
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012 

 

Abstract—We analyse energy efficiency versus quality 

characteristics of hashing algorithms in a mobile device and 

describe methodologies for energy measurement on a Java-

enabled smart phone. Energy efficiency of 17 hash functions 

(Adler32, Crc16, Crc32, Haval256, MD2, MD4, MD5, MD6, 

SHA1, SHA224, SHA256, SHA384, SHA512, Skein, SV1, 

Tiger, Whirlpool) is evaluated using the GSM modem-based 

battery charge measurement method, and quality is evaluated 

using the Avalanche and Chi-square tests. The results show 

that the most energy-efficient hash function on a mobile device 

is SV1 for cryptographic applications, and crc16 for non-

cryptographic applications.  

 
Index Terms—Energy consumption, algorithms, memory 

management, encryption, authentication.  

I. INTRODUCTION 

Energy efficiency is extremely important in mobile 

devices (smart phones, lap tops, tablet PCs, handhelds, etc.) 

that operate using limited battery power. Currently, the 

growth of complexity of functions provided by mobile 

devices outpaces evolution of the battery technologies [1]. In 

order to have acceptable battery life, mobile devices must 

stay within a fixed energy budget. The increasing demand 

for mobile services drives scientific research into finding 

architectural and computational solutions to overcome this 

limitation [2]. When developing mobile applications and 

providing wireless communication services, security and 

reliability of transmitted messages or data stored on a mobile 

device is of paramount importance. A wide class of 

functions, called hash functions, is commonly used in 

cryptographic and error control services to provide message 

authentication and integrity. 

In this paper, we: 1) analyze the hash function domain; 2) 

describe a methodology for measuring energy efficiency of 

hash functions on a smart phone; 3) describe the 

experimental results of energy consumptions vs. quality of 

hash functions; and 4) provide recommendations for mobile 

application developers. 

II. ANALYSIS OF HASH FUNCTION DOMAIN 

A hash function is a deterministic procedure that converts 

a large, possibly variable-sized amount of data (message)

 
Manuscript received March 19, 2012; accepted April 26, 2012. 

 

 

into a small fixed-size block of data (hash value). The aim is 

to detect accidental or intentional changes to data, or to 

determine whether or not two pieces of data are identical. 

Hash functions are primarily used in memory management 

(hash tables), cryptographic applications (message 

authentication and encryption), and error detection and 

control (data integrity checking), though there are other 

applications in computer graphics, computational geometry, 

sorting, searching, etc. The following classes of hash 

functions can be distinguished: 

Checksum algorithms such as CRC32 and other cyclic 

redundancy checks are error-detecting codes designed to 

detect accidental changes to raw data. CRC32 was 

previously used for message integrity in the WEP (Wired 

Equivalent Privacy) encryption IEEE 802.11 wireless 

networks, however, due to weak security it is now 

considered to be unsuitable for cryptographic applications. 

Message digest algorithms such as MD5 are functions 

commonly used to check data integrity. Digests are widely 

used to provide some assurance that a transferred file has 

arrived intact, and for computing digital signatures of 

documents before encryption. 

Cryptographic hash functions such as SHA512 are hash 

functions that must be able to withstand all known types of 

cryptanalytic attack and have very strong cryptographic 

requirements [3]. 

Perceptual hashes are fingerprints designed for content 

recognition and identification of copyrighted content such as 

images, audio, video clips. 

Good hash functions are required to satisfy certain 

properties such as low computability cost, determinism, 

spread, randomness, regularity and uniformity [4]. Here 

determinism means that the hash value is fully determined by 

the data being hashed. Spread means that the hash function 

generates very different hash values for similar data. 

Randomness means that it is computationally difficult to find 

two different messages that have equal hash values. 

Uniformity means that the distribution of hash values 

obtained from a set of non-uniform data should be 

statistically distinguishable from the uniform distribution.  

