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Abstract. After an organization makes the decision to adopt model-based systems engineering 
(MBSE), it must go a long way before this decision proves right. There are many obstacles in this 
way, like stories about unsuccessful MBSE applications, insufficient information on how to 
proceed, and employee resistance to the cultural change to name a few. Neither of them is a true 
issue, if suitable enablers for MBSE adoption are chosen. Nowadays, MBSE is enabled by Systems 
Modeling Language (SysML). However, SysML is neither a framework nor a method: it provides 
no information about the modeling process and thus must be combined with some methodology to 
become truly applicable. This paper summarizes the experience of various MBSE adoption projects 
in the form of a new approach for MBSE. The approach is based on the framework organized in a 
matrix view and is designated to guide system engineers through the modeling process and help 
them answer the questions, like how to start, how to structure the model, what views to build, which 
artefacts to deliver, and in what sequence. 

Introduction 
MBSE promises to alleviate communication across different engineering disciplines (Delp et al., 
2013). To reach this promise in practice, support of different architecture views for a single system 
model is required. In many cases, these views are not compatible and completely disintegrated to 
each other. To deal with this challenge, the organization is obliged to implement proper practices, 
where language, method and framework as well as tool are the vital constructs. 

Language 
MBSE movement was reinforced with successful adoption of Unified Modeling Language (UML) 
(OMG, 2007) and Model-Driven Architecture (MDA) (OMG, 2003). Before this, numerous 
attempts to apply UML for MBSE haven't succeeded (Silingas and Butleris, 2009): UML was found 



	

too complicated and non-natural for solving systems engineering (SE) domain-specific problems 
(Morkevicius and Gudas, 2011). Therefore, Object Management Group (OMG) has initiated the 
creation of the domain-specific language and in 2007 released the first version of SysML (OMG, 
2012a). As SysML is a profile of UML, it has been easily adopted by most UML tool vendors. 
UML versatility and compatibility with its profiles enables SysML integration with other OMG 
standards based on UML, such as Unified Profile for MODAF and DoDAF (UPDM), Service 
Oriented Architecture Modeling Language (SoaML), and Object Constraint Language (OCL). 

It is common misunderstanding in SE, that SysML as modeling language is enough to successfully 
apply MBSE in the organization. It is clearly stated in (Silingas and Butleris, 2009), that the 
modeling language is just the language, and must be combined with a methodology to be useful. 

Method and Framework 
A number of methods available for MBSE is not significant (Nikolaidou et al., 2009). Most of them 
provide no architecture framework to organize modeling effort and thus are too abstract for solving 
a real-world problem. In systems and software engineering, the notion of architecture framework 
dates to the 1970s (Dave and Jim, 2005). The motivation for the term definition is to promote 
sharing the information about systems, architectures, and techniques for architecture description, 
inter-working to enable improved understanding, and interoperability between architecture 
communities who are using different conceptual foundations (Aurum and Wohlin, 2005). 

Tool  
It is important to understand that there is no way to adopt MBSE without having a specific software 
tool. The strength of MBSE relies on the tools. The market nowadays offers a broad selection of 
tools for systems modeling, each with its strengths and weaknesses. The following research is 
carried out using the MagicDraw toolset. It was chosen because of several published studies, e.g., 
(Cloutier and Bone, 2010), and multiple papers, e.g., (Delp et al., 2013), (Spangelo et al., 2012). 

Outline of the Paper 

In this paper, a new approach for MBSE is proposed. The framework of this approach consists of 
architecture viewpoints (further called domains) and aspects (further called pillars) organized in a 
Zachman style matrix. Each cell is this matrix represents the architecture of the system-of-interest 
(SoI) in accordance with certain architecture viewpoint and pillar (further called view 
specification).   

This paper is structured as follows: in Section 2, the related works are analyzed; in Section 3, the 
proposed approach is presented; in Section 4, application of the proposed approach is described; in 
Section 5, the achieved results, conclusions, and future work directions are indicated. 

Related Works 

MBSE methodologies 
Systems engineering community all over the world has acknowledged and currently use numerous 
MBSE methodologies. This paper describes and analyzes the most popular ones. 

