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Abstract: The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often 
necessary to use approximations in the case the system is non-Markovian. Phase type distribution is by now indispensable tool in 
creation of stochastic system models. The paper suggests a method and software for evaluating stochastic systems approximations by 
Markov chains with continuous time and countable state space. The performance of a system is described in the event language used for 
generating the set of states and transition matrix between them. The example of a numerical model is presented. 
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1. Introduction  

A problem in system modeling having a wide range 
of important practical applications arises when the 
system is inherently stochastic and complete statistical 
description is not known. In order to evaluate system 
performance, a mathematical model must be developed. 
As the system is random in nature, a statistically based 
model is required. 

Stochastic system models are often based on 
continuous-time Markov processes. Markov chains are 
commonly used for stochastic systems modeling. 

However, some important aspects of system 
behavior cannot be easily captured in a Markov model. 
Very often the life-times distributions connected with a 
system are simply not exponential. For example, 
electronic component failure times often 
approximately follow a Weibull or lognormal 
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distribution [1]. When an exponential distribution is 
both unrealistic and unsatisfactory for representing 
life-time distribution, then the usual approach is to use 
the “method of (exponential) stages” [2-6]. This 
method is both general and compatible with definition 
of Markov processes. It is general in what the authors 
can represent arbitrary distributions arbitrary closely. It 
is compatible with Markov processes because the only 
memory introduced is the distribution stage to 
accommodate this additional memory the authors 
refine their state definition. 

It is known that creation of analytical models 
requires large efforts. Use of numerical methods 
permits to create models for a wider class of systems. 
The process of creating numerical models for systems 
described by Markov chains consists of the following 
stages: (1) definition of the state of a system; (2) 
definition of the set of events that can occur in the 
system; (3) generating the states of the system and 
infinitesimal generator matrix; (4) creating equations 
describing Markov chain; (5) computation of stationary 
probabilities of Markov chain; (6) computation of the 
performance measures of the system. The most 
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difficult stages are obtaining the set of all the possible 
states of a system and transition matrix between them. 
A method for automatic construction of numerical 
models for systems described by Markov chains with a 
countable space of states and continuous time is 
proposed in the paper. 

To construct a model, it is needed to describe the 
performance of a stochastic system in the event 
language [7-9]. It allows automating some stages of the 
model. The created software in C++ generates the set 
of possible states, the matrix of transitions among 
states, constructs and solves equilibrium equations to 
find steady state probabilities. The paper is organized 
as follows: Section 2 introduces the description of the 
behavior of a stochastic system; section 3 is given the 
example; section 4 presents conclusions. 

2. Description of the Behavior of a Stochastic 
System by Markov Processes 

Consider a stochastic system with a random state 
vector at time t: 

( ) ( ) ( ) ( )( )= 1 2 mY t Y t , Y t , ,Y t…   

where ( ) =iY t , i 1,m  are discrete random variables. 
Assume that the system can change a state at any time. 
If all the life-times connected with a system have 
exponential distribution, the process is Markovian and 
standard methods yield a set of ordinary linear 
differential equations to determine the behavior of the 
process and a set of simple linear equations to 
determine the equilibrium distribution, if one exists. 
Examples of life-times are the service-times in a queue, 
the intervals between the arrivals of successive 
customers in a queue, the division times of bacteria, 
and so on. Markov modelling is a common approach to 
analyzing the performance of various stochastic 
systems. 

Thus, many real world systems can be modeled by 
Markov chain ( ){ }≥Y t , t 0  with countable space of 
states and continuous time. The authors denote 
{ }= ≥jB S , j 1  where ( )mjjjj yyyS ,,, 21 …= is the 

state space and { } π= = ≥j jP Y S , j 1  is the 
probability of j-th state. The steady state probabilities 

can be calculated by solving the following system of 
equations: 

,j j k k j j
k j

S Bν π π λ
≠

= ∈∑  

where 1=∑
∈ BS

j
j

π , kjλ  is a transition rate from state k 

to state j and ,i ij i
j i

S Bν λ
≠

= ∈∑ . Based on the calculated 

probabilities, a wide range of relevant performance 
characteristics of system under investigation can be 
computed. 

