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Abstract One of the challenges in virtual environments is
the difficulty users have in interacting with these increas-
ingly complex systems. Ultimately, endowing machines
with the ability to perceive users emotions will enable a
more intuitive and reliable interaction. Consequently, using
the electroencephalogram as a bio-signal sensor, the affec-
tive state of a user can be modelled and subsequently
utilised in order to achieve a system that can recognise and
react to the user’s emotions. This paper investigates fea-
tures extracted from electroencephalogram signals for the
purpose of affective state modelling based on Russell’s Cir-
cumplex Model. Investigations are presented that aim to
provide the foundation for future work in modelling user
affect to enhance interaction experience in virtual environ-
ments. The DEAP dataset was used within this work, along
with a Support Vector Machine and Random Forest, which
yielded reasonable classification accuracies for Valence and
Arousal using feature vectors based on statistical measure-
ments and band power from the α, β, δ, and θ waves and
High Order Crossing of the EEG signal.
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1 Introduction

Due to their increasing complexity, one of the main chal-
lenges found in virtual environments (VEs) is user inter-
action. Therefore, it is important to structure interaction
modalities based on the requirements of the application,
which may include both traditional and natural user inter-
faces, situational awareness and adaptation, personalised
content management, multimodal dialogue and multimedia
applications.

VEs typically require personalised interaction in order to
maintain user engagement with the underlying task. While
task engagement encompasses both the user’s cognitive
activity and motivation, it also requires an understanding
of affective change in the user. Accordingly, physiological
computing systems may be utilised to provide insight into
the cognitive and affective processes associated with task
engagement [15]. In particular, an indication of the levels
of brain activity, through acquisition and processing of elec-
troencephalogram (EEG) signals, may yield benefits when
incorporated as an additional input modality [48].

In recent studies, EEG has been used to map the
responses to the environment directly to the user’s brain
activity [1, 28, 33, 43, 49]. These systems are typically
used for control purposes, enhancing traditional modalities
such as mouse, keyboard, or game controller. However, this
form of active interaction is still quite costly for users as it
requires training and a good amount of both concentration
and effort to modulate one’s brain activity. This ultimately
causes the user to focus more on the interaction modal-
ity itself than the underlying task. In order to achieve truly
transparent interaction, the system is required to acquiesce
to the user’s intentions or needs. Using EEG as a bio-signal
sensor to model the user’s cognitive and affective state is
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one potential way to achieve an interaction that does not
require any training or attention focus from the user.

Many authors have investigated the use of EEG for rec-
ognizing user affect. However, EEG signals are complex,
multi-modal time series and there is no consensus on which
features are better suited for this task. The main contri-
butions of this paper are twofold: (1) a summary of how
affect recognition can augment VR environments targeting
different applications, namely, medicine, education, enter-
tainment and lifestyle; (2) an evaluation of several types
of features for affect recognition using EEG on a bench-
mark dataset. For the purposes of the investigations, the
DEAP dataset was used to provide an annotated set of EEG
signals [24]. Support Vector Machine (SVM) and Random
Forest were employed to classify different affective states
according to the Circumplex Model.

2 Background

A system that can detect and adapt to user’s current affective
state is interesting for a broad range of applications, from
medicine and education to entertainment, games and lifestyle.

2.1 Applications in medicine

VEs have been shown to help in the treatment of many con-
ditions, as well as help people cope with distressing emo-
tions such as anxiety and stress. Virtual Reality Exposure
Therapy (VRET), for example, is an increasingly common
treatment for anxiety and specific phobias [36]. When a user
is immersed in a VE, they can be systematically exposed to
specific feared stimuli within a contextually relevant setting
[4, 6, 16, 17]. VEs have also been shown to help chil-
dren with Autism Spectrum Disorders (ASD) improve their
social functioning [3]. These examples indicate where a sys-
tem that uses emotional modulation could be useful: to help
the physician analyse the emotional states and development
of the patient’s condition, as well as to use that information
to adapt the treatment in real-time, avoiding possible over
exposure of the patient.