IBM Rational Harmony for SE. The process for integrated systems development by Harmony can 
be represented by the classic “V” diagram. The left leg of the “V” describes the top-down design 
flow, while the right-hand side shows the bottom-up integration phases from unit test to the final 
system acceptance (Hoffmann, 2011). The workflow is iterative with incremental cycles through the 
phases of the requirements analysis, system functional analysis, and design synthesis. Models that 



	

support the requirements analysis phase are the requirement models and the system use cases 
model. In the system functional analysis phase, each use case is transformed into an executable 
model and the related system requirements are verified using model execution. The main executable 
models in the design synthesis phase are architectural analysis model and system architecture 
model. Harmony methodology is claimed to be compatible with SysML.  

Object-Oriented Systems Engineering Methodology (OOSEM). This methodology is developed 
by INCOSE (INCOSE, 2010). It combines object-oriented techniques, a model-based design 
approach, and top-down waterfall-style system engineering practices. Analyze needs, define system 
requirements, define logical architecture, synthesize allocated architectures, optimize and evaluate 
alternatives, and verify & validate systems are the main activities of OOSEM. When designing a 
system-of-systems, these activities are performed for each system individually. OOSEM was 
integrated with ISO-15288 standard, which is dedicated to harmonize the processes used by any 
organization or project throughout the full lifecycle of a man-made system (Pearce and Hause, 
2008). The integration allows identifying the sequence of the processes needed to deliver the 
essential products of the development. System Engineering processes are organized into five 
groups: agreement, enterprise, project, technical, and special. 

Vitech MBSE Methodology. Source requirements, behavior, architecture, and verification and 
validation – these are the main domains of this methodology (Vitech). It uses MBSE System 
Definition Language (SDL) to manage the syntax (structure) and semantics (meaning) of model 
artefacts, which can be specified either in the form of schema or ontology. Vitech methodology also 
uses iterations, so called, levels. These levels help to detail system specification, but they don't 
solve the problem of information abstraction management (Estefan, 2008). 

JPL State Analysis (SA). This methodology was created by the California Institute of Technology 
Jet Propulsion Laboratory (JPL). It is based on a state control architecture, where state is defined to 
be “a representation of the momentary condition of an evolving system,” and models describe how 
state evolves (Ingham et al., 2006). SA methodology provides activities for state modeling 
(modeling behavior according to state variables and relationships between them); state-based 
software design (methods to achieve objectives); goal-directed operations engineering (preparing 
detailed scenarios for mission objectives). Together, state and models supply what is needed to 
operate a system, predict future state, control towards a desired state, and assess performance 
(Estefan, 2008). 

SYSMOD. It is dedicated to model systems by using SysML as modeling language. These are the 
main phases of SYSMOD: project’s context description; requirement’s collection; system’s context 
modeling; system’s use case and process modeling; system’s structure and state modeling; collect 
domain knowledge. Starting with the description of the project context, requirements of the system 
are captured and modeled. Use case specification allows clarifying requests and working scenarios. 
Processes of the system are created simultaneously. Finally, the internal structure of the system is 
created, parameters are defined, and behavior is modeled.  

MBSE methodologies are solving different tasks of systems engineering process (Dickerson and 
Mavris, 2009), (Friedenthal et al., 2007). Not only identification and gathering of artefacts in proper 
sequence is challenging for them. They also need to deal with information complexity issue. Most 
of the described methodologies use iterations to collect information step by step. However, this 
doesn't help to identify different levels of abstraction, which may result in model incorrectness or 
even become a serious obstacle to allocate responsibilities to teams, stakeholders, or contractors.  

Enterprise Architecture Frameworks 
To manage different levels of abstraction, enterprise architecture frameworks (EAFs) can be used. 
(Bernard, 2004) describes EAF as “It is a structure for organizing information that defines the scope 



	

of the architecture and how the areas of the architecture relate to each other”. A few categories of 
EAFs can be distinguished: defense-oriented and industry-oriented.   

Department of Defense Architecture Framework (DoDAF) (US Department of Defense, 2009), 
Ministry of Defense Architecture Framework (MODAF), and NATO Architecture Framework 
(NAF) are standardized frameworks for defense architectures. Currently, all are very similar from 
the views and viewpoints point of view and different from the meta-model point of view. Despite 
this difference, there is a common modeling language for both, developed and maintained by OMG. 
It is called Unified Profile for DoDAF and MODAF (UPDM) (OMG, 2009). As UPDM is a profile 
of UML, the versatility of UML and its compatibility with its profiles allows integrating UPDM 
with other OMG standards based on UML, such as SysML (OMG, 2012a) and SoaML (OMG, 
2012b). DