NANOMATERIALS

|--|

Carbon- and/or nitrogen-containing thin films and nanomaterials

This symposium is focused on Carbon and/or Nitrogen containing thin films and nano-materials. The objective is to provide an exchange platform for scientists, engineers and students dealing with the synthesis, characterization and application of these materials. Experimental and theoretical papers as well as industrial contributions are welcome.

Scope:

Carbon or nitrogen containing thin films and nano-materials offer a wealth of structures based on metastable phases, nanocomposites or nanosized multilayers and low-dimensional structures which allow various properties such as optical, optoelectronic, magnetic, electrical and mechanical ones. Metastable films can consist on plasma polymers, diamond-like carbon or CNx phases while nanocomposite can be tailored by adding either metallic or non-metallic elements with various Carbon or Nitrogen affinity in amorphous or crystalline matrixes. Finally, nitride and carbon-based low-dimensional structures such as flakes, tubes,... can be functionalized by appropriate chemical functionalities to be integrated in a composite material or to be used as building part in a nanomachine. The objective of this symposium is to highlight the progresses in fundamental and applied issues related to the development of these materials and to bridge the gap between science and technology. Among others, Carbon or Nitrogen containing films or composites materials consisting on nanocrystalline particles embedded in an inorganic and/or organic matrix, including plasma polymers, will be considered. On the other hand, nanolaminated structures such as MAX-phases are also in the scope of this symposium. Finally, we also aim to address Carbon and Nitrogen based low-dimensional structures unembedded or not in a matrix.

Contributions investigating plasma composition – material structure - films property – relationships by experimental and theoretical means will be considered. The foreseen contributions will belong to one of these categories: (i) films synthesis by advanced processes, such as high power impulse magnetron sputtering, atmospheric plasma processes, and hybrid techniques, (ii) mechanical, tribological, thermal, electrical, optical, optoelectronic and magnetic properties, biomedical compatibility, and correlations

between these properties and deposition parameters, structure or films' composition, (iii) process modeling and diagnostic, surface interaction and nucleation phenomena, investigation of degradation mechanisms e.g. phase and microstructure stability under different environments and coating-substrate interdiffusion, (iv) engineering-oriented contributions including automotive, chemical, electrical, optical, magnetic/optical data storage, pharmaceutical or biomedical applications, and emerging applications as in energy systems.

Hot topics to be covered by the symposium:

- Novel fabrication and synthesis routes in physical and (plasma enhanced) chemical vapor deposition.
- Advances in controlled growth of nanocomposite thin films and nanostructured materials.
- Plasma treatment and synthesis of low dimensional Nitrogen and Carbon based low dimensional structures including their characterizations.
- Diagnostics providing insight into the growth process and resulting material properties.
- · Modeling of growth processes and film properties.
- Degradation mechanisms linked to phase and microstructure stability and interdiffusion.
- Multifunctional coatings with advanced applications in tribology, optics, data storage, (bio)sensing and emerging technologies.
- Development of methods for characterization of nanomaterials.
- Biomedical and pharmaceutical applications of coated materials.

List of confirmed invited speakers:

- T. Belmonte (Institut Jean Lamour, University of Lorraine, Nancy, France): Advanced processes for plasma synthesis of nanostructures.
- A. Cavaleiro (University of Coimbra, Portugal): Plasma assisted PVD processes for the fabrication of nitride and carbide functional materials.
- V. Chirita (Linköping University, Linkoping Sweden): Computational studies (DFT and MD)
 dedicated to thin film growth and materials properties.
- P.-L. Girard-Lauriault (McGill University, Montreal, Canada): Recent advances in Nirogen-Rich Plasma Polymer Films.
- F. Reniers (Chani, ULB, Belgium): Atmospheric pressure plasma for the synthesis of functional plasma polymer films.
- A. Manakhov (National University of Science and Technology, Moscow, Russia): Multifunctional bioactive nanostructured thin films for biomedical applications.

