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Abstract—Despite advances in low power system design, 

short battery life remains a significant user concern. Effective 

management of energy resources available on a mobile device 

requires understanding of the principles of battery behaviour. 

We propose a time-delay model of a battery, which depends 

upon three non-linear processes: rate-capacity effect, recovery 

effect and software scheduling effect. We provide an analysis of 

the power consumption results using 3DMark’06 chipset 

benchmarks and demonstrate that a moderate-to-strong 

correlation between power consumption vs. CPU load, memory 

allocation and memory release is observed. Finally, we apply 

our model for chipset energy efficiency profiling and propose a 

power benchmark metric.  

 
Index Terms—Energy consumption modelling, battery 

behaviour, time-delay model, power benchmarking.  

I. INTRODUCTION 

Short battery life was, and still remains, a significant 
concern for mobile device users. There is a big gap between 
the energy resources needed by the mobile device and the 
energy available from the battery; therefore, the average 
battery life of actively used mobile devices is usually less 
than two days [1]. Another matter of concern is the ability to 
predict battery life using available information on the 
application usage habits, the device’s modes of operation 
and power management schemes so that the user could 
decide how to use the remaining battery time most 
effectively. Such prediction is only possible when the 
behaviour of the battery can be modelled accurately taking 
all internal (electro-chemical) and external (CPU load, 
memory usage, display rendering, etc.) factors that influence 
the State of Charge (SoC) of the battery into account. 

The most important factors influencing its lifetime are the 
battery’s capacity and the battery’s discharge rate. This rate 
is influenced by three non-linear processes, two of which are 
determined by the electrochemical properties of the battery. 
The rate-capacity effect is observed when a battery is 
discharged continuously; a high discharge current causes a 
battery to provide less energy until the end of its lifetime as 
compared to a lower discharge current [2]. The recovery 

effect causes the battery capacity to recover to a certain
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extent during periods of low or no discharge. A third non-
linear process that has influence on the state of the battery is 
software scheduling schemes introduced at application [3] or 
operating system level, which control, e.g., CPU rate and 
energy consumption level of peripheral devices that are 
considered non-essential for some applications such as 
display brightness. The result of these effects is the 
dependency of the battery lifetime upon battery discharge 
distribution over time [4], which in turn depends upon user 
behaviour and usage patterns. Furthermore, the peak power 
usage can sometimes be a more important factor in 
determining battery capacity than average power usage [2]. 
Finally, the effective capacity of a battery depends on the 
rate at which it is discharged, because the electrochemical 
actions in the batter take a finite time to complete and they 
cannot follow the battery load instantaneously. 

To investigate the influence of the device workload on the 
battery lifetime, a battery model is needed that includes the 
above described effects. In electrical engineering, electrical 
circuit models [5], [6], and electro-chemical models [7] are 
used. Also high-level analytic and stochastic battery models 
[4] are available. We treat the battery, CPU and memory 
data gathered during the execution of the computer 
benchmarking tests as complex time series. An accurate 
identification of the dynamics underlying complex time 
series, is of crucial importance in understanding the 
corresponding physical process, and in turn affects the 
subsequent model development [8]. 

We propose to use time-delay models to study the 
relationships between CPU load, physical memory usage 
(allocation, release) and battery charge levels. Time-delay 
models have been used previously to explain many natural, 
biological and social processes such as pray-predator 
systems [9], precipitation patterns [10], business cycles [11].  

II. TIME-DELAY MODEL OF BATTERY’S STATE OF CHARGE 

(SOC) 

The nonlinear battery system can be modelled by a state 
equation and an output equation [6]: 
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where x is the system state, u is the system’s input, w is the 
unmeasured process noise that affects the system’s state, y  

is the output of the system, v  is the measurement noise, and 
k  is the discrete time index of the time series. 

The state of the battery can be described by the following 
time delay differential equation [12] 

 ( ) ( ( ), ( ))x t f x t x t τ= −ɺ , (2) 

where τ  is the process lag. 
In constructing the battery behaviour model, we use the 

following assumptions: 
1) The state of a battery is determined by two factors: 
CPU load and physical memory usage. 
2) Due to slow electrochemical process, the change of 
the battery charge level lags behind the changes in CPU 
usage, memory allocate and release events.  

We formulate our time-delay model of the battery’s state 
of charge (SoC) as follows 

 ( ) ( ( ), ( ), ( ), ( ), ( ))
c l a a r r

c t f c t c t l t m t m tτ τ τ τ= − − − −ɺ , (3) 

where ( )c t  is the battery’s SoC, ( )l t  is the CPU load 

process, ( )
a

m t  is the physical memory access process, 

( )
r

m t  is the physical memory release process, 
c

τ  is the lag 

of the battery discharge process, 
l

τ  is the lag of the CPU 

load process, 
a

τ  is the lag of the memory access process, 

and 
r

τ  is the lag of the memory release process.  