Formally, a system can be depicted by the relation 
},{ RXS = , where 1 2{ , , ..., }nX X X X=  is the set of 

input elements into the system; R describes the 
behavior of the system, restrictions and control. The 
mechanism of input-output is needed to know as to 
describe the performance of the system. In other words, 
for given X and R, the vector 1 2{ , , ..., }mY Y Y Y= , is 
needed to find out, i.e., to know the 
depiction :{ , }f X R Y→ , i.e., for given { , }X R , it is 

possible to calculateY , if the depiction f is known. In 
such a way, deterministic can be described as 
stochastic systems. For deterministic systems given X, 
R and f the output vector Y is obtained with 
probability one. For stochastic systems, the output 
vector Y is a random value with distribution 

1 2( ( , , ..., ) , , ) , 1, 2, ...j j mj jP Y y y y X R f jπ= = =  

if the random value Y is discrete. 
Assume that a system works in stationary mode and 

states of the system change by influence of n events 
stream. The interval iX between two successive events 
is a random variable with distribution function ( )xGi , i 
= 1, n. So the set of input elements 

( )1 2, , ..., nX X X X=  consists of random variables. The 
output is a system state ( )mYYYY ,,, 21 …= . Now 
attention is turned to systems with non-Markovian 
event processes. In the absence of the memoryless 
property, the residual lifetimes of all events must also 
be remembered. Let the observed current state be Y, 
with a feasible event set E(Y). Each event )(YEe j ∈  
has a clock value (residual lifetime) jZ . Then, the 
probability that the triggering event is some je  is 
given by the probability that event has the smallest 
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clock value among all events in E(Y): 

( ) { }⎥⎦
⎤

⎢⎣
⎡ ==

∈ iYEejj ZZPeP
i )(
min  

To determine this probability, generally information 
on the random variables Zj  is needed. It is only in the 
case of Markov chains the memoryless property 
allowed to obtain: 

( )
)(Y

eP j
j Λ

=
λ  

where λ j  is the exponential rate of event je   and 

∑ ∈
=Λ

)(
)(

YEe i
i

Y λ  

In this case, no information on the random variables 
Zj is needed. 

Let 1 2, , ..., ke e e  be collection of exponential events 
with a common fixed rate, which the authors intend to 
use as building blocks. Then, a new event e  may be 
defined as occurring only after all events 1 2, , ..., ke e e  
have occurred in series, one immediately following the 
other. By adjusting the number k of building blocks 
used, a variety of events e  with different lifetime 
characteristics can be generated. Alternatively, e  
may be defined as occurring only after some event 

, 1, ...,ie i k=  has occurred, where ie  is chosen 
randomly with probability ip. Again, by adjusting the 
probabilities ip  and the number k, different event 
processes could be generated. In this way, an event e  
is decomposed into stages, each stage represented by 
building-block event ie . The idea here is to preserve 
the basic Markovian structure (since all building-block 
events are Markovian). At the expense of larger state 
space (since the authors will be forced to keep track of 
the stage the system is in, in order to be able to tell 
when e  does in fact occur). The suggested method of 
constructing distribution is called the phase-type 
distribution or a mixture of exponential distributions. 

A popular approach in mapping a general probability 
distribution, G, into a phase type (PH) distribution, P, 
is to choose P such that some moments of P and G 
agree. To obtain  accurate results, it is desirable to 
match as more as possible moments of the input 
distribution G by P. Matching more moments may be 

possible if many exponential distributions (phases) are 
allowed to use. However, the use of many phases in the 
PH increases the complexity of the Markov chain, and 
makes its analysis hard. Matching many moments 
using a small number of phases may be possible if 
unbounded computational resources are allowed to use 
or if the class of input distributions is limited. However, 
these limitations are not desirable. Achieving all the 
four desirable properties is the challenge in designing a 
moment matching algorithm [3]: 

(1) It is desirable that more moments of the input 
distribution, G, and matching PH distribution, P, agree; 

(2) It is desirable that P have a small number of 
phases; 

(3) It is desirable that the algorithm be defined for a 
broad class of input distributions; 

(4) It is desirable that algorithm have short running 
time. 