- E. Neyts (University of Antwerp, Antwerp, Belgium): Modeling and simulating dynamic processes in reactive systems at the atomic and molecular scale.
- M. Quintana (University of San Luis Potosi, San Luis Potosi, Mexico): Utilization of carbon-based nanoparticles in biomedical applications.
- E. Sardella (Instituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy): Polymeric films and nanomaterials.
- A. Vladescu (National Institute for Optoelectronics, Bucharest, Romania): Multifunctional coatings with advanced applications in energy-relevant fields.

Scientific committee:

G. Abadias (France), J. Baranowska (Poland), M. Braic (Romania), A. Cavaleiro (Portugal), V. Craciun (Romania), U. Cvelbar (Slovenia), A. Gonzalez-Elipe (Spain), D. Hegemann (Switzerland), P. Kelires (Cyprus), S. Konstantinidis (Belgium), O. Kylian (Czech Republic), N.B. Laidani (Italy), F. le Normand (France), E. Lewin (Sweden), C. Mitterer (Austria), F. Palumbo (Italy), P. Patsalas (Greece), I. Petrov (USA), T. Polcar (UK/Czech Republic), N. Radic (Croatia), G. Radnoczi (Hungary), K. Sarakinos (Sweden), J.M. Schneider (Germany), D. Shtansky (Russia), M. Stueber (Germany), S. Tamulevicius (Lithuania), P.-Y. Tessier (France), V.V. Uglov (Belarus), J. Vlček (Czech Republic)

Publication:

The symposium proceedings will be published in the journal **"Thin Solid Films"** (**Elsevier Ltd.**) after a standard peer-review processing.

The deadline for submissions of the proceedings in Thin Solid Films has been fixed the **15/08**. The link is as follow: http://ees.elsevier.com/tsf/default.asp

To ensure that all manuscripts are correctly identified for inclusion into the special issue, it is important that you select 'VSI: EMRS 2018 – Symposium L' when you reach the "Article Type" step in the submission process.

START AT SUBJECT View All NUM. ADD

12:00 *Lunch*

Manage services

START AT	SUBJECT	View All	NUM.	ADD
	C-based nanostructures I : Quintana	Mildred		
13:30	Atomistic Modeling of Carbon Nanostructures: Challenges and Opportunities		L.1.1	$\stackrel{\wedge}{\Box}$
14:00	One-pot synthesis of composites from carbon n and quantum dots through heteroaggregation	anotubes	L.1.2	\Diamond
14:15	Bandgap Engineering in Graphene through inte nanoribbons at the surface – a DFT study.	rfacing	L.1.3	☆
14:30	Synthesis of nitrogen-rich nanotubes and utiliza hybrid full-cell capacitors	ition to	L.1.4	☆
14:45	Boron, Nitrogen Co-Doped Graphene Sheets G Chemical Vapor Deposition: Synthesis and Influ Gas pressure	•	L.1.5	☆
15:00	Graphene Coating Generation by the Electroch and Femtosecond Laser-Assisted Reduction of Graphene Oxide		L.1.6	\Diamond
15:15	Internal photoemission of electrons from monolographene into SiO2	ayer	L.1.7	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
15:30	Dynamics of nitrogen-doped graphene growth the nickel catalyst, investigated by in situ XPS	rough	L.1.8	\Diamond
15:45	Breaking the Electrical Barrier between Copper a Carbon Nanotubes	nd	L.1.9	\Diamond
16:00	Coffee			
16:30	Study on fabrication, characterization and perform of CNT films	mance	L.1.10	\Diamond
16:45	Fe Phthalocyanine Derivative Modified Carbon Electrodes for High Performance Oxygen Reduct Reaction	ion	L.1.11	\Diamond
	Modelling : Jean-François Pierson			
17:00	From Ab-Initio Design to Synthesis of Multifunction Coatings with Enhanced Hardness and Toughness		L.2.1	\Diamond
17:30	Electronic structure tuning of Graphene/VS2 heterostructures		L.2.2	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
17:45	Ab Initio Study of Ambient Gases Reacting with Amorphous Carbon	1	L.2.3	\Diamond
18:00	Electronic and vibrational properties of 3D MAX and 2D MXenes: from experiments to first-prince modelling	-	L.2.4	\triangle
18:15	Probing Local Absorption in Carbon-Metal Nanocomposites through First-Principles Calcu	ılations	L.2.5	\Diamond
START AT	SUBJECT	View All	NUM.	ADD
	Bio applications : Hegemann Dirk			
08:30	PLASMA DEPOSITION OF LONG-LASTING HYDROPHILIC AND MULTIFUNCTIONAL FRE STANDING COATINGS	ΞE	L.3.1	\Diamond
09:00	Antibacterial thin films with tailorable release of antibacterial agents	:	L.3.2	\Diamond
09:15	Biomedical Applications of Hexagonal Boron Ni	itride	L.3.3	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
09:30	Graphene nanoplatelets-sericin surface-modifi alloy for improved biological response	ed Gum	L.3.4	\Diamond
10:00	Coffee			
	Nitrides I : Pierson Jean-François			
10:30	Influence of the Si content in SiCN:H thin films deposited by hybrid ECR and rf-PVD on their mechanical and optical properties		L.4.1	\Diamond
10:45	Optimization of sputtered ultrathin TiN films for plasmonic application	-	L.4.2	\Diamond
11:00	Nanoscale conformal films of graphitic carbon deposited at room temperature, for construction heterojunction devices		L.4.3	\Diamond
11:15	Evaluation of applicants for the student awards	S		
12:00	Lunch			
	Hard coatings : Cavaleiro Albano			