2.2 Applications in education

The association between Affective Computing and learn-
ing is known as Affective Learning (AL): technologies that
sense and respond to affective states during the learning
process to make knowledge transfer and development more
effective[41]. The recognition that interest and active par-
ticipation are important factors in the learning process are
largely based on intuition and generalization of construc-
tivist theories [7, 41]. AL can change this scenario by
measuring, modelling, studying and supporting the affective

dimension of learning in ways that were not previously pos-
sible. Previous works have shown that VEs and AL can
improve student performance [19, 27]. However, many of
the previous approaches rely on questionnaires and other
forms of off-line evaluation of affective state. The use of
bio-sensors such as EEG might enable educational sys-
tems to automatic recognise affect and better understand
non-verbal clues just as a teacher would.

2.3 Applications in entertainment and lifestyle

The entertainment industry is very enthusiastic regarding
VEs, games being perhaps the most noticeable application.
This enthusiasm is not surprising, to some degree, emotional
experiences are what game designers create and sell [35].
Not only can VEs be designed to elicit both positive and
negative emotions [13, 42], but also previous works have
shown that emotion positively correlates with presence—
the psychological sense of being in or existing in the VE in
which one is immersed [2]. Another well-known use of VE
in games are virtual worlds, such as Second Life [26]. The
High Fidelity platform is able to track facial expressions
in real time and transfer those to the user’s avatar. Despite
being able to mimic facial expressions related to speech and
emotions, the system itself does not attempt to recognize
affect [34]. EEG could extend the high fidelity platform
with the ability to adapt to users’ affect. It would also enable
users that are unable to change their facial expressions—due
to paralysis for example—to take advantage of a platform
like High Fidelity. The use of the automatic modulation of
user’s emotional states in VEs are limitless and benefit from
the proven relation between presence and emotional state.

2.4 EEG as an input modality for emotion recognition

Currently, various input modalities exist that can be utilised
to acquire information about users and their emotions. More
commonly, audiovisual-based communication, such as eye
gaze tracking, facial expressions, body movement detec-
tion, and speech and auditory analysis may be employed as
input modalities. Furthermore, physiological measurements
using sensor-based input signals, such as EEG, galvanic skin
response, and electrocardiogram can also be utilised. How-
ever, the use of EEG as an input modality has a number
of advantages that make it potentially suitable for use in
real-life tasks including its non-invasive nature and relative
tolerance to movement. EEG can be used as a standalone
modality as well as combined to other biometric sensors.
The company iMotions for example has successfully devel-
oped a commercial platform for monitoring physiological
and psychological parameters of users while experiencing
VR. This is a great example of how affect recognition can
be used to add value to VR applications [18, 20].
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Several existing studies have exploited EEG as an input
modality for the purpose of emotion recognition. Picard
et al. looked at different techniques for feature extraction
and selection in order to enhance emotion recognition by
employing different biosignal data [40]. They found that
there is a variation in physiological signals of the same sub-
ject expressing the same emotion from day to day. Which
impairs recognition accuracy if not managed properly. Kon-
stantinidis et al. studied real-time classification of emotions
by analysing EEG data recorded using 19 channels. They
showed that extracting features from EEG data using a
complex non-linear computation, which is a multi-channel
correlation dimension, and processing the features using a
parallel computing platform (i.e. CUDA) would substan-
tially reduce the processing time needed. Their method
facilitates real-time emotion recognition [25].

