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Structural damage detection is a well-known engineering inverse problem in which the extracting of damage information from the
dynamic responses of the structure is considered a complex problem. Within that area, the damage tracking in 3D structures is
evaluated as a more complex and difficult task. Swarm intelligence and evolutionary algorithms (EAs) can be well adapted for
solving the problem. For this purpose, a hybrid elitist-guided search combining a multiobjective particle swarm optimization
(MOPSO), Lévy flights (LFs), and the technique for the order of preference by similarity to ideal solution (TOPSIS) is evolved in
this work. Modal characteristics are employed to develop the objective function by considering two subobjectives, namely,
modal strain energy (MSTE) and mode shape (MS) subobjectives. The proposed framework is tested using a well-known
benchmark model. The overall strong performance of the suggested method is maintained even under noisy conditions and in

the case of incomplete mode shapes.

1. Introduction

Structural health monitoring (SHM) and failure diagnosis
have recently witnessed increasing attention because of its
importance for guaranteeing the integrity and service perfec-
tion of a structure. One of the main research foci of SHM is
damage detection in structures under service, in which a pre-
liminary assessment of damage is conducted to ensure the
reliability and persistent performance of the structure. The
evolution of structural damage detection techniques has been
mainly inspired by the invention of accurate sensors and
transducers in addition to improvements in signal processing
techniques, which in combination were applied to nonde-
structive vibrational testing that reveals the dynamic charac-
teristics of a structure. Those dynamic characteristics carry
the changes in real structural parameters that in turn
illustrate the existence and rate of structural damage [1-3].
Structural damage could be defined as variations
between the FE model of a structure and the structure in-
service that brings the concept of FE model updating into
a picture [4]. FE model updating can provide an efficient

way of tracking damage in structures under service. For a
structural damage identification problem, the structural
parameters related to the FE model of a structure are slightly
and gradually regulated and dynamic responses are regis-
tered. Thereafter, distortions between the model’s and mea-
sured dynamic responses are minimized until a relative
consistency is reached. During that process, such local mod-
ifications can indicate damage in the studied structure. The
minimization task can be thought through by utilizing
efficient optimization algorithms [5-7].

In order to integrate the FE model updating into a struc-
tural damage tracking procedure, the basic task is to establish
the dynamic characteristic subobjectives. The developed
subobjectives are milestones in formulating the objective
function that addresses the optimization problem of damage
characterization. Modal analysis can provide an effective
manner for gathering dynamic features. Mode shapes (MSs)
are fundamental characteristics that can give general infor-
mation about the alterations that have occurred in a structure
due to damage. For that reason, MS subobjective can be
developed by using some correlation paradigms such as the
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modal assurance criterion (MAC) [8, 9]. Another modal
property with great damage sensitivity, modal strain energy
(MSTE), has been used by various researchers [10-14]. It
performs efficiently when utilized for tackling damage prob-
lems in complex structures experiencing damage. Further-
more, MSTE is applicable in three-dimensional structures
[14, 15]. Hence, both mode shape-based and MSTE-based
subobjectives are more than sufficient to be employed in
this research.

Computational intelligence has been implemented for
solving complex prediction, diagnosis, and detection
problems in various fields such as mechanical engineering
[16-18], computer science [19, 20], biomedical engineering
[21, 22], and electrical engineering [23]. As major disciplines
of computational intelligence, swarm intelligence and EAs
are powerful stochastic optimization techniques that have
been implemented for solving various engineering problems
in recent years. Single-objective EAs have been widely and
successfully utilized for damage localization in structures.
Research has shown the efficacy of genetic algorithms
(GAs), the most common form of EA [24-27]. Other repre-
sentative research can be found in [28, 29]. Swarm intelli-
gent algorithms have also been implemented for the same
purpose. Ding et al. [30] developed a hybrid swarm for
damage identification using modal properties with pleasing
results. Qian et al. [31] implemented a hybrid PSO simplex
method for delamination detection in laminated beams
using a delamination parameter-based objective function
with robustness and efficient performance. Kang et al. [32]
as well as Gokdag and Yildiz [33] proposed two different
PSO versions to track damage with successful performance.
Zhu et al. [34] developed a bird mating optimizer (BMO)
in the time-frequency domain for damage detection in 2D
structures. Other techniques have been used efficiently, as
in the work of Seyedpoor et al. [35, 36]. From the above
survey, it is seen that single-objective EAs have performed
well in solving structural damage detection problems. Never-
theless, most applications were 1D or 2D problems.