START AT	SUBJECT	View All	NUM.	ADD
13:30	Multifunctional Ti based carbonitride coatings f applications in severe environments	or	L.5.1	\Diamond
14:00	Thermal stability of reactively sputtered HfTaTi entropy nitride coatings	VZr high-	L.5.2	\Diamond
14:15	Structure and mechanical properties of CrN/S-composite coatings	phase	L.5.3	\Diamond
14:30	Ultrathin DLC films and its transformation into g	graphitic	L.5.4	\Diamond
14:45	Micrometer thick DLC coatings on metal substrusing HIPIMS sputtering of C target in various mixtures	•	L.5.5	\Diamond
15:00	Diamond like carbon nanocomposite films with embedded copper nanoparticles deposited by magnetron sputtering for saturable absor		L.5.6	\Diamond
15:15	Nanocrystalline diamond films synthesized at le substrate temperature in distributed antenna a microwave system		L.5.7	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
15:30	Evaluation of DLC coatings for use in watch ap	plications	L.5.8	\Diamond
15:45	Optical response of hydrogenated amorphous on nanocomposite films with embedded metal (Agnanoparticles		L.5.9	\Diamond
16:00	Coffee			
	Poster session I : Graphene and car organic coatings : Pierson J-F.	bon nanotube	s / DLC a	nd
16:30	The effect of multilayer PTFE/ organic silicone structure on biotribological properties of their su	•	L.11.1	\Diamond
16:30	Rapid thermal annealing effect on characteriza CNW by chemical vapor deposition	tions of	L.11.2	\Diamond
16:30	Magnetic properties of aligned arrays of either nanotubes or silicon nitride nanocones grown be catalytic CVD.		L.11.3	\Diamond
16:30	Kinetics of ultrathin DLC transformation into grafilms	aphitic	L.11.4	\triangle