Petrantonakis et al. proposes feature extraction methods
based on Higher Order Crossing (HOC) analysis to recognise
emotions from EEG data additionally to four different classi-
fication techniques. The highest reported classification accu-
racy was 83.33% using SVM trained on extracted HOC fea-
ture [37]. Murugappan investigated feature extraction using
wavelet transforms [30]. Moreover, they used K-Nearest
Neighbor to evaluate classification accuracy for emotions
across two different sets of EEG channels (24 and 64 chan-
nels), with a resulting classification accuracy of 82.87%.
Jenke et al. looked for feature selection methods extracted
from EEG for emotion recognition [21]. They presented a
systematic comparison of the wide range of available feature
extraction methods using machine learning techniques for
feature selection. Multivariate feature selection techniques
performed slightly better than univariate methods, generally
requiring less than 100 features on average.

Still there are challenges encountered when attempting
to exploit EEG for emotional state recognition. Extracting
relevant and informative features from EEG signals from a
large number of subjects and formulating a suitable repre-
sentation of this data in order to distinguish different affec-
tive states is an extremely complicated process [45]. This
work utilizes a fairly large dataset of EEG signals to inves-
tigate the relevance of different features for the dimensions
of Valence and Arousal, according to Russel’s Circumplex
Model of Affection. In this context, we aim to provide
foundations for modelling user affect in order to enhance
interaction experience in VEs.

3 Methodology

3.1 The DEAP dataset

The DEAP dataset [24], utilised in the work presented
herein, comprises EEG and peripheral physiological signals

for 32 subjects who individually watched 40 one-minute
music videos of different genres as a stimulus to induce
different affective states. Within the dataset 32 channels
were used to record EEG signals for each trial per sub-
ject, resulting in 8064 samples that represent the signal over
each one-minute trial. During each trial, a single subject
rated his/her feelings after watching the video using the Self
Assessment Manikin (SAM) scale in the range [1–9] to indi-
cate the associated levels of Valence, Arousal, Dominance
and Liking

The DEAP is a benchmark dataset for emotion analysis
using EEG, physiological and video signals developed by
researcher of the Queen Mary University of London, United
Kingdom; the University of Twente, The Netherlands; the
University of Geneva, Switzerland; and the École polytech-
nique Fédérale de Lausanne, Switzerland. Even though it
does not represent data used in VEs per se, its data is consid-
ered consistent by more than 560 citations from the research
community and a good source for affective data in general.

3.2 Selection of EEG channels

Psycho-physiological research has shown that left and right
frontal lobes have significant activity during the experience
of emotions [32]. There is also evidence of the role of the
prefrontal cortex in affective reactions and particularly in
emotion regulation and conscious experiment [12]. Many
scientific experiments have successfully used electrodes
located in those regions to analyse affective states [10, 37].

Since the purpose of this work is to model user affect
aiming real time applications, a simpler and more user-
friendly environment for data acquisition is required. In an
effort to reduce the number of electrodes, the signals were
selected from four positions Fp1, Fp2, F3 and F4 only,
according to the 10–20 system, as seen in Fig. 1.

Fig. 1 Fp1, Fp2, F3 and F4 positions selected according to the 10–20
system [31]
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3.3 Bandwave extraction

Commonly, brainwaves are categorized into four different
frequency bands: Delta (δ) from 0.5 to 4 Hz; Theta (θ ) from
4 to 8 Hz; Alpha (α) from 8 to 12 Hz; and Beta (β) 12 to 30
Hz. Literature has shown a strong correlation between these
waves and different affective states [29].

The EEG data associated with each of the selected chan-
nels was transformed into α, β, δ, and θ waves, using the
Parks–McClellan algorithm and Chebyshev Finite Impulse
Response filter was applied to the signal according to the
frequency ranges of each brainwave.

3.4 Feature extraction

Three types of features were computed from the EEG sig-
nal: statistical, powerband and High Order Crossing (HOC).
Features along with the construction of the relevant feature
vectors (FVS) are further explained within the following.

