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Abstract

A novel method forQRST cancellation during atrial fib-
rillation (AF) is introduced for use in recordings with two
or more leads. The method is based on an echo state neu-
ral network (ESN) which estimates the time-varying, non-
linear transfer function between two leads, one lead with
atrial activity and another lead without, for the purpose of
canceling ventricular activity. The performance is evalu-
ated on ECG signals, with simulated f-waves of low am-
plitude added, by determining the root mean square error
P between the true f-wave signal and the estimated sig-
nal, as well as by evaluating the dominant AF frequency.
When compared to average beat subtraction (ABS), being
the most widely used method for QRST cancellation, the
performance is found to be significantly better with equal
to mean and standard deviation of̄PESN 24.8±7.3 and
P̄ABS 34.2±17.9μV (p< 0.001). Thenovel method is par-
ticularly well-suited for implementation in mobile health
systems where monitoring of AF during extended time pe-
riods is of interest.

1. Introduction

The extraction ofatrial activity in ECGs recorded dur-
ing atrial fibrillation (AF) has in recent years received con-
siderable research attention. By canceling the ventricular
activity, a connected atrial signal can be produced which
is analyzed with respect to f-wave repetition rate and mor-
phology as well as other properties. The development of
methods for QRST cancellation has helped to spawn nu-
merous clinical studies in which AF rate (or frequency) is
assessed, e.g., for prediction of spontaneous AF behavior
and therapeutic effects [1].

The by far most widely used method for QRST cancel-
lation is average beat subtraction (ABS) [2], probably be-
cause of its ease of implementation. However, it is well-
known that ABS is unable to handle changes in morphol-

ogy as it causes the resulting atrial signal to contain QRST-
related residuals. Spatiotemporal QRST cancellation has
been proposed for the purpose of handling gradual changes
in the electrical axis of the heart, however, this method
requires that a multi-lead ECG recording is available [3].
Another group of QRST cancellation techniques explores
the assumption that atrial and ventricular activity are gen-
erated by different electrical sources so that the surface
ECG can be viewed as a linear sum of the sources. Both
principal component analysis (PCA) [4] and independent
component analysis (ICA) [5] have been proposed to sepa-
rate signal sources. Crucial issues when using these meth-
ods are the identification of the component(s) with atrial
activity and the challenge to analyze long-term recordings.
Yet another approach to cancel ventricular activity is to
employ adaptive Wiener filtering using an Elman artificial
neural network [6]. This type of neural network is asso-
ciated with a slow and complex training process, and its
convergence is strongly related to the quality of training
data.

Reservoir computing is a recently introduced paradigm
in recurrent neural network (RNN) training, of which
“echo state networks” (ESNs) are suitable for practical im-
plementation [7]. RNNs have not become popular in appli-
cations due to their long and complex training process and
potential instability. For ESNs, on the other hand, training
is much facilitated by involving only the output connec-
tions which are adjusted by simple linear regression. In
the present paper, the ESN is proposed as a solution to the
problem of QRST cancellation when atrial to ventricular
activity ratio is low.

2. Methods

The proposed QRST cancellationmethod uses a classi-
cal adaptive filter approach: the atrial signal is extracted
from a mixture of signals using a reference signal which is
modified by a filter with time-variable transfer function—
the ESN—and an adaptation algorithm, together constitut-
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ing the mainbuilding blocks of the cancellation, see Fig. 1.
The ESN is a large, fixed, recursive neural network which
serves as a random nonlinear excitable medium. Its high-
dimensional dynamical “echo” response to a driving input
is used as a non-orthogonal signal basis to reconstruct the
atrial output. The input weightsWin and the reservoir-
connecting weightsW are both generated randomly dur-
ing network initialization from a uniform probability den-
sity function (symmetric around zero and invariant to train-
ing). The only set of weights which is changed during
training is the output weight vectorwout.

Figure 1. QRSTcancellation based on the echo state net-
work. Note that̂y(n) = go(wT

out(n − 1)z(n)).