START AT	SUBJECT	View All	NUM.	ADD
16:30	Photothermal reduction of chemically exfoliated graphene oxides using intense pulsed light	i	L.11.5	\Diamond
16:30	Scalable synthesis of highly porous graphene was turbostratic stacking by thermal process of graph oxide sponge		L.11.6	\Diamond
16:30	Strong enhancement of emission efficiency in 0 emitting diodes by plasmon-coupled light ampli of graphene	•	L.11.7	\Diamond
16:30	Structural and mechanical characterization of amorphous carbon-silicon thin films deposited stainless steel substrates	on	L.11.8	\Diamond
16:30	Twist-controlled minimum conductivity and should bilayer graphene junction	t noise in	L.11.9	\Diamond
16:30	Conductivity and Surface Energy of Graphene Depending on the Surface Morphology of Cu S Film Deposited by Sputtering	ubstrate	L.11.10	\Diamond
16:30	Novel Synthesis of Size-controlled Single Cryst Graphene Quantum dots and its photonic beha		L.11.12	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Investigation of graphene influence on the perfo of electrochromic devices	rmance	L.11.13	\Diamond
16:30	Spectroscopic Manifestation of Intravalley Doub Electron-Phonon Resonance Processes in Sing Bilayer Graphene Systems		L.11.14	\Diamond
16:30	CNW/W particles hybrid materials synthesized by plasma techniques	by	L.11.15	\Diamond
16:30	Printability of functional inkjet inks onto commer inkjet substrates and a taylor made pigmented or paper		L.11.16	\Diamond
16:30	Electrochemical properties of nitrogen-doped gr for environmental sensors	aphene	L.11.17	\triangle
16:30	Effects of additives on atmospheric pressure glicapplied to the modification of polymers	de arc	L.11.18	\Diamond
16:30	Nanoscale wettability of plasma deposited carbonanowall layers, by Scanning Polarization Force Microscopy		L.11.19	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Highly selective and ultrasensitive electrochemiluminescent aptasensor based on cyclodextrin/graphitic carbon nitride composit	ι β-	L.11.20	\triangle
16:30	Molecularly imprinted Electrochemical sensor for brucine based on PoPD/SWNTs composite film		L.11.21	\Diamond
16:30	Dielectric thin films for organic transistor technology	ologies	L.11.22	\Diamond
16:30	Numerical investigation on deformation-induce damages of graphene in transfer process	d	L.11.24	\Diamond
16:30	Mesoporous carbon films fabrication by Matrix- Pulsed Laser Evaporation	-Assisted	L.11.25	\Diamond
16:30	Synthesis and characterization of materials wit combined antifouling and antimicrobial activity	h	L.11.26	\Diamond
16:30	Influences of nitrogen doping on compressive of open-tip carbon nanocones	behaviors	L.11.27	\Diamond
16:30	Short pulse plasma assisted WCN diffusion ba Cu Through Silicon Vias	rrier for	L.11.28	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Influence of deposition parameters on morphol properties of (C,N)-alloyed stainless steel coati	••	L.11.29	\Diamond
START AT	SUBJECT Nitrides II : Vladescu Alina	View All	NUM.	ADD
08:30	Atmospheric pressure plasma for the synthesis functional plasma polymer films	; of	L.6.1	\Diamond
09:00	APCVD growth of multilayered hexagonal boro on Ni-Cu alloys	n nitride	L.6.2	\Diamond
09:15	Novel high-doped BN nanosheets. Electronic a engineering.	nd optical	L.6.3	\Diamond
09:30	Critical Layer Thickness Determination Of GaN Films On Sapphire Grown By Hollow-Cathode Assisted Atomic Layer Deposi		L.6.4	\Diamond
09:45	Tetragonal lattice distortions in multicomponent and nitride thin films	t carbide	L.6.5	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
10:00	Coffee			
10:30	Macrostress control in flexible Ti(Al,V)N films		L.6.6	\Diamond
10:45	Radiation Induced Effects in Highly Stressed Nanocrystalline ZrN Thin Films		L.6.7	\Diamond
11:00	FeCrC amorphous alloys thin films deposited by magnetron sputtering		L.6.8	\Diamond
11:15	New nickel nitride (Ni2N) synthesised by reactiv magnetron sputtering	e	L.6.9	\Diamond
11:30	In-situ solid lubricant formation on W or Mo base carbide and nitride coatings in lubricated tribo co		L.6.10	\Diamond
11:45	Optoelectronic properties of GaNAsBi/GaAs strastructures	ained	L.6.11	\Diamond
12:00	Lunch			
	Plasma and polymers : Snyders Rony	/		