Multiobjective EAs (MOEAs) have also been imple-
mented by various researchers for damage localization in
structures. Cha and Buyukozturk [14, 15] developed a
MOEA for damage prognostic in three-dimensional struc-
tures. Their research outcomes showed the robustness of
the proposed method even under noisy environments. Liu
et al. [37] used natural frequency and MS subobjectives with
the successful incorporation of the weighted sum method
and a GA to perform a multiobjective optimization for dam-
age identification. Jung et al. [38] utilized the NSGAII for
damage identification in truss structures, concluding that
further enhancements were needed for the proposed method
to be recommended for damage deduction. NSGAII was
also implemented successfully by Shabbir and Omenzetter
[39]. Other representative research into the application of
NSGAII for damage detection can be found in [40, 41].
Farokhzad et al. [42] compared multiobjective GA (MOGA)
and modified multiobjective GA (MMOGA) for damage
localization in Timoshenko beams, with remarkable results
obtained from MMOGA. MOGA was also successfully
employed for damage detection in truss by Jung et al. [43].
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Other MOEAs have been implemented for structural damage
identification, as in [44, 45].

A literature survey of the implementation of MOEAs
showed that relevant research has rarely addressed the prob-
lem of structural damage in complex structures. Hence, fur-
ther research is important to explore the effectiveness of
MOEAs and swarm intelligence in structural damage localiza-
tion. Moreover, it is essential to introduce more powerful algo-
rithms that can efficiently and accurately solve the problem of
damage identification in 3D structures. For those reasons, a
novel multiobjective optimization algorithm combines the
multiobjective particle swarm optimization (MOPSO), Lévy
flights (LFs), and the technique for the order of preference
by similarity to ideal solution (TOPSIS) with a FE model
updating framework is proposed for solving the problem of
damage estimation in complex 3D structures. The coherence
of the proposed algorithm can be measured by the combi-
nation between the global and local search of MOPSO
and LFs. Furthermore, the integration of TOPSIS inside
the algorithm to iteratively select a leader solution can provide
an efficient paradigm that improves the overall performance
of the algorithm.

This work illustrates the application of the novel multiob-
jective optimization algorithm called MOLFPSO/TOPSIS
applied on FE model updating for structural damage local-
ization. Two dynamic characteristic-based subobjectives,
namely, MS- and MSTE-based subobjectives, are embodied
in an objective function. The proposed technique is applied
on a 4-story benchmark building model. In order to examine
the performance of the developed technique, two damage
scenarios are studied. Furthermore, the algorithm is tested
under noisy conditions in correspondence to the two damage
scenarios. Also, the incomplete mode shape problem is eval-
uated. At last, a detailed discussion of the performance of the
suggested method is presented.

2. The Objective Function

It has been observed that in structural damage tracking com-
bined with the FE model updating, the most critical key
point is the proper selection of dynamic characteristics that
includes the changes in structural parameters due to the
occurrence of structural damage. On that basis, the subob-
jectives of errors between the dynamic features of the FE
model of the intact structure and those measured from the
damaged structure are developed. By the formulation of
those subobjectives, they can be merged in such a way that
an objective function for the damage detection optimization
problem can be established. In the current research, both
MS- and MSTE-based subobjectives are employed and
engrafted into the objective function to be solved for the
damage localization.

To develop the MS subobjective, a correlation technique
should be employed [8]. One of the most commonly used
correlation techniques is the MAC [46]. The MAC measures
the uniformity between two vectors, one of which being a ref-
erence MS and the other a measured MS. The MAC matrix
can be stated as
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where {¢} is the MS, I and D represent the undamaged and
the damaged structures, respectively, and T and * are the
transpose and the conjugate. It is defined that full correlation
is observed when MAC is one and no correlation is deduced
when MAC is zero.

The MS subobjective can be expressed as

MAC({¢;}, {¢p}) =

Fu(#9") = Y(1 - diag (MAG,({o!) o)) )

i=1

where F, (¢, ¢P) is the MS subobjective, i is the MS number,
and M is the total number of MSs diag is the diagonal
element of MAC.