3.4.1 Statistical features

We adopted six descriptive statistics, as suggested by Picard
et al. in [40] and Petrantonakis in [38]. The statistical fea-
tures were extracted from the EEG signal in time domain
and from each of the brainwaves, creating separated feature
vector for both time and frequency domain:

(a) Mean (μ)

(b) Standard deviation (σ )

(c) Mean of the absolute values of the first differences
(AFD)

(d) Mean of the normalised absolute values of the first
differences (AFD)

(e) Mean of the absolute values of the second differences
(ASD)

(f) Mean of the normalised absolute values of the second
differences (ASD)

3.4.2 Spectral power density of brain waves

For the selected four channels, the mean log-transformed
brain wave power were extracted from the α, β, δ, and
θ frequency bands, according to [11]. The Spectral Power
Density (SPD) is widely used to detect the activity level
in each brain wave, allowing the components in the fre-
quency domain to be interpreted as electroencephalographic
rhythms.

For each electrode was calculated four features, repre-
senting the the medium power of the signal for the entire
bandwave, result in a 16-feature vector:

FVSPD = [fFp1, fFp2, fF3, fF4]

Being each channel feature (fFch
) a feature vector of the

mean power of the signal for the respective bandwave:

fch = [SPDα, SPDβ, SPDδ, SPDθ ]

3.4.3 Higher order crossing

In this technique, a finite zero-mean time series {Zt } , t =
1, ..., N oscillating through level zero can be expressed by
the number of zero crossings (NZC). Applying a filter to
the time series generally changes its oscillation and con-
sequently its NZC. When a specific sequence of filters is
applied to a time series, a specific corresponding sequence
of NZC is obtained. This is called a High Order Crossing
(HOC) sequence [22, 38].

The difference operator (�) is a high-pass filter defined
as �Zt ≡ Zt −Zt−1. A sequence of filters �1 ≡ �k−1, k =
1, 2, 3, ...; and its corresponding HOC sequence, can then
be defined as

Dk = NZC {�k (Zt )} , k = 1, 2, 3, ...; t = 1, ..., N

with

� (Zt )=�k−1Zt =
∑k

j=1

(k−1)!
(j−1)! (k−1)! (−1)j−1 Zt−j+1

To calculate the number of zero-crossings, a binary time
series is initially constructed given by:

Xt (k) =
{

1, �k (Zt ) ≥ 0
0, �k (Zt ) < 0

, k = 1, 2, 3, ...; t = 1, ...N

Finally, the HOC sequence is estimated by counting the
symbol changes in X1 (k) , ..., XN (k):

Dk =
∑N

t=2

[
Xt (k) − Xt−1 (k)

]2

In this paper filters up to order six were used, creating the
feature vector FVHOC = [D1, D2, ..., D6].

3.5 Affective state classification

The Circumplex Model of Affect developed by James Rus-
sell suggests that the core of emotional states are distributed
in a two-dimensional circular space, containing Arousal and
Valence dimensions. Arousal is represented by the vertical
axis and Valence is represented by the horizontal axis, while
the center of the circle represents a neutral level of Valence
and Arousal [44], as seen in Fig. 2.

As the current study is interested in recognising the affec-
tive state that a subject is experiencing, congruous with the
two-dimensional Russell’s Circumplex Model, throughout
the investigations only Valence and Arousal ratings were
used. Valence and Arousal ratings are provided within the
DEAP dataset as numeric values ranging from [1–9] based
on the SAM scale [5]. Two different partitioning schemes
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Fig. 2 Russel’s Circumplex Model of Affect [44]

have been employed in order to discretize the range of val-
ues within the scale, as illustrated in Fig. 3, and given as
follows:

(a) Tripartition Labeling Scheme: Dividing the scale into
three ranges [1.0–3.0], [4.0–6.0] and [7.0–9.0], given
as the partitions Low, Medium and High respectively.

(b) Bipartition Labeling Scheme: Similar to the previous
scheme, however we removed instances annotated as
Medium, resulting in the two ranges [1.0–3.0] and [7.0–
9.0], given as the partitions Low and High respectively.