A cryptographic hash function must satisfy additional 

properties in order to be able to withstand all known types of 

cryptanalytic attack: 1) Preimage resistance: given a hash 

value it should be computationally difficult to find any 

message that has a given hash value. 2) Second preimage 

Energy Consumption of Hash Functions 

R. Damasevicius
1
, G. Ziberkas

1
, V. Stuikys

1
, J. Toldinas

2
 

1
Software Engineering Department, Kaunas University of Technology,  

Studentu St. 50, LT-51368, Kaunas, Lithuania, phone: +370 37 300399 
2
Computer Department, Kaunas University of Technology,  

Studentu St. 50, LT-51368, Kaunas, Lithuania, phone: +370 37 300389 

eugenijus.toldinas@ktu.lt 

http://dx.doi.org/10.5755/j01.eee.18.10.3069 

81

http://dx.doi.org/10.5755/j01.eee.18.10.3069


ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012 

resistance: given a message it should be difficult to find 

another message that has the same hash value. 

Therefore, a good-quality hash function should behave as 

much as possible like a random number generator while still 

being deterministic and efficiently computable. 

When testing the quality of a hash function, statistical 

tests (Avalanche test, Collision test, Birthday Attack, etc.) 

can be applied [5].  

Uniformity of the distribution of hash values can be 

evaluated by the 2 test. It tests a null hypothesis stating that 

the frequency distribution of certain events observed in a 

sample is consistent with a particular theoretical distribution  

 
,

1

2
2







M

i

i
i

P

Pn
n  (1) 

where M is the number of samples (bins), ni is the number of 

hash values in i-th sample, and P is the theoretical 

distribution value.  

Spread of hash values can be evaluated using an 

Avalanche test. A hash function has an Avalanche effect if 

the Hamming distance between the outputs of a random 

input vector and one generated by randomly flipping one of 

the input bits should be, on average, equal to n/2, where n is 

the length of the output. The test is evaluated using the χ2 

statistic that measures the distance of the observed 

distribution of the Hamming distances from the theoretical 

Bernoulli probability distribution B(1/2, n). 
Regularity of a hash function can be quantified using the 

Birthday Attack. The method used to find a collision is to 

evaluate the hash function h for different randomly chosen 

input values until the same result is found more than once. If 

the outputs of the function are distributed unevenly, then a 

collision can be found even faster. Regularity of a hash 

function quantifies the resistance of the function to Birthday 

attacks and allows its vulnerability to be estimated [6] as 

QRlog
2

1
 . (2) 

where R is the range of a hash function, and Q is the average 

number of hash function tests until a first collision is found. 

Value of less than 1 means higher vulnerability.  

III. ENERGY MEASUREMENT METHODOLOGIES 

Additionally to low computability criterion, we emphasize 

the importance of low energy consumption of hash 

functions. To measure energy consumption on a Java-

enabled smart phone, the following measurement 

methodologies can be used: 

1) Java-based: battery charge is measured by reading the 

Java system property “batterylevel” (different phones may 

have differing names of this property) during execution of 

Java application. Snippet of code in Fig. 1 returns the 

current battery level (0-100).  

2) Sensor-based: battery charge is measured by reading 

sensor values that return the battery charge. This works only 

for devices that support JSR 256 Mobile Sensor API. 

Snippet of code in Fig. 2 returns the current battery charge 

level (0-100). 

 

 
Fig. 1.  Battery charge level measurement in Java application using system 

property. 

 
Fig. 2.  Battery charge level measurement in Java application using JSR 

256 API. 

3) Modem-based: battery charge is measured by 

connecting an external PC via USB to the GSM modem of a 

phone and issuing a specific command of the Hayes (AT) 

command language. The command “AT+CBC” returns a 

battery charge (0-100). The measurement procedure is as 

follows: 

1) Enter the engineering mode on a phone; 

2) Change the UART controller mode from USB to 

serial communication (COM); 

3) Switch off and switch on the phone; 

4) Connect the phone to a PC via USB; 

5) Make sure that the phone’s battery is not charging 

(wait until it is fully charged and stops charging until 

next reconnect of the cable, or cut wire 1 in the USB 

cable); 

6) Run a mobile application, whose energy 

consumption is measured, on the phone; 

7) Run a battery charge measurement script on the PC; 

8) Wait until mobile application finishes and read the 

results on the PC. 

The advantage of this methodology is that it is 

implementation-language-independent. A snippet of the 

measurement script implemented in a Perl script language 

using the Device::Modem module is presented in Fig. 3. 

  

 
Fig. 3.  Snippet of battery charge measurement script in Perl. 