START AT	SUBJECT	View All	NUM.	ADD
13:30	Recent Advances in Nitrogen-Rich Plasma Poly Films	mer	L.7.1	\Diamond
14:00	High hardness and water-repellent plasma polytility fluorocarbon thin film deposited by mid-range from sputtering		L.7.2	\Diamond
14:15	The substrate temperature: a key parameter for the mechanical properties of plasma polymer file	•	L.7.3	\Diamond
14:30	Nanoscopic Conformality and Penetration Depth Plasma Polymerization onto Electrospun Polycaprolactone Nanofibrous Mat	า of	L.7.4	\Diamond
14:45	Highly stabilized amine-functional plasma polymethanks to a well-defined vertical gradient nanoarchitecture	ner films	L.7.5	\Diamond
15:00	Atomic structure, bonding and morphology of cacontaining films: Raman and XPS study	arbyne-	L.7.6	\Diamond
15:15	Carbon based planar structures with alternating properties obtained by sequential PECVD/PVD techniques		L.7.7	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
15:30	Preparation and photocatalysis properties of unimos2 nanosheets in-situ grown on the surface of graphene thin film		L.7.8	\Diamond
16:00	Coffee			
16:30	Plenary			
17:45	Awards			
START AT	SUBJECT	View All	NUM.	ADD
	C-based nanostructures II : Sardella	Eloisa		
08:30	Moleculary designed carbon based architecture towards smart self-assembled materials	s: A rout	L.8.1	\Diamond
09:00	Study of anisotropic transport in as-grown and of free-standing epitaxial graphene by terahertz carenhanced optical Hall	•	L.8.2	\Diamond
09:15	Nitrogen-doped carbon nanomaterials for gas so and catalysis: a spectroscopic point of view	ensing	L.8.3	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
09:30	Nanocarbon shapes matter. A journey to function composites.	nal	L.8.4	\Diamond
09:45	Graphene oxide quantum dots obtained by unfo fullerene	lding	L.8.5	\Diamond
10:00	Coffee			
10:30	Highly stretchable organic-inorganic hybrid electropered by co-sputtering for stretchable and we electronics		L.8.6	\Diamond
10:45	Charge-transfer between Graphene and Carbor nanodots or small molecules	1	L.8.7	\Diamond
11:00	Tunable Diode Characteristics of Graphene via and DUV irradiations	Al2O3	L.8.8	\Diamond
11:15	Carbon nanotubes synthesis using natural limor laterite as catalyst source	nite	L.8.9	\Diamond
11:30	Ultra rapid and ultra efficient microwave synthes processing of graphene and MAX phases	sis and	L.8.10	\Diamond

;	START AT	SUBJECT	View All	NUM.	ADD
•	11:45	Holey carbon nanotube-based membrane and it potential application for nanofiltration	cs	L.8.11	\Diamond
	12:00	Lunch			
		Composites : Jajickova Lenka			
•	13:30	Ag-containing nanocomposite coatings deposite magnetron sputtering"	ed by	L.9.1	\Diamond
	14:00	Magnetron sputtered high-temperature Hf-B-Si-X (X = Y, Ho, Mo, Zr, Ta) films with controlled prop		L.9.2	\Diamond
•	14:15	Nanoscale characterization of mechanical and of wear mechanisms of advanced nanocomposite biotribological coatings		L.9.3	\Diamond
•	14:30	Deposition and study of superhard multilayer Cr films for their physical and mechanical propertie enhancement.		L.9.4	\Diamond
	14:45	Mechanical properties and crystallization behaving nanocarbon/polyamide 6 composites	ior of	L.9.5	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
15:00	Surface Wettability of GO/Acrylic and FLG/Acry Nanocomposite Coatings on 3D-Printed PLA S		L.9.6	\Diamond
15:15	Room temperature growth of ZnSnN2 thin films photovoltaic applications	s for	L.9.7	\Diamond
15:30	Green synthesis of silver nanoparticle-reduced graphene oxide composite as SERS and lumin "turn-off" sensors		L.9.8	\Diamond
15:45	METAL OXIDE ANCHORED GRAPHENE-GOI NANOPARTICLE HYBRID ELECTRODES FO ENERGY APPLICATIONS		L.9.9	\Diamond
16:00	Coffee			
	Poster session II : Composites / Nar Zajickova Lenka	no / Nitrides / ገ	Γhin films	:
16:30	Engineering Metal–Organic Framework-Derive doped Carbon Nanorods towards High-Perform Supercapacitors		L.12.1	\Diamond
16:30	Characterization of porous Si:C and SiO2:C lag	yers by	L.12.2	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Color changing pH sensor based on silica film chemically immobilized indicator dye	with	L.12.3	\Diamond
16:30	Cost-saving preparation and magnetic behavionano-Ni@C composite material	or of	L.12.4	\Diamond
16:30	Preparation and Magnetic Properties of Carbo Nano-Co Particles	n Coated	L.12.5	\Diamond
16:30	Synthesis of ?-Si3N4 submicron-rods and nan- from Si(NH)2 powers synthesized by liquid-liquid method		L.12.6	\Diamond