Within the research literature, a range of classification
techniques have been used for affective computing and emo-
tion recognition using EEG bio-signals as an input modality
[23]. For the investigations presented herein we utilised two
different classification methods: C-Support Vector Classifi-
cation (SVM) with a linear kernel and Random Forest. The
chosen SVM implementation is available from the LIBSVM
library developed at National Taiwan University [9, 14] and
the Random Forest developed by Leo Breiman [8].

Fig. 3 Mapping from SAM scale Valence and Arousal values to
Labels (Low, Medium, High)

Support Vector Machine (SVM) and Random Forest
(RF) are versatile and widely used methods that have been
shown to perform well in many application areas. The suc-
cess of SVMs have been attributed to three main reasons:
“their ability to learn well with only a small number of
free parameters; their robustness against several types of
model violations and outliers; and their computational effi-
ciency compared to other methods.” [46]. Compared to
other machine learning methods, RF present three interest-
ing additional features: “a built-in performance assessment;
a measure of relative importance of descriptors; and a mea-
sure of compound similarity that is weighted by the relative
importance of descriptors” [47].

4 Experimental results

For the sake of exploration of different features, as previ-
ously described, we used classification accuracy as a metric.
Furthermore, we have utilised the 10-fold cross validation
approach for assessing classification performance. As previ-
ously discussed, this investigation aims to identify patterns
related to features extracted from EEG signals across dif-
ferent Valence and Arousal states. For that, we applied
SVM and Random Forest. Moreover, two labeling schemes
were employed for each of the affective dimensions, i.e.
Bipartition and Tripartition.

The following tables show the average results obtained
for all the instances in the dataset, i.e. all videos for all par-
ticipants. A comparison of the SVM and Random Forest
results for all methods can be seen in Tables 1 and 2.

We can see that the results obtained for Random Forest
were slightly better than SVM for all methods except Spec-
tral Power Density. The comparison of the two tables show
that the features extracted from the EEG signal behave sim-
ilarly for any of the classification methods applied. Being
the biggest difference for Statistic features extracted from
Brainwaves for Arousal, that for Random Forest had 74.0%
accuracy and for SVM only 57.2%. We can conclude that
Random Forest performed better for all the Features in gen-
eral and specially for Statistics of Brainwaves. SVM can be

Table 1 Classificationt accuracy per method, using SVM

Method
Bipartition Tripartition

Arousal Valence Arousal Valence

Statistics—Time 65.0% 61.2% 57.0% 51.3%

Statistics—Bandwaves 57.2% 83.2% 59.7% 55.1%

Bandwaves SPD 69.2% 88.4% 59.5% 55.9%

HOC 56.8% 62.7% 59.1% 53.5%
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Table 2 Classification accuracy per method, using Random Forest

Method
Bipartition Tripartition

Arousal Valence Arousal Valence

Statistics—Time 67.1% 61.3% 57.7% 50.0%

Statistics—Bandwaves 74.0% 88.4% 63.1% 58.8%

Bandwaves SPD 67.9% 86.6% 56.1% 55.2%

HOC 57.4% 64.7% 57.8% 55.1%

a better choice if the chosen features are the spectral power
density of Brainwaves and the class in interest is Valence.

Tables 1 and 2 show that Bipartition overcomes Tri-
partition for all methods tested except Arousal for HOC.
Although the approximately 2% for Bi and Tripartition do
not represent a statistically significant difference in accu-
racy. The best result for Tripartition is 63.1% for the Statistic
features of the Brainwaves and Arousal in Table 2. Despite
the results for Arousal in Tripartition being slightly better
than the ones for Valence, the difference is not statistically
significant.

The results are more interesting for Bipartition, in which
the features tested are generally better representatives for
Valence than Arousal, with an average difference of approx-
imately 9% and the highest difference of approximately
18% for SPD.

We can also note that the best results were obtain for the
methods that involve Bandwaves’ features: Statistics and
SPD. Valence has the best accuracies of 88.4 and 86.6%,
respectively. The result for Arousal are 74.0 and 67.9% in
Table 2.