IV. EXPERIMENTS 

A number of freely available Java implementations of 

use Device::Modem; 
 
$modem = new Device::Modem( port =>'COM6' ); 
$modem->connect( baudrate => 115200 ); 
$modem->send_init_string();  
$modem->atsend( "AT+CBC\r" );  
($ok,@result) = $modem->parse_answer(); 
$charge = substr(@result[0], 8); 
print "Battery charge: ", $charge, "%\n"; 

SensorManager sm; 
SensorInfo[] bInfo =  
 sm.findSensors("battery_charge", null); 
SensorConnection sensor = (SensorConnection)  
 Connector.open(batteryInfo[0].getUrl()); 
Data data[] = sensor.getData(1); 
String bLevel = "Current charge level: " +  
 data[0].getIntValues()[0]; 

String bLevel =  
 System.getProperty("batterylevel"); 
if (bLevel != null) 
 form.append (bLevel); 
else  
 form.append (“Not supported”); 
 

82



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012 

hash functions were selected. Adler-32 is a checksum 

function that is a part of the widely-used zlib compression 

library. CRC16 and CRC32 are cyclical redundancy checks 

used in a variety of communication standards. MD2, MD4, 

MD5, MD6 are message digest algorithms. Haval256 is a 

cryptographic hash function that can be used as a 

replacement of MD5. SHA1, SHA224, SHA256, SHA384, 

SHA512 are cryptographic hash functions published by the 

National Institute of Standards and Technology (NIST, 

USA). Skein is a cryptographic hash function and one out of 

five finalists in the NIST hash function competition to 

replace the SHA-3 standard. SV1 is a cryptographically 

strong digest algorithm. Tiger is a cryptographic hash 

function designed for efficiency on 64-bit platforms. 

Whirlpool is a cryptographic hash function, which is a part 

of the ISO/IEC 10118-3 standard.  

The experiments were performed using SciPhone i9+++ 

smart phone (a clone of iPhone), CPU MTK MT6225A or 

MT6318A 26 MHz, MTK OS (a version of Nucleus Plus 

OS), Java HotSpot VM 1GB heap memory, support for 

Jazelle extension, Li-ion battery 3.7 V, 1800 mAh.  

Energy consumption of hash functions has been measured 

using the modem-based method, because the phone does not 

support the sensor-based and Java-based methods. Phone 

display was switched off to reduce system energy 

consumption. Hashing was performed on a randomly 

generated file of 100 MB size and repeated 100 times. As 

the method returns the percentage value of battery drain, the 

result was multiplied by the battery capacity value to obtain 

the energy consumption value in Watts. Net power 

consumption (per message MB) and energy consumption 

results are presented in Fig. 4 and Fig. 5, respectively. 

 
Fig. 4.  Net power consumption (uWh/MB) of hash functions. 

 
Fig. 5.  Average energy consumption (W) of hash functions. 

Hash function quality characteristics based on the results 

of the collision test, 
2
 test and avalanche test are presented 

in Table 1. The tests were performed on randomly generated 

160-byte length string (max. payload of SMS messages), 

using 210 bins and 220 trials. 

The Collision Test and Birthday Attack were not 

performed due to large computational requirements. 

TABLE I. RESULTS OF 2
 AND AVALANCHE TESTS. 

Hash function 2 test, 2 Avalanche test, 2 

Adler32 1.028 4.714E-1 

Crc16 1.003 2.286E-1 

Crc32 1.005 4.144E-1 

Haval256 1.040 2.938E-3 

MD2 1.041 3.088E-3 

MD4 1.041 2.079E-3 

MD5 1.042 2.095E-3 

MD6 1.043 3.824E-3 

SHA1 1.042 2.432E-3 

SHA224 1.042 3.447E-3 

SHA256 1.041 2.767E-3 

SHA384 1.041 4.222E-3 

SHA512 1.039 4.426E-3 

Skein 1.042 4.725E-3 

SV1 1.041 1.618E-3 

Tiger 0.769 3.275E-3 

Whirl-pool 1.042 4.239E-3 

 

The results of the 
2
 test were not conclusive for 

determining differences in hash function quality (all 

functions generate uniform hash values).  