The general approach in designing moment 
matching algorithms in the literature is to start by 
defining a subset S of PH distributions, and then map 
each input distribution into a distribution in S. 

The following is m non-intersected sets (building 
blocks): 

{ }( )( ) ( ), , 1,
k

i xk k
k i i kA p e i nμμ −= =

( )

1

1, 1,
kn

k
i

i

p k l
=

= =∑
 

where xk
i

k
ie

)()( μμ − —exponential probability distribution. 
From the sets , 1,kA k l= , the desired structure of 
exponential stages can be constructed. The Laplace 
transform gives some function F(s). It is shown that the 
poles of the function may be complex numbers. Since 
F(s) is always real then the complex poles must be 
present in conjugated pairs and real parts of the poles 
must be negative. Then despite of the fact that { }iμ  
are complex, it may be formally possible to investigate 
the process as Markovian [10]. 

To find the unknown parameters of exponential 
stages, the system of equations must be solved. 
Equating the first initial moments νi of the original 

( )xG  and the approximating density 
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( )
0( 1) ( ) , 1, 2, ...,i i

i sF s i jν == − =  

and adding the condition of the zero initial moments 
equality to 1, the authors receive a system of nonlinear 
algebraic equations for the unknown parameters 
determination; j is the number of unknown parameters. 

Life-time T has a general probability distribution 
function G(t). Useful approximation can be obtained by 
the mixture of exponential (phase-type) distributions 
[9]. Suppose that mET =  and 2σ=DT . The 
function G(t) approximate by the distribution of a 
random variable represented as 

1 2

1

with probability
with probability 1

X X p
X

X p
+⎧

= ⎨ −⎩
 

where 1X and 2X are independent random variables 
having exponential distributions with respective means  

11 μ and 21 μ . In words, the life-time X first goes 
through an exponential phase 1X and next it goes 

through a second exponential phase 2X with 
probability p or it goes out with probability 1-p. 

Approximation of general distribution G using 
phase-type distribution is depicted in Fig. 1. 

The distribution function of variable X is given by 

)(1)( 121

12

1 xxx ee
p

exF μμμ

μμ
μ −−− −
−

+−=  

where 
2 2

2 2
1,2 2 2 2

1 2 1 , 1, 1,
( 1) ( 1)

i p i
m m m

ν σμ ν
ν ν

+
= ± ⋅ = = − =

+ +  
if 

2
12 <ν , and 

1 2 2 2

2 1 1, ,
2

p
m m

μ μ
ν ν

= = = , if 

2
12 ≥ν . 

After approximation, a new system, isomorphic to 
the original system is obtained. So the authors could 
expand the class of stochastic systems which are 
possible to model by Markov chains. 
 

 
Fig. 1  Approximation of a general function. 

It is known that creation of analytical models 
requires large efforts. Use of numerical methods 
permits to create models for a wider class of systems. 
The process of creating numerical models for systems 
described by Markov chains consists of the following 
stages: (1) definition of the state vector 

( );...,,, 21 mYYYY = (2) the set of events 
( )keeeE ...,,, 21=  which may occur in the system; (3) 

creating equations describing Markov chain; (4) 
computation of stationary probabilities of Markov 
chain; (5) computation characteristics of the system 
performance. The most difficult stages are obtaining 
the set of all the possible states of a system and 
transition matrix between them. 

3. Example 

Apply the described technique to construct a model 
of a queuing system with priorities. 