Table 3 Classification accuracy for SPD using SVM

SPD
Bipartition Tripartition

Arousal Valence Arousal Valence

α 52.6% 73.1% 59.0% 57.3%

β 64.6% 69.8% 59.0% 55.6%

δ 66.2% 82.9% 60.2% 54.9%

θ 62.9% 76.1% 59.4% 55.9%

α, β 65.6% 82.7% 59.8% 56.1%

α, δ 66.5% 88.1% 59.4% 57.7%

α, θ 62.1% 83.4% 58.8% 55.1%

β, δ 66.9% 88.4% 59.1% 56.3%

β, θ 67.5% 85.4% 59.7% 55.6%

δ, θ 67.1% 88.9% 59.8% 55.2%

α, β, δ 67.5% 88.6% 59.9% 57.2%

α, β, θ 65.8% 85.0% 59.5% 56.8%

α, δ, θ 66.2% 88.7% 59.4% 57.0%

β, δ, θ 67.7% 88.4% 59.2% 54.2%

α, β, δ, θ 69.2% 88.4% 59.5% 55.9%

Table 4 Classification accuracy for all Statistical Features for each
Brainwave using Random Forest

Statistics—Bandwaves
Bipartition Tripartition

Arousal Valence Arousal Valence

α 66.6% 78.3% 59.7% 54.0%

β 67.5% 77.1% 59.3% 54.2%

δ 75.7% 87.9% 60.9% 55.3%

θ 71.3% 84.9% 61.3% 53.5%

The subsequent tables show the percentage of correctly
classified instances for the methods that showed the best
results: SPD using SVM, in Table 3; and Statistics of
Brainwave using Random Forest, in Tables 4 and 5.

In Table 3 is clear that SPD features best relate to Valence
in Bipartition, being δ’s SPD the best single feature with
82.9% accuracy. Combining two other features, such as the
SPD of α and β or α and θ or even β and θ we can obtain
similar results as δ alone: 82.7, 83.4 and 85.4%, respec-
tively. Combining any of the single features with δ’s SPD
increases the accuracy approximately 5%. The second best
single feature is θ ’s SPD and combining both δ’s and θ ’s
SPD gives the best result of 88.9%, better than combining
all features in one single vector, 88.4%.

Table 4 shows the accuracy obtained for the Statistic fea-
tures of each of the single Brainwaves using Random Forest.
Being δ and θ again the brainwaves which features have the
best results, 87.9 and 84.9% for Valence and 75.7 and 71.3%
for Arousal in Bipartition. Combining the statistical features
of the two bandwaves δ and θ increases the accuracy for
Valence to 88.2%, almost the same as using the features for
all bandwaves, 88.4%. Combining those same features for
Arousal, on the other hand, gives the accuracy of 73.8%,
worse than the result for δ only.

Table 5 shows the accuracy obtained for each of the sin-
gle Statistic features for all Brainwaves combined using
Random Forest. Here, we can see again the best results for
Valence in Bipartition. For the single statistical features,

Table 5 Classification accuracy for all Brainwaves for each Statistical
feature, using Random Forest

Statistics—Bandwaves
Bipartition Tripartition

Arousal Valence Arousal Valence

μ 64.1% 80.7% 55.9% 53.5%

σ 70.7% 87.4% 56.9% 54.8%

AFD 64.8% 89.9% 54.8% 54.9%

AFD 68.3% 71.3% 58.4% 53.5%

ASD 67.7% 88.4% 57.7% 55.5%

ASD 71.7% 73.8% 57.9% 53.8%
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AFD has the best result of 89.9%, followed by ASD and σ ,
with 88.4 and 87.4%, respectively. Combining the three set
of features again does not give a better accuracy than the
best single feature, resulting in 88.6%.

For Valence, on the other hand, the best features are
ASD, σ , AFD and ASD, with 71.7, 70.7, 68.3 and 67.7%
classification accuracy, respectively. Combining those fea-
tures does not improve the accuracy, resulting in 68.8%
classification accuracy.

