds samples from training
set with similar angle but only in the case if C from DT
belongs to the list j. Quantity of matches is used for voting.
By using coarse Hough space [16], we find similar SIFT
features by orientation, scale, and location. Then, only
features from the largest bin of Hough space are selected.
This allows excluding many incorrect matches and is
essential in the solution proposed.
CLASSIFICATION-BY-SIFT(G,B,C)
1 o = orientation(B) // calculate orientation of object
2   d = f2 = d2 = {Ø}
3 for angle in angles // find distances to samples
4 d = d U {dist(o, angle)}
5 items = find(d < 45); // if item dist < 45
6 [f2,d2] = vl_sift(G,p,e)
7 classes = get subset from 'j' with C in it
8 for cl in classes // for each class
9 for it in items // for each item
10 [m,s] = vl_ubcmatch(D(cl,it),d2,th) // m – matches
11      f1 = F(cl,it)
12 indices = useCoarseHoughSpace(f1(m),f2(m))
13 R(class) = R(class) + count(indices) //sum matches
14 [Vmax Imax] = max(R) // value and index
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15 R(Imax) = 0
16 [Vmin Imin] = max(R) // second by size
17 if (Vmax/Vmin <= vt) || (Vmax+Vmin < vm)
18 return 0 // unrecognized class
19 else // uncertainty level is low
20 return Imax // index of class

III. DATA

The core idea of experimental setup is to train the system
and to use industrial robot arms in manufacturing process.
Two robot-arms (see Fig. 2) were used; however, it’s enough
to have one, because the second robot can be easily replaced
by a simple drive in training phase. By using robots, we had
advantages such as automatic sample labelling, fast database
preparation, and the ability to gather a decent number of
variations for any connector type. This setup provides the
ability to prepare the system for a new connector type
extremely fast.

a)                                                                b)
Fig. 2. (a) Experimental setup: 1 – first articulated robot, 2 – video
camera, 3 – spiral trajectory of camera, 4 – plate, 5 – connector for
training; 6 – circular movement of plate, 7 – second robot; (b) A few
examples of the back side of one type connector.

The first robot follows a spiral scanning path and the
second one rotates a plate with a connector on it. The data
acquiring algorithm runs 3 minutes at 10 fps frame rate.
After excluding repetitive samples, we got around 1500
unique images per each side of every connector. Connectors
have 4 to 6 sides; therefore, a database for each connector
has 6000 to 9000 samples.

Eight connector types were chosen for experiments (Fig.
3). They differ by shape, number of sides, size, colour, and
texture. During training, arms of both robots move along the
pre-defined path until a significant number of variations are
acquired.

Fig. 3. Connector types used in experiments; back sides are shown.

The white background of each acquired image had some
gradient noise which was removed using edge detection and
morphological operations. Then each non-white segment in

images was recognized as an area with a connector.

IV. EXPERIMENTS

A. Classification Using First Order Statistical Features
Training sets for each connector contain 20 percent of

random picked samples and the rest 80 percent is used to
calculate MCE. This 20/80 ratio threshold for holdout
method was found empirically by comparing accuracies for
all connectors. Table I provides the number of sides for each
connector and number of features selected up by the SFS
method.

TABLE I. NUMBER OF SIDES AND FEATURES FOR EACH
CONNECTOR.

C1 C2 C3 C4 C5 C6 C7 C8
Sides 6 5 4 6 6 6 5 4

Features 3 7 3 5 2 6 5 5

Four classifiers were compared by their MCE and
performance (Table II). Results show that all the classifiers
give around the same accuracies, but the fastest classifier
(DT) was chosen for further experiments. On average the
one image computation times are: QDA – 0.0069 s, KNN –
0.0215 s, ANN – 0.0221 s, and DT – 0.0046 s. The overall
performance for a connector mostly depends on connector’s
size and number of features extracted; it’s enough to use 2 to
7 features to get high enough accuracy. All experiments
were performed on an Intel Pentium 4 3 GHz processor with
2 GB RAM.