In this study, the adaptation algorithm of an adaptive fil-
ter was employed to trainwout continuously because of
rapidly changing QRST morphology. The atrial signal
ŝ(n) is defined as the errore(n) between the lead subject
to cancellation, denotedx(n), and the estimate of the ven-
tricular activity produced by the ESN,

ŝ(n)
4
= e(n) = x(n) − go(w

T
out(n − 1)z(n)), (1)

wherego(∙) denotes the outputneuron activation function
andwout(n−1) the time-varyingoutput weight vector. The
vectorz(n) is the concatenation of theN×1 reservoir state
vectorr(n) and the reference signalxr(n), recorded away
from the atria,

z(n) =

[
r(n)
xr(n)

]

. (2)

The signalxr(n) is a vector which includes not only the
scalar reference signalxr(n) but also itsfirst and second
derivatives,

xr(n) =




xr(n)
x′

r(n)
x′′

r (n)



 . (3)

The inclusion ofderivatives offers a more complete char-
acterization of the reference signal, and therefore im-
proves the performance of the ESN. The output weights
wout(n) of the ESNare updated using the recursive least
squares (RLS) algorithm in combination with least squares
prewhitening; for details, see [8]. The prewhitening part is

defined by

v(n) = P(n − 1)z(n), (4)

u(n) = PT (n − 1)v(n). (5)

whereP(n) denotes the inverse of the correlation matrix
of z(n). The update ofP(n) is given by the following two
equations:

k(n) =
1

λ + ‖v(n)‖2 +
√

λ(λ + ‖v(n)‖2)
, (6)

P(n) =
P(n − 1) − k(n)v(n)uT (n)

√
λ

. (7)

The forgettingfactor λ is a constant which is commonly
chosen in the interval0.95 < λ < 1.

The RLS part of the algorithm produces an update of the
output weights,

wout(n) = wout(n − 1) +
e(n)u(n)

λ + ‖v(n)‖2
. (8)

The twoparts of the algorithm are initialized by setting

wout(0) = 0, (9)

P(0) = δ−1I, (10)

whereδ is a smallpositive constant andI denotes the iden-
tity matrix.

The reservoir state vectorr(n) is updated by

r(n) = αr(n − 1)

+ (1 − α)(gr(Wr(n − 1) + Winu(n))), (11)

where the forgetting factorα is a positive constant less
than 1,Win is a3×N input weightmatrix,W is anN×N
weight matrix of the internal network connections,gr(∙) a
reservoir neuronactivation function.

3. Signals andsimulations

The proposed methodfor QRST cancellation is quan-
titatively evaluated using simulated signals with known f-
wave patterns. The f-waves are generated using a sawtooth
model, in which both amplitude and repetition rate can be
modulated [3]. The model parameter values where chosen
similar to those of case A studied in [3], however, in or-
der to produce more challenging signals the model was ex-
tended by adding colored noise tosd(n). Coloring is made
throughbandpass filtering of white noise (whose variance
is a factor 10 smaller than the sawtooth amplitude) with
cutoff frequencies at 1.8 and 6.2 Hz. Thus, the f-wave
model signals(n) is composed of a deterministic and a
random component:

s(n) = sd(n) + sr(n). (12)
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Figure 2. Illustrationof a simulated ECG signal: f-wave
signal (γ = 30 μV), ventricular signal (ECG with sinus
rhythm but with P waves removed), observed signal, refer-
ence signal, and its first and second derivatives.

Seventy-two ectopic-free 1-min segments were selected
from two-lead long-term ECG recordings in the MIT–
BIH Arrhythmia Database (only segments with normal
sinus rhythm) and the MIT–BIH Normal Sinus Rhythm
database [9]. The respective sampling rates of the
databases were converted to 250 Hz. The output of the f-
wave model was then added to one of the two ECG leads,
denotedy(n), to produce the signal for analysis:

x(n) = y(n) + s(n). (13)

The other ECG lead, denotedxr(n), served asthe ref-
erence signal. Figure 2 illustrates the atrial, ventricular,
and observed signals as well as the reference signal and its
derivatives.