MSTE can serve as a sensitive indicator of structural
damage. In a large-scale complex structure, MSTE can hold
better information about the existence and position of minor
damage than other modal characteristics. One of the most
commonly occurring types of structural damage can be
thought of as a stiffness lessening [47]. In spite of the reality
that stiffness alterations cannot reflect all sorts of structural
damage, it can be adopted in this research to simulate linearly
structural damage. Consequently, by handling the MSs of the
structure and the stiffness matrix K of the model, the MSTEs
corresponding to healthy and damaged structures can be
defined as

1
MSTE{ (¢}, K) = 5 ¢} K¢,

L (3)
MSTE? (¢ K) = 597 K7,

where MTTE! and MSTE? are the MSTEs of the robust and
deteriorated structures for the ith MS, respectively. The
global MSTE subobjective can be written as

M kol \
Ey(9' 9" K) = ) (1‘ (Pér (PL> > (4)

i=1

where F, is the MSTE subobjective. Based on the above
description, the overall hybrid objective function is built as

M

Min (Fy, F;) ~ Min (z<l—diag (MAC, ({1}, {99))).

i=1
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Damage causes changes in the mechanical parameters of
a structure [48]. The parametric changes can be directly used
to track damage by performing a FE model updating frame-
work [8, 14]. Commonly, to select the appropriate updating
parameters that can be used as damage indicators, the possi-
ble damage patterns must be defined depending on the struc-
ture under consideration and loading conditions. Some

recommendations can be followed before choosing the
updating parameters. First, greater importance should be
assigned to the positions where structural damage is more
likely to exist. Then, dynamic characteristics that are more
damage-sensitive must be considered. Finally, efforts should
be made to reduce the size of the updating parameter set so
that the overall complexity of the problem can be tackled,
by ignoring structural parameters that do not illustrate possi-
ble existing damage scenarios [49, 50].

One of the most widely used parameterization methods is
to adopt the material and geometrical properties directly
[51]. Material properties can be chosen as damage indexes
for tracking structural damage, because the stiffness and mass
matrices are proportional to material properties. A useful
strategy is to develop a vector of damage indexes for all ele-
ments (el) as® = [0,,6,, ..., 0], where 0 €]0, 1]. If we choose
a damage conductor as v, @ is utilized to reflect the variations
between the FE model parameter v’ and the parameter vV

related to damage simulation. The damage parameter can
be defined as

v’ =0l(1-6)), (6)

1

and the changes in model’s elemental matrixes M and K can
be written as

M} =M + AM,,
K/ =K} +AK,, )
_ U 1
AM; =v! M!,
AK;=v! K],

where AM; and AK; are the deviations in model’s matrixes.
To examine the performance of the proposed MOLFPSO/
TOPSIS, the structural damage is presumed to be a reduction
of some elements’ moduli of elasticity (E). It is important to
mention that reductions in E cannot mimic all sorts of struc-
tural damage, but it can be used to simulate damage to check
the performance and robustness of the proposed technique.

3. Structural Damage Localization Framework

To tackle the structural damage estimation problem, it is
essential to organize the optimization problem into two main
divisions: the single-objective EAs and the MOEAs. The key
points to understand the differences between the two divi-
sions can be shown in [52, 53].

Structural damage tracking using MOEAs and FE model
updating is shown in Figure 1. We summarize the framework
as follows: initially, a FE model of the robust structure is
evolved and the damage indicators are selected. Then, the
framework is partitioned into two subprocesses. The former
is the damage simulation process where the damage-
simulated MSTE and MS subobjectives can be deduced.
The second subprocess is to perform the minimization task
applied on the objective function. The detailed overall frame-
work can be well observed in [52].
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FIGURe 1: Damage prognostic paradigm using the MOEAs and FE model updating.
4. The MOLFPSO/TOPSIS to improve the overall ability of the damage identification

By following back to the excellent research conducted by
Cha and Buyukozturk [14, 15], it is observed that one
dynamic characteristic has been used inside the multiob-
jective optimization problem by dividing the MSTE-based
objective function into two subobjectives. In the current
research, an improvement is suggested by adding an extra
subobjective that relies on the MSs. The use of indepen-
dent mode shape subobjective can study the alterations
in the structure independent from the stiffness matrix uti-
lized in MSTE and without losing the benefit of damage
detectability when only MSTE is utilized. This can help

procedure when noisy conditions exist as well as when the
complete MSs cannot be obtained. Moreover, because
MSTE can describe only the linear type of structural dam-
age, adding the mode shape term can enhance the damage
deducibility of other types.

The MOLFPSO/TOPSIS algorithm combines various
paradigms and concepts to perform a strong and reliable
multiobjective optimization framework to solve complex
problems comprising the problem of damage tracking in
structures with FE model updating. To provide a comprehen-
sive elucidation of the developed method, some preliminary
concepts and techniques must be explained. Firstly, Lévy
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and update Pop.
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current generation number.
and update Pop.
created solutions as:

P

new,i

corresponding hypercubes.

j) Update Pbest for all individuals.
8 End.