5 Discussion

The investigations and associated results presented in this
paper show the potential of utilizing EEG signal data for
recognising affective states. Based on the classification accu-
racy, the approach could be used to effectively recognise
emotions in certain types of virtual reality environments.
Educational applications could benefit from it by adapting
the content of a course to the students anxiety levels, char-
acterised by low levels of arousal and valence, detected by
the bipartition approach. Other than that, the approach pre-
sented could be applied to medical applications that aim to
help patients deal with phobias or entertainment platforms
for social anxiety.

Both classification methods applied gave similar results,
being the results for Random Forest slightly better than the
ones for SVM. Particularly, the highest classification accu-
racy was obtained using the feature vector generated based
on the statistical measurements derived from brainwaves,
e.g 88.4% for Valence and 74% for Arousal.

Likewise, using a feature vector based on the associated
power bands and SVM also produced the classification accu-
racy of 88.4% for Valence and slightly lower for Arousal,
69.2%. In both cases, the Bipartition labelling scheme was
used.

For both methods of feature extraction, the features asso-
ciated with δ and θ performed better than the other band-
waves. The best accuracy obtained was for the combination
of the SPD for both δ and θ , resulting in 88.9% correctly
classified instances.

The features that can be better associated with the affec-
tive state of Valence are ASD, σ , AFD and ASD, with
71.7, 70.7, 68.3 and 67.7%.Combining those features does
not improve the results.

The highest classification accuracy rates were obtained
using features extracted from the brainwaves, corroborating
the neurophysilogical theories that relate those with several
different mental states. The Statistic features and Spectral
Power Density represent the activity level in each bandwave
and can give us an insight about the relation between the
affective dimensions of Valence and Arousal and the brain
activation in each frequency. In Figs. 4 and 5, we can see
the Receiver Operating Characteristic (ROC) curve for both
Statistic features and SPD respectively.

The red dashed line represents the equivalent of a ran-
dom guess. The higher the curves are from this diagonal,
the more sensitive it is regarding the class, Valence or
Arousal. Analysing those curves for Valence we can see in
Fig. 4a that σ , AFD and ASD have the best results, as well
as δ and θ in Fig. 5a, corroborating the results obtained
from both classification methods. The results for Arousal
show curves close to the diagonal, again corroborating our
previous results, of low accuracy for all methods in general.

Figures 6 and 7 show the distribution of features provid-
ing worst accuracy, in Fig. 6 and best accuracy, in Fig. 7. We
can see that the features of the methods with worst accuracy,
such as the HOC features and the Statistical features in time
domain, overlap for the classes of High and Low Valence
and Arousal. On the contrary, there is less overlap on the
features obtained from the methods with best accuracy, such
as σ and SPD of Brainwaves.

(a) ROC curve for Valence (b) ROC curve for Arousal

Fig. 4 ROC curves for each of the Statistical Features for Brainwaves
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(a) ROC curve for Valence (b) ROC curve for Arousal

Fig. 5 ROC curves for the SPD of each of the Brainwaves.

Even though we obtained good results for some features,
we can see in Figs. 6 and 7 that histograms of even the
best features overlap considerably and result in ROC curves
close to Random guess, as seen in Figs. 4 and 5. This charac-
teristics observed amongst the features investigated could be
due to many reasons. The sensitivity of the self-assessment
scale used to garner affect ratings is subjective, as it is based
on the thoughts and impressions of the participant about the
video he/she watched. Moreover, it is often the case that
people do not know how to articulate their actual emotions
and associated states due to ambiguity and mixed mental
activities [39].

Therefore, it is potentially the case that some of the par-
ticipants could not precisely entail their actual emotional
state using the SAM scale. Due to this factor, classification
models were generated twice using two different mapping

schemes in order to determine the impact from ambigu-
ous annotations that potentially arise from the selection of
Valence and Arousal values from the middle of the self-
assessment scale. As the results indicated, placing such a
constraint on the ranges of affect to be modelled improved
the overall classification performance.