L.12.7

START AT SUBJECT View All NUM. ADD

16:30 Modeling of nitrogen and hydrogen stress assisted diffusion in plasma nitrided austenitic stainless steel

Authors: Arvaidas Galdikas, Teresa Moskalioviene Affiliations: Physics Department, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania.

Resume: The present work studies the internal stress assisted hydrogen and nitrogen diffusion in austenitic stainless steel (ASS) taking place during plasma nitriding using various mixtures of nitrogen and hydrogen. A systematic model for nitrogen transport in ASS that takes into account the hydrogen actions at steel surface and bulk, hydrogen and nitrogen adosbtion and diffusion with concentration dependent diffusion coefficient and stress interaction is proposed. It is shown, that the stress effect on the nitrogen flux should be considered in nitrided ASS because they are subjected to the large internal stress induced by the lattice expansion when hydrogen and nitrogen atoms intrude in the steel matrix. The variation of stress changes the diffusion force, which is the gradient of chemical potential, and affects the interstitials distribution and, consequently, have effects on the nitriding kinetics. Moreover, although these results are obtained from the ASS-nitrogen-hydrogen system, our conclusions can be extended to the diffusion problem of other interstitials in metal alloys. Finally, it was shown, that the addition of hydrogen in H2-N2 mixture flux with concentrations in the range ~ (30 ? 40) % enhances nitrogen penetration into steel due to the hydrogen actions at steel surface. The obtained theoretical results are qualitatively consistent with the available experimental data.

START AT	SUBJECT	View All	NUM.	ADD
16:30	Electrical and optical properties of (Zr,Y)N thin plasmonic applications	films for	L.12.8	\Diamond
16:30	Engineering Metal–Organic Framework-Derive Submicrorods towards High-Performance Supercapacitors	ed Carbon	L.12.9	\Diamond
16:30	Light-emitting nano-BN fabricated by direct cat synthesis under concentrated light	alyst-free	L.12.10	\Diamond
16:30	Nitrogen-doped anatase {001}TiO2 hierarchical nanosheets spheres for highly efficient photocal Hydrogen evolution		L.12.11	\Diamond
16:30	Microwave vaporization and ionization of the metal/carbon wires with high boiling point		L.12.12	\Diamond
16:30	Effect of deformation on phases formation and properties of surface layers in Fe-based alloys diffusion of N and C		L.12.14	\Diamond
16:30	Lanthanum cobaltite LaCoO3 and LaCoO(3-x) produced by magnetron co-sputtering as selector for thermal solar collector		L.12.15	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Direct liquid injection chemical vapor deposition porous tungsten oxycarbide thin films	of	L.12.16	\Diamond
16:30	Application of CAG-functionalised spread-tow ca fibre electrodes in fuel cells and redox flow batte		L.12.17	\Diamond
16:30	Conductive polymer/carbon composite thin films obtained by pulsed electron beam deposition tea		L.12.18	\Diamond
16:30	Wide-angle Gradient-index Antireflective Coating Polymer Eyeglasses Lens	g for	L.12.19	\Diamond
16:30	Nitrogen doped multifunctional carbon encapsul Fe/Fe3C nanostructures synthesized by one-stepyrolysis		L.12.20	\Diamond
16:30	Synthesis by laser pyrolysis and characterization highly N doped Carbon nanopowders	n of	L.12.21	\Diamond
16:30	Optical anisotropy studies of GaN on Si (100) gr hollow-cathode plasma-assisted atomic layer de		L.12.22	公