. Create a population of random solutions Pop and corresponding speeds Vel.
. Initialize an external archive Ac and define a memory of flight experience for each individual,

3. Evaluate Pop using the multi-objective functions.
. Find the non-dominated solutions and store them in Ac.
5. Develop hypercubes of the search space and distribute the individuals within the hypercubes

6. Apply TOPSIS on Ac to determine the leader solution or the global best individual Gbest.

a) Generate a new population A by using LFs using a modified version of Eq. (9) as:
s=ay(Gbest - xg,;) ® Lévy(A)~0.01(u/[v|"™) (Gbest — Xsi)

b) Evaluate all particles in A, compare A with Pop using the non-domination criterion

¢) Generate a new population B by using PSO as:

Vi = W x V41, x (Pbest, — P;) + ry x (Gbest — P,),
t+1
i
where p; is the current particle; v; is the particle’s velocity; w is the inertia factor; r,
and r, are acceleration coefficients; r; and r, imply random numbers € [0, 1]; £ is the

d) Evaluate all particles in B, compare B with Pop using the non-domination criterion
e) Remove the non-dominated solutions and fill the empty positions with randomly

In; = randper(P

=rnd(0,1) + P,
where randper is a Gaussian random permutation operator; P
removed dominated solution; rnd is a random number € [0, 1].

f) Evaluate all particles in Pop and insert the non-dominated solution into Ac.

g) Update the hybercubes in the current Ac.

h) Remove the extra individuals in Ac by eliminating the crowded individuals within the

i) Apply TOPSIS on Ac to determine the global best individual Gbest.

new,i)’
new (Ini)>
is the i

new,i

ALGORITHM 1

flights (LFs) can be defined as random permutations that are
capable of mimicking the random movements of creatures
seeking food, reproduction, or other activities [54]. LFs can
be implemented efficiently to expose unknown search space
for optimization purposes. Moreover, LFs can perform both
global and local searches around promising solutions that
can be referred to as the exploration and exploitation of the
global search space. To generate a new solution X!*! by LF,
(8) can be used:

Xf+1 = Xf +s, (8)
where s is the step size, proposed by Yang and Deb [55]:

i u
s=a, (xG,j - xg,;) ® Lévy(1)~0.01 |V|—1/’\ (XG’]- - Xg,)»

©)

where a, is a constant, X ; and X;; are two random solu-
tions, and u and v can be defined as

(10)

where o, = [[(1+ A) sin (ZA/2)/T[(1 + 1)/2]A20-12]"F with
1 <A<2isanindex, I' is a gamma function, and o, = 1.
TOPSIS is a MCDM technique that was proposed by
Hwang and Yoon [56]. From any decision matrix with m
number of alternatives and n number of attributes, it chooses
two sets of solutions known as the positive (X*) and negative
(X7) ideal solutions. The solution with the best data from all
the alternatives is called the positive ideal solution; similarly,
the negative ideal solution has the worst data from all the
alternatives. TOPSIS calculates the Euclidean distance of all
points (alternatives) from two positive and negative solutions
and compares them. The point that has the least Euclidean
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FIGURE 5: Damage positions in damage scenario 1 with noisy MSs.

distance from (X*) and the greatest distance from (X~) is
considered the best. The steps of applying TOPSIS are
as follows:

Step 1. The input x matrix contains m x n elements (the
elements of x matrix are the Pareto solutions).

Step 2. To convert the dimensional problem into a nondi-

mensional problem, a normalized decision matrix is per-
formed from the x matrix.

KRy (11)

wherei=1,...,mand j=1,...,n,(m=100andn=>5).

Step 3. By assuming a set of weights for each attribute w; for
j=1,...n, we can find the weighted normalized decision
matrix v.

Vij = WX (12)
where Y7 w; = 1.
Step 4. Determine the positive and negative ideal solutions.
Vi b
Vb

where v} ={max;v;lj € J, min;v;|j € J'} and v; = {min;v, |

X ={v, ...
X ={v,...

(13)

jeJ,maxv;lj€e] "}, where ] is the set of benefit attributes
and J' is the set of cost attributes.

Step 5. Calculate the distances d; and d; from the positive
ideal and negative ideal solution, respectively.

i 2
+ _ +
d; = (vj v,-j) ,
=1

<.