The trade-offs of power and energy consumption vs. 

quality of hash functions using Avalanche test results as a 

quality metric are presented in Fig. 6 and Fig. 7. 

 
Fig. 6.  Net power consumption vs. Avalanche test. 

0.001

0.01

0.1

1

10 12 14 16 18 20
Adler32

crc16

crc32

Haval256

MD2

MD4

MD5

MD6

SHA1

SHA224

SHA256

SHA384

SHA512

Skein

SV1

Tiger

Whirlpool

Energy, W

A
va

la
n

ch
e 

te
st

, 
2

 
Fig. 7.  Energy consumption vs. Avalanche test. 

83



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012 

V. RELATED WORK 

Energy efficiency of the cryptographic hash functions 

implemented as software has been addressed previously as a 

part of the studies of cryptographic algorithms and services  

however, there has not been wide scale surveys, yet. For 

example, Kaps et al. [7] analyse energy consumption of the 

WH hash function. Energy efficiency of SHA1, SHA2 and 

MD5 is analysed in [8].  

VI. CONCLUSIONS 

For experiments we use the sciPhone smart phone and 

Java ME as a modern and popular platform for safe 

development mobile applications and secure information 

management. Though there are many hash algorithms 

known, we were restricted with the algorithms provided by 

this framework. The energy-efficiency of hash algorithms 

with varying block and hash sizes is highly different.  

The main results of this paper are as follows. The results 

show that the most energy-efficient hash function on a 

mobile device is SV1 for cryptographic applications, and 

crc16 for non-cryptographic applications. The energy-aware 

selection of hash function can save up to 29% (the difference 

between min. and max. consumption of energy among 

analyzed hash functions) energy on hashing operations.  

REFERENCES 

[1] F. C. C. Osorio, E. Agu, K. McKay, “Measuring energy-security 

tradeoffs in wireless networks”, in Proc. of the 24th IEEE Int. 

Performance Computing and Communications Conference (IPCCC 

2005), Phoenix, Arizona, USA, IEEE, 2005, pp. 293–302. [Online]. 

Available: http://dx.doi.org/10.1109/PCCC.2005.1460572 

[2] R. Damaševičius, V. Štuikys, E. Toldinas, “Embedded program 

specialization for multiple criteria trade–offs”, Elektronika ir 

Elektrotechnika (Electronics and Electrical Engineering), no. 8, pp. 

9–14, 2008. 

[3] S. Danker, R. Ayers, R. P. Mislan, “Hashing Techniques for Mobile 

Device Forensics”, “Small Scale Digital Device Forensics Journal”. 

vol. 1, no. 3, 2009. 

[4] M.-J.O. Saarinen, “Cryptanalysis of Dedicated Cryptographic Hash 

Functions”, Ph.D. dissertation, University of London, 2009.  

[5] F. Sulak, A. Doganaksoy, B. Ege, O. Kocak, “Evaluation of 

randomness test results for short sequences”, in Proc. of the 6th Int. 

Conf. on Sequences and their applications (SETA'10), Springer-

Verlag, 2010, pp. 309–319. 

[6] M. Bellare, T. Kohno, “Hash Function Balance and Its Impact on 

Birthday Attacks”, in Proc. of the Int. Conf. on the Theory and 

Applications of Cryptographic Techniques (EUROCRYPT 2004), 

Interlaken, Switzerland, LNCS, vol. 3027, 2004, pp. 401–418. 

[7] J.-P. Kaps, K. Yuksel, B. Sunar, “Energy Scalable Universal 

Hashing”, IEEE Transactions on Computers, vol. 12, no. 54, pp. 

1484–1495, 2005. [Online]. Available: 

http://dx.doi.org/10.1109/TC.2005.195 

[8] X. Ruan, A. Manzanares, S. Yin, M. Nijim, X. Qin, “Can We 

Improve Energy Efficiency of Secure Disk Systems without 

Modifying Security Mechanisms?”, in Proc. of the 2009 IEEE Int. 

Conf. on Networking, Architecture, and Storage (NAS 09), IEEE 

Computer Society, 2009, pp. 413–420. 

84

http://dx.doi.org/10.1109/PCCC.2005.1460572
http://dx.doi.org/10.1109/TC.2005.195