TABLE II. CLASSIFIER COMPARISON BY MCE.
Connector QDA, % KNN, % ANN, % DT, %

C1 0.01 0.15 0.00 0.07
C2 2.82 1.90 3.08 4.87
C3 0.00 0.00 0.00 0.00
C4 1.38 0.13 0.26 1.11
C5 0.08 0.00 0.00 0.29
C6 6.46 1.42 2.69 2.39
C7 2.55 1.32 1.03 1.40
C8 13.67 12.04 10.63 12.44

Whatever classifier was used, some sides had zero MCE.
The remaining of the sides had some misclassified cases but
with a strict pattern (Table III). For example, front and back
sides of C1 connector are very similar as well as their left
and right sides; therefore, FOS features are not enough to
distinguish them. Other sides for this connector are well
identified using only a few FOS features by any classifier.

TABLE III. EASY AND HARD SIDES FOR RECOGNITION.
Connector Classes without errors Misclassified classes

C1 top; bottom front/back; left/right
C2 left; top; bottom front/back
C3 front; back; top; bottom -
C4 front; back; top; bottom left/right
C5 front; back; left; right top/bottom
C6 top; bottom front/back/left/right
C7 right; top; bottom front/back
C8 - front/back; top/bottom

B. Classification by SIFT
Figure 4 shows a relation used for voting. Orientation is

expressed as an angle between 0 and 90 degrees. It is
measured between the x-axis and the major axis of the

11



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

ellipse that has the same second-moments as the region. All
training and testing data have been used for the charts.

Fig. 4. Two samples of the first connector type were picked, one as a front
side example and another as a back side example. Each sample was
matched by SIFT features to all samples of the same side (front to front;
back to back) and to all samples of very similar another side (front o back;
back to front). The quantity of matches for each pair was computed.

As it is seen from Fig. 4, if the number of matches is
computed on pair of images from the same class, the number
of matching points is much bigger comparing to number of
matches obtained for the images from different classes. As
well as it is obvious to note that the smaller angle of
displacement is present between pair of images, the bigger
number of matches could be found within the same class
data pairs. This relation is valid for all connectors used in
experiments; we use it for voting in classification. SIFT may
be more sensitive to viewpoint changes than to orientation
changes, and number of matches may be lower if the
viewpoint is significantly different.

Sometimes the proposed system gets into a confusing
situation by counting equal numbers of matched features for
different classes of connectors. In order to reduce MCE the
minimal threshold of matched features is used.

So, it is possible to use the matches’ ratio threshold and if
the ratio is low, the image is left unrecognized. A high ratio
means high reliability, while a low ratio means uncertainty
or even misclassification. But it is better to leave the image
unrecognized than to identify it incorrectly. Table IV shows
connector recognition results obtained with the applied
thresholding technique. For all connectors the MCE is equal
to zero but because of the applied threshold some acquired
images are left unrecognized.

TABLE IV. FINAL ACCURACY RESULTS.
Connector Threshold Unrecognized Correct MCE, %

C1 1.2 116 8884 0
C2 1.3 88 7412 0
C3 - - 6000 0
C4 1.7 1248 7752 0
C5 1.1 0 9000 0
C6 1.3 394 8606 0
C7 1.4 428 7072 0
C8 1.3 1790 4210 0

V. CONCLUSIONS

A novel approach for electrical wire connector sides’
classification with uncertainty level estimation is introduced.
The uncertainty level estimation proposed allows identifying
connector sides with 100 % accuracy, even if they have very
similar visual appearance. The proposed system is designed
for robot-arm pick and place autonomous operation. The

first order statistical features were extracted by SFS method
from gray scale images captured by the video camera. Four
different classifiers were experimentally compared for
connectors’ data analysis: ANN, DT, KNN, and QDA. The
decision tree classifier has shown the best performance.

In order to reduce the MCE, the thresholding technique
were introduces on matched points found by SIFT method.
Experimental investigation have shown that the number of
unrecognized samples slightly increased but overall system
performance has lead to zero misclassification error.

In the presented work we have also shown that the
samples of connectors’ narrow sides have a high
unrecognising rate, but this result is not critical in real
application, because the connector most likely will land on
the bigger flat side in front of the camera as well as the
acquired instance will be rejected if the quantity of matches
will be lower than the predefined threshold.
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