Battery discharge is a continuous process while the events 
that draw power (CPU calls, memory access and release 
events) are discrete, and the dependent variable (measured 
battery charge level) is also discrete. Moreover, the value of 
CPU load is instantaneous, while the number of memory 
accesses is only known over a time span. To represent these 
values as the continuous ones, some smoothing is required. 

Let 
t

l  be the CPU load value (in percents) in time t . Let 

t
m  be the amount of used physical memory in time t . Let 

t
c  be the battery charge value (in percents) in time t . Let 
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=∑ be the smoothing 

function (we use moving average, MVA) of the time 
series

t
x X∈ , and w  is the length of a smoothing window. 

Averaged CPU load over window 
l

w  is 0( ) ( , , )
s t l

l t f l t w= . 

Averaged physical memory access over window 
a

w  is 

0( ) ( , , )
a s a a

m t f m t w= . Averaged physical memory release 

over window 
r

w  is 0( ) ( , , )
r s r r

m t f m t w= . Averaged battery 

charge value over window 
c

w  is 0( ) ( , , )
s t c

c t f c t w= . 

To analyse the model, we formulate the following 
hypotheses:  

B. Hypothesis H1 

There is no time-delay relationship between the battery 
charge level and CPU load. 

Let ( ) ( ( ))c t g l tτ+ ∼  be a hypothetical functional 

relationship between ( )c t and ( )l t , where τ  is the lag value. 

Pearson correlation of ( )c t  and ( )l t  is 

,
max ( ( ), ( )), ,c l c l

c t l tw wρ ρ ττ= + , where 
c

w  and 
l

w  are 

smoothing parameters of ( )c t  and ( )l t . 

C. Hypothesis H2 

There is no time-delay relationship between the battery 
charge level and memory access events. 

Let ( ) ( ( ))
a

c t g m tτ+ ∼  be a hypothetical functional 

relationship between ( )c t  and ( )
a

m t . Pearson correlation of 

( )c t  and ( )
a

m t  is ,
max ( ( ), ( )), ,ac m a

c a

c t m tw wρ ρ ττ= + , where 

c
w  and 

a
w  are smoothing parameters of ( )c t  and ( )

a
m t . 

D. Hypothesis H3 

There is no time-delay relationship between the battery 
charge level and memory release events. 

Let ( ) ( ( ))
r

c t g m tτ+ ∼  be a hypothetical functional 

relationship between ( )c t  and ( )
r

m t . Pearson correlation of 

( )c t  and ( )
r

m t  is ,
max ( ( ), ( )), ,rc m r

c r

c t m tw wρ ρ ττ= + , where 

c
w  and 

a
w  are smoothing parameters of ( )c t  and ( )

r
m t . 

III. APPLICATION OF THE TIME-DELAY MODEL FOR POWER 

BENCHMARKING 

Energy efficiency is a critical design factor on a battery-
powered mobile device. Typically, computer  benchmarks 
are used to evaluate the performance of a computer by 
performing  a  strictly  defined  set  of operations  and  
returning  some  numerical result (a metric) describing how 
well the tested computer performed. Running the same 
benchmark test on multiple computers allows the computers 
to be compared with respect to their performance.  

To evaluate energy efficiency of a device, power 
benchmarks [13] are used. Known examples of such 
benchmarks include SPECpower ssj2008 [14] benchmark 
for measuring the performance and energy consumption of a 
system running Java-based workloads, TPC-Energy [15] 
metric and its extensions such as the dynamic weighted 
energy-efficiency benchmark (DWEE) [16]. 

Here we propose a power benchmarking metric based on 
the time-delay model of the battery’s SoC as follows (the 
smaller value of the metric is the better one) 
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where 
start

t  is start time of benchmark run,
end

t is time at the 

end of benchmark run, t∆ is sampling period,
perf

s is the value 

of the benchmark performance score, and 
c

s is a scaling 

constant introduced for usability purposes and is equal to 

1000 , if ( )c t is evaluated in percents. 

IV. CASE STUDY AND EXPERIMENTAL RESULTS 

We use the Futuremark® 3DMark®06 version 1.2.0 
benchmark, which provides tests for testing the DirectX 9 
gaming performance of Windows PCs and devices, graphics, 
CPU and GPU feature tests. We registered battery charge 
level, CPU load and free physical memory every 1 s starting 
from the fully charged battery. The experiments were 
performed on Hewlett-Packard F.23 laptop PC running 
Windows 7 Ultimate 32 bit OS on Intel® Core Duo T2250 
1.73 GHz CPU, 4GB DDR2 RAM 265.4 MHz, Mobile 
Intel® 945 Express Chipset, i945GM 400 MHz GPU with 
8MB internal DDR2 memory. We used the measurement 
methodology already described in [3]. The results of 
measurements are presented in Figs. 1-3. Fig.1 shows the 
battery charge level, Fig. 2 shows CPU load and Fig. 3 
shows the free physical memory in a computer registered 
during 9 consecutive runs of the standard 3DMark®06 test. 