(14)

x1073
4 A . P
P e
v © o
2
3
= o
[=] 2 4 L
3 o
5]
5 .
= 5 ©
1] R
O
8
B
0 . © (@) QQ\ o000 o
0.387 0.388 0.389 0.39

Mode shape subobjective

FIGUrRe 6: Optimal front obtained from MOLFPSO/TOPSIS in
damage scenario 1 under noisy conditions.

Step 6. Determine the relative closeness of alternatives to the
ideal solution.
d:
cr=_% 15

where 0 < Cf <1 and the best solutions have relative close-
ness C! closest to 1.

MOPSO was originally proposed by Coello and Lechuga
[57] and further explained by Coello and Reyes-Sierra [58].
They extended the PSO algorithm into MOPSO by employ-
ing the Pareto ranking scheme as well as initializing an
archive or repository to register the superior performance
of any individual in each generation by means of sets of non-
dominated solutions. The archive is exploited to choose a
global best solution that leads the swarm to reach the Pareto
front. In each generation, the archive should be updated by a
spatially or geographically based process where the search
space is partitioned into a set of hypercubes using multiobjec-
tive function rates.
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population size and exploration and exploitation are well
performed in each generation, reducing the computational
time and improving the overall efficiency and reliability.
The spatial representation in MOPSO is still employed in
MOLEFPSO/TOPSIS for removing crowded solutions among
the archive. The MOLFPSO/TOPSIS algorithm can be
summarized as follows:

Although multiobjective ~genetic algorithms have
shown a prominent performance when applied by Cha and
Buyukozturk [14] for structural damage tracking and also

Mode shape subobjective

FiGure 10: Optimal front obtained from MOLFPSO/TOPSIS in
damage scenario 2 under noisy conditions.

when implemented for active control device optimal place-
ment by Cha et al. [59], it is important to develop a stronger
multiobjective optimization approach able to overcome more
complexity in the structure and can not only detect but also
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TaBLE 1: Numerical evaluation of the MOLFPSO/TOPSIS with FE model updating.
Min Mean Max
MS subobjective 2.18E - 06 1.45E - 05 2.11E -05
Case 1 MSTE subobjective 2.975E - 06 6.99E - 06 1.364E - 05
Computational time 2551.97823 seconds
MS subobjective 3.08E - 06 0.012812 0.017029
Case 2 MSTE subobjective 7.33E - 06 2.09E - 05 2.56E — 05
Computational time 4783.06526 seconds
MS subobjective 0.387019 0.388337 0.390032
Case 1 with £5% white noise MSTE subobjective 1.74E - 06 0.00066 0.002721
Computational time 4912.28630 seconds
MS subobjective 0.388335 0.398434 0.401908
Case 2 with +5% white noise MSTE subobjective 7.33E - 06 2.09E - 05 2.56E - 05

Computational time

7523.17741 seconds

determine the accurate severity of structural damage. The
MOLFPSO/TOPSIS algorithm can combine the well-known
global optimization feature of PSO when used for FE model
updating [60] with the local search ability of LFs. Such com-
bination can serve better when damage detection accuracy is
required and complex structures are under investigation.
Furthermore, the guided elitist search feature provided by
TOPSIS can help to reduce the computational cost and pro-
vide better convergence towards the optimal Pareto front.
Also, it makes the MCDM determine the best compromise
solution unnecessary.

5. Case Study: 3D Modular Structure

After benchmarking the algorithm and evaluating the perfor-
mance of the proposed MOLFPSO/TOPSIS algorithm, a
three-dimensional model is built similar to the benchmark
model [61, 62] as shown in Figure 2. The model’s dimensions
are 2.5mx2.5mx 3.6 m. The model’s beams and columns
are Euler-Bernoulli beams built of hot rolled grade 300 W
steel with 300 MPa nominal yield stress. The material proper-
ties of the structure are given in [62]. The model is composed
of 84 elements and 45 nodes with 270 DOFs. To examine the
efficiency of the developed MOLFPSO/TOPSIS technique,
two damage scenarios are taken into account as in Figure 2.
Damage is simulated by reducing 25% of the modulus
of elasticity.