In order to reduce the influence of residuals due to mis-
alignment, ABS was performed at an interpolated sam-
pling rate of 1 kHz. It should be noted that ABS was per-
formed only in the lead subject to QRST cancellation, but
not in the reference lead.

In this study, the RMS error betweens(n) andŝ(n), de-
notedP , is the principal performance measure in the time
domain. The first second of the analyzed signal was ex-
cluded from the computation ofP to avoid the inclusion
of transients caused by the cancellation method. The sta-
tistical significance of differences inP is determined using
the two-samplet-test. The statistical results are expressed
as mean±two-sided confidence interval (95%).

Thirty-six of the 72 simulated signals were used for ini-
tialization of the ESN parameters, whereas the remaining
36 were used for testing. The “initialization set” contains
signals with an f-wave amplitude of 30μV. The perfor-
mance measureP was computed for each of the 36 sim-
ulated signals and then averaged and taken as the overall

performance measure, denotedP̄ . Using the initialization
set the following parameter values are used for the perfor-
mance evaluation below: reservoir sizeN = 100, forget-
ting factorsλ = 0.999, andα = 0.8, the reservoir spectral
radius set to 1, input scaling set to 1, and reservoir con-
nectivity set to 20%. In addition, the hyperbolic tangent
is used as reservoir activation function, whereas the iden-
tity activation function is used as output neuron. The RLS
algorithm is initialized withδ = 0.01.
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Figure 3. (a)The performance measurēP for different f-
wave amplitudes using ESN and ABS. (b) Estimates of the
dominant AF frequency for a true AF frequency of 6 Hz.
Results are expressed as mean±two-sided confidence in-
terval.

4. Results

The results presentedbelow are based on the test set
with 36 signals, but extended using a fixed f-wave ampli-
tude γ in each set, incremented in steps of 10μV from
10 to 50μV. These amplitudes were selected so as to put
special emphasis on the problem of how to extract low-
amplitude atrial activity, a problem which has not received
much attention in the engineering literature.

Figure 3(a) presents the performance of the ESN and
ABS in the time domain as quantified bȳP calculated
for the entire signal. The results show that the ESN is
much better in extracting the f-wave signal than is ABS
with a mean and standard deviation ofP̄ESN = 24.8±7.3
andP̄ABS = 34.2±17.9μV (p < 0.001). Figure 3(b) dis-
plays the results from estimating the dominant AF fre-
quency at different f-wave amplitudes. It is clear that the
ESN offers superior performance at most amplitudes: ac-
curate estimates are produced for amplitudes of 20μV or
larger, whereas ABS requires at least 40μV. The perfor-
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mance loss ofABS is largely due to low-frequency resid-
uals of ventricular activity which cause the dominant AF
frequency to be underestimated. Figure 4 illustrates the
performance of the ESN when ECGs recorded during AF
are processed. Lead I and V1 is subject tocancellation,
whereas V6 is used asthe reference lead. Similar to the
results obtained on simulated ECG signals, the ESN is ca-
pable of handling morphological beat-to-beat variability
while ABS struggles when atrial to ventricular activity ra-
tio is low as well as when the single ectopic beat occurs,
see Fig. 5.
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Figure 4. QRSTcancellation in ECG signals recorded dur-
ing AF and corresponding power spectra. The lead subject
of cancellation is (a) I and (b) V1.
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Figure 5. Exampleof QRST cancellation in ECG signal
with single ectopic beat.

5. Conclusions

The presentstudy shows that the ESN is well-suited
for cancellation of ventricular activity during AF. Based

on simulated signals as well as ECG examples with AF,
the results demonstrate that the handling of small f-waves,
variations in beat amplitude and morphology are strengths
of the ESN. When comparing performance to that of ABS,
the ESN is found to perform better both when quantified
in the time and frequency domain. The ESN is suitable for
implementation in a system which operates in real time.
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