In the majority of the investigations, the classifica-
tion accuracies obtained for Valence outperformed those
obtained for Arousal. It is difficult to determine why this
was the case but several factors may have contributed to this
effect. One possible reason is that the concept of Arousal
may be more difficult to understand and categorize than
Valence, resulting in inconsistent labelling. In addition, par-
ticipants within the DEAP dataset watched video clips as
a stimuli, hence were passive during that time, resulting in
a small range of Arousal values that were not distinctive

(a) Histogram of each of the 6 filter’s HOC features for channel Fp1 
and Valence

(b) Histogram of each of the 6 Statistical features in Time for 
Arousal

Fig. 6 Histograms of the features providing worst accuracy using Bipartition: the High class in red and Low in blue
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Histogram of the Standard Deviation for each of the Brainwaves for Valence(a)

Histogram of the SPD for each Brainwave for Valence(b)

Fig. 7 Histograms of the features providing best accuracy using Bipartition: the High class in red and Low in blue

enough to be picked up by the classifier. This specific aspect
could be improved if the data were obtained using a virtual
environment, where the person has a greater sense of pres-
ence, hence having more influence in their emotional state,
as discussed in chapter 2.

6 Conclusions and future work

This paper investigated exploiting electroencephalogram
data as an input modality for the purpose of providing VEs
with the ability to recognize and detect the emotional states of
users. Consequently, the results from several experiments
using different sets of features, especially the ones descendant
from brainwaves, extracted from EEG data within the DEAP
dataset show the potential of utilizing EEG signal data.

In addition, the observed discrepancy in classification
accuracy due to different affective state mapping schemes
was discussed, indicating that a degree of ambiguity will
exist within such datasets, which has an obvious effect on
the ability to accurately model affective states.

Moreover, combining several features together does not
necessarily increase classification accuracy, as discussed in
chapter 4. For example, as shown in Table 4, Combining δ’s
and θ ’s statistical features for Arousal, gives the accuracy of
73.8%, worst than the result for δ only.

Additionally, as the results depict, the features extracted
from α, β, δ and θ waves and the classification accura-
cies obtained for Valence makes it potentially suitable as a
metric for measuring this aspect of the affective state of a

user, ranging from negative to positive (i.e. Low-Valence to
High-Valence).

The preliminary results shown in this article will help
informing and leading to further experiments that eventu-
ally integrate different input modalities together with EEG
in order to potentially provide a more robust model of the
user’s affective state. The current set of investigations would
benefit if repeated using another mapping scheme based
on Fuzzy Logic, for example, in an effort to improve the
classification of potentially ambiguous affective states.

It is also interesting to extend the investigation regard-
ing brain activation and the affective dimensions of Valence
and Arousal. Not only how the negative (Low-Valence) and
positive (High-Valence) states relate in terms of absolute
values with the brain activation, but also how this activation
is propagated though the entire extension of the brain.

Nonetheless, it is important to expand the study and the
methods to real-time applications, and determine how those
might behave in the real scenario of VEs. Not only taking
into account the computational cost, aiming for real-time
and embedded systems; but also how the virtual environ-
ment should adapt to this new form of awareness and how
the user will react to this new form of enhanced interaction.

The article also discusses the importance of taking into
account the effective qualities of the virtual environment
to improve user experience and the many potential appli-
cations of such awareness for a different range of areas,
such as medicine, education, entertainment and life style.
The affective qualities of a virtual environment contribute
to the engagement or feeling of presence of the user and
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vice-versa. When the affective qualities of the VE do not
match the expectations of the user or the affective level of
the situation being lived at the environment, it may have
a negative effect on the user experience. Recognizing the
importance of the affective qualities and awareness of a
VE and introducing these often neglected aspects into the
development process will improve the user experience.
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