In testing the application of MOLFPSO/TOPSIS to iden-
tify damage in 3D structures, first, the previously mentioned
objective function is utilized and the first 12 MSs are
employed. Then, after several trials, MOLFPSO/TOPSIS is
implemented using 50 particles and W =0.5. The number
of hypercubes in set to 7 and repository size is 25. In LFs,
the parameters A and S are set to 1.5 [54, 55]. The weighting
factors in (12) are set to 0.5; that is, both subobjectives will
have similar significance. The framework is executed 20
times, and results are recorded. In damage case 1, the algo-
rithm is proved to be able to locate the damage with very
minor errors, as shown in Figure 3. The optimal front

achieved by the MOLFPSO/TOPSIS is presented in
Figure 4. Also, when the simulated MSs are contaminated
with +5% white noise, the MOLFPSO/TOPSIS successfully
tracks the damage with very few significant errors, as
observed in Figure 5. The optimal front in damage case 1
with noise is illustrated in Figure 6. It is obvious that the
MOLFPSO/TOPSIS can detect and locate damage in the
studied structure accurately and efficiently, even under noisy
conditions.

In damage case 2, which is the more difficult case, the
proposed technique shows excellent performance in tracking
the structural damage with insignificant errors, as shown in
Figure 7. The optimal front resulting from the MOLFPSO/
TOPSIS is highlighted in Figure 8. Moreover, when +5%
Gaussian noise contaminates the simulated MSs, the devel-
oped methodology shows good ability to determine damage
with acceptable errors, as shown in Figure 9. For damage case
2 with noise, the optimal front is exhibited in Figure 10. It is
clear from the figures that the MOLFPSO/TOPSIS combined
with FE model updating can serve as a powerful and reliable
framework for identifying and diagnosing damage in the 3D
structures, even within noise-polluted environments.

To fulfill the evaluation of the overall paradigm, all result
outcomes are tabulated in Table 1. All minimum, mean, and
maximum values of both MS-based and MSTE-based subob-
jectives (subobjectives) corresponding to all Pareto solutions
as well as the computational time and number of successful
runs are all given in Table 1. It can be seen that the multiob-
jective values almost match the target zero values of the
dynamic subobjectives in damage cases 1 and 2. Moreover,
even in noisy environments, the increase in multiobjective
values due to noise has not affected the overall performance
and ability to localize structural damage. Over and above
these virtues, the computational time is convenient in all
cases. Only in damage case 2 with noise is the number of suc-
cessful runs lower, due to difficulty in inferring damage when
two damaged beams are connected perpendicularly.

Another important factor to judge the overall perfor-
mance is to evaluate the problem of incomplete MSs. Two
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damage scenarios are considered to study the incomplete
MSs problem. Scenario 3 in which 20% damage is assigned
to element 2 (red beam) and MS information are unknown
at node 12 (green dot) as well as scenario 4 in which 20%
damage is assigned to elements 4 and 16 (red beam) and
MS information are missing at node 13 (green dot), as they
are observed in Figure 11. Considering the use of the first
three mode shapes, the results of damage tracking when com-
plete MSs cannot be defined are shown in Figures 12 and 13.
The results show that the proposed algorithm has proven
good ability in detecting structural damage even when applied
with unavailability of complete MSs. Nevertheless, it has
shown inconsistent performance when executed for several
times and needed almost the double computational time.
Finally, it is clear that the proposed framework has evi-
denced good performance when applied to damage identifi-
cation in 3D structures. Moreover, its accuracy and relative

consistency, together with its the ability to track superior
solutions in a single run, make the suggested MOLFPSO/
TOPSIS with FE model updating paradigm suitable and reli-
able when damage localization in 3D structures is needed.

6. Conclusion

In this research, the problem of damage prognostic in three-
dimensional structures implementing a novel MOEA incor-
porated with FE model updating was investigated. The novel
algorithm called MOLFPSO/TOPSIS was designed to pro-
vide an efficient and reliable structural damage localization
framework. The methodology included the use of TOPSIS
as a MCDM technique to select a leading solution in each
iteration within the multiobjective optimization, that is, the
MOLFPSO. Proper selection of such a leader solution can
highly and positively influence convergence to the Pareto
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front as well as saving postprocessing time when a best-
compromised solution is required. To evaluate the perfor-
mance of the proposed paradigm, a three-dimensional model
was deemed a case study with two simulated damage scenar-
ios. Furthermore, in each scenario, Gaussian noise was added
to contaminate the simulated MSs to examine the reliability
of the developed technique under polluted conditions.
Finally, the incomplete MSs problem has been evaluated with
relatively good performance. The proposed technique
accomplished effective damage diagnosis in 3D structures
with accuracy, reliability, and low computational time, even
when tested under a noisy environment and with the absence
of complete mode shapes.
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