START AT	SUBJECT	View All	NUM.	ADD
16:30	Fabrication of functional thin films by sputtering using powder target	g method	L.12.23	\Diamond
16:30	Corrosion and tribological behaviour of carbon based coatings in saline solution	itride	L.12.24	\Diamond
16:30	Atmospheric pressure plasma deposition of antimicrobial coatings using ZnO nanoparticles embedded in organosilicon films deposited on surfaces		L.12.25	\Diamond
16:30	Comparative study on structural and optical pr of GaN grown on (001) and (113) GaAs substr	•	L.12.26	\Diamond
16:30	Effect of N and Bi resonant states on the band and absorption coefficient of GaAs1-x-yNxBiy/strained quantum well		L.12.27	\Diamond
16:30	Characterization of Carbon Nanoparticles Prep by Gliding Arc Discharge	oaration	L.12.28	\Diamond
16:30	Study of Palladium-Nickel Alloy/Reduced Grap Oxide Hybrid filled EVA Polymer Nanocompos EMI Shielding Applications		L.12.29	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
16:30	Characterization of (Zr,Ti)CN coatings for biomapplications	edical	L.12.30	\Diamond
16:30	Tunable electrical, optical and structural proper (Y,In)N/Si thin films prepared by reactive RF m sputtering		L.12.31	\triangle
16:30	Investigation of stainless steel alloyed TiSiC coprepared in C2H2 atmosphere by cathodic arc	•	L.12.32	\Diamond
16:30	Synthesis and nanomechanical properties of hydrogenated amorphous carbon films with me Ti) nanoparticles	etal (Ag,	L.12.33	\Diamond
16:30	Enhancing electrical conductivity of MWCNT/e composites with graphene nanoplatelets	роху	L.12.34	\Diamond
START AT	SUBJECT	View All	NUM.	ADD
	Nanomaterials : Mitu Bogdana			

START AT	SUBJECT	View All	NUM.	ADD
08:30	Advanced processes for plasma synthesis of nanostructures		L.10.1	\Diamond
09:00	Hierarchical Multi-shelled Zn-Co Bimetallic Oxid Hollow Nanospheres @ N-doped Carbon for H Performance Lithium-Ion Batteries		L.10.2	\Diamond
09:15	Fabrication and luminescent property of carbor nanodots directly grown on silicon-based subst without any metal catalysis		L.10.3	\Diamond
09:30	N-doped TiO2-based photoanode by combining magnetron sputtering and ion implantation for constituted solar cells app	-	L.10.4	\Diamond
09:45	Fabrication of π -conjugated carbon-like polym nanospheres through morphological stabilization lactoglobulin		L.10.5	\Diamond
10:00	Coffee			
10:30	Growth of Metal Oxide Nanostructures on Grap Nanosheets	bhene	L.10.6	\Diamond

START AT	SUBJECT	View All	NUM.	ADD
10:45	Dislocation structure and microstrain changes of spinodal decomposition of single crystal c-(Ti,A films	_	L.10.7	\triangle
11:00	C-enhanced nano-engineered chalcogenide ph change materials for improved resistive phase- memories		L.10.8	\triangle
11:15	Influence of catalyst precursor and nitrogen dop pyrolyzed multifunctional carbon structures	oing on	L.10.9	\Diamond
11:30	Surface modification of nanomaterials for gaining antibacterial properties and enhanced biocompa	•	L.10.10	\Diamond
12:00	Closing			

Symposium organizers

Bogdana MITU

National Institute for Lasers, Plasma and Radiation Physics

Atomistilor 409 Street, Magurele, Bucharest, 077125 Romania

Phone: +40 21 457 44 70 Mail: bogdana.mitu@inflpr.ro,

mitub@infim.ro

Jean-François PIERSON

Université de Lorraine – Institut Jean Lamour

Parc de Saurupt – CS 50840, 54011 Nancy cedex, France

Phone: +33 (0)3 83 58 43 42 Mail: jean-francois.pierson@univ-

lorraine.fr

Lenka ZAJICKOVA

Masaryk University

Central European Institute of Technology, Kamenice 5, Brno 625 00, Brno, Czech Republic

Phone: +420 54949 8217 Mail: lenkaz@physics.muni.cz

Rony SNYDERS

University of Mons

20, place du Parc, 7000 Mons, Belgium

Phone: +32 65 55 49 55

Mail: rony.snyders@umons.ac.be

EUROPEAN MATERIALS RESEARCH SOCIETY