Title |
Using higher order nonlinear operators for SVM classification of EEG data / |
Translation of Title |
Netiesinių aukštesnės eilės operatorių taikymas EEG duomenims klasifikuoti naudojant SVM klasifikatorių. |
Authors |
Martisius, I ; Damasevicius, R ; Jusas, V ; Birvinskas, D |
DOI |
10.5755/j01.eee.119.3.1373 |
Full Text |
|
Is Part of |
Elektronika ir elektrotechnika.. Kaunas : KTU. 2012, Nr. 3, p. 99-102.. ISSN 1392-1215. eISSN 2029-5731 |
Abstract [eng] |
Brain-Computer Interface (BCI) systems require application of complex analysis, signal processing, denoising, feature extraction, dimensionality reduction and classification methods on acquired raw electroencephalogram (EEG) data to allow for useful operation. In this paper, we consider application of nonlinear operators such as Taeger-Kaiser Energy Operator (TKEO) and its multiple generalizations on the EEG signals and evaluate the efficiency of the operators using a Support Vector Machine (SVM) classifier with linear kernel. We propose a new generalization of TKEO, called Homogeneous Multivariate Polynomial Operator (HMPO), and compare the efficiency of the 3rd order HMPO with other nonlinear operators. Experimental results show that the 3rd order HMPO operator allows for better identification of significant features representing slow cortical potentials in the EEG data. |
Published |
Kaunas : KTU |
Type |
Journal article |
Language |
English |
Publication date |
2012 |
CC license |
|