 
Fig. 1.  Battery charge level during a standard 3DMark®06 test. 

 
Fig. 2.  CPU load during a standard 3DMark®06 test.  

The time-delay model of the battery’s SoC is evaluated in 
Fig. 4-6. Fig. 4 shows the relationship of lagged (lag = 340 
s) MVA (window length is 60 s) of the CPU load value vs. 
MVA (window length is 150 s) of power consumption. The 

lag value corresponds to the largest value of the Pearson 
correlation (see Table I). The battery has two distinct states: 
1) high-load (CPU load > 70%), mean MVA of consumed 
power is 1.20%; 2) low-load (CPU load < 70%), mean MVA 
of consumed power is 1.07%. 

 
Fig. 3.  Physical memory use during a standard 3DMark®06 test. 

 
Fig. 4.  MVA of CPU load vs. MVA of power consumption. 

Fig. 5 shows the relationship of the lagged (lag = 520 s) 
MVA (window length is 180 s) of the memory allocation 
value vs. MVA (window length is 150 s) of the power 
consumption. The plot demonstrates the complex multi-state 
behaviour of power consumption process for high (> 256 
MB) memory allocation events. 

 
Fig. 5.  MVA of physical memory allocation vs. MVA of power 
consumption. 

Fig. 6 shows the relationship of the lagged (lag = 180 s) 
moving average (window length is 480 s) of the memory 
allocation value vs. moving average (window length is 150 
s) of the power consumption. The plot is similar to Fig. 5: 
for high (> 256 MB) memory release events, power 
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consumption becomes less predictable. 

 
Fig. 6.  MVA of physical memory release vs. MVA of power consumption. 

We evaluate the hypotheses using the two-tailed test of 
the Pearson correlation coefficients. The correlations 
coefficients are significant at p = 0.001 (ρ > 0.104 for N = 
1000). The relationship is usually considered strong, if ρ > 
0.4, and moderate, if ρ > 0.3. The results are summarized in 
Table I. Based on these results, we reject the hypotheses H1, 
H2 and H3, and confirm the dependency of the battery’s 
charge level upon time-delayed values of CPU load and 
memory access and release values. 

TABLE I. PEARSON CORRELATION OF MVAS OF CPU LOAD, PHYSICAL 

MEMORY ALLOCATION AND RELEASE VS. MVA OF POWER CONSUMPTION. 

Process 

MVA 

window 

size, s 

Lag 

value, 

s 

Pearson 

correlation 

Hypothesis 

outcome 

CPU load 60 340 0,603 Rejected 
Memory 

allocation 
150 520 0,360 Rejected 

Memory 

release 
480 180 0,590 Rejected 

 
To validate the power benchmark metric, we have run the 

standard 3DMark®06 test 8 times on the HP laptop PC and 
have averaged the results. We have obtained the 
3DMark®06 score value of 224 and the power metric value 
(Eq. 4) 

B
P  = 24.0 (std. deviation = 1.5).  

To compare, we have run the benchmark on the Acer 
Aspire 1800 laptop PC running Windows 7 Professional 32 
bit OS on Intel® Pentium 4 2.93 GHz CPU, 1GB DDR 
RAM 166MHz, Intel® i915P/i915g chipset, and PA3206U 
(59Ah, 17V) battery and have obtained the 3DMark®06 test 
score value of 138 and the power metric value 

B
P  = 303.9 

(std. deviation = 18.7).  
Based on these results we conclude that the Acer Aspire 

has worse energy efficiency due to higher CPU speed that 
requires more energy, smaller RAM (which means more 
physical memory accesses are required) and worse chipset 
(including GPU) characteristics. 

V. CONCLUSIONS 

1) Battery is a time-delay system with the experimentally-
determined lag values of CPU is 340 s, physical memory 
allocation lag is 340 s and release lag is 180 s. 

2) There is no strong correlation between CPU load and 
power consumption, however there is a strong correlation 
between the memory usage and power consumption which 
corresponds well to long-known observation that memory is 

the largest consumer of power in modern computers thus 
confirming the validity of the proposed model. 

3) Lag between energy consumption events and battery 
charge value decreases the predictability of the battery’s 
State of Charge (SoC). 

4) Battery-powered computers have the properties of 
multi-state systems with complex relations between states 
therefore battery charge forecasting is difficult. 

5) The proposed time-delay model of the battery’s SoC 
can be used as a theoretical background for power efficiency 
benchmarking. 

6) We propose a formula for computing the power 
efficiency metric based on the 3DMark®06 test score and 
the battery charge level measurement results.  
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