Consider the system { }RXS ,=  with the depiction: 

{ }
1 2

1 2

: ,

( ; , 1, )

( ; , 1, ; )

( , ..., )

j j

j

k

f X R Y

X X X j k

R NPRP Q l j k FCFS

Y Y Y +

→

= =

= ≤ =

=  
where the random variables jX1  describe the input 
flows of customers with preemptive priorities and  

jX 2  represent respective service times. 
The stochastic system is the queuing system with 

only one service node. The waiting rooms in queues 
jQ  are restricted by numbers jl . The inputs of 

customers are Poisson )( jM λ  with rates kjj ,1, =λ  
and respective service times are distributed by the 
following deterministic distribution functions: 

0,
( )

1,
j

j
j

x d
D x

x d
≤⎧

= ⎨ >⎩  
The service strategy is FCFS (first come first 

service). 
Approximate the distribution functions )(xDj  by 

the functions: 

( )( ) ( ) ( )
1 2 1

( )
1

( ) ( )
2 1

( ) 1
j j j

j
x x x

j j j

pG x e e eμ μ μμ
μ μ

= − + −
−  

where 
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( ) ( ) 2
1 2

1 1 1 11; ; , 1j j

i i i i

p i i i
d d d d

μ μ= = + ⋅ = − ⋅ = −
 

The performance of the queuing system can be 
described by Markov process with countable state 
space and continuous time. 

The set of possible events in the system is as the 
following: 

{ }1 2 3, 1, , ,jE e j k e e= =
 

where: 

je1 —arrived the a customer from j-th flow, ;,1 kj =  
2e —a customer is served in the first phase; 
3e —a customer is served in the second phase. 

The state of system is 

{ }1 2, 1, , ,j k kY Y j k Y Y+ += =
 

where: 

jY  —the number of customers from j-th flow; 

1

2

0, if the system is empty
j, if the customer is served from the jth flow

0, if the system is emty
1, if the customer is served in the first phase
2, if the customer is served in the second  ph

k

k

Y

Y

+

+

⎧
= ⎨

⎩

⎧
⎪= ⎨
⎪
⎩ ase

 

The number N of all the possible states in the system 
is equal to 

( )
1

2 1 1
k

i
i

N k l
=

= + +∏
 

Denoted by , 1,i i Nπ =  the steady state 
probabilities of the states; )( j

qL  is the average number 
of customers in j-th queue; )( j

qW  is the average waiting 
time in j-th queue. The denoted performance 
characteristics of the system are calculated by the 
formulas: 

1 2

( )
1 1 2

1 , ,

( ) ( )

( , ..., , ..., , , )

/ , 1,

j

j k

l
j

q j j k k k
y y y

j j
q q j

L y y y y y y

W L j k

π

λ
+

+ +
=

=

= =

∑ ∑
…

 

If the waiting rooms are not bounded, then the same 
characteristics may be computed analytically by the 
formulas [8]: 

( )2 2

( ) 1

1

( ) ( )

0
1

( ) ( )

2(1 )(1 )

0, 1, ( ), 1,

k

m m m
j m

q
j j

j j
q j q

j

j i i i i
i

E t t
W

S S

L W

S S E t j k

λ σ

λ

ρ ρ λ

=

−

=

+
=

− −

=

≡ = < = =

∑

∑
 

)(tE j and )(2 tjσ  are the service time means and 
dispersions. 

The system was modeled with the following 
parameters: 

1 2
1 1

1 2 1 2

2, 4, 3,

10 , 9 , 7, 11

k

d d l l

λ λ
− −

= = =

= = = =  
For computing the performance characteristics the 

complex probabilities were used. 
The results of numerical model are the following: 

(1) (2)

(1) (2)

0.25674, 0.72127,

0.064185, 0.2404233
q q

q q

L L

W W

= =

= =  
The results of analytical model are 

( ) ( )1 2

(1) (2)

0.25679, 0.72132

0.0641975, 0.24044
q q

q q

L L

W W

= =

= =  

4. Conclusions 

The results showed that a non-Markovian queuing 
system with infinite number of states can be 
approximated by Markovian model with finite number 
of states with required accuracy. The complex 
probabilities may be used. The proposed approach for 
modeling non-Markovian systems can be applied for 
modeling financial markets and queuing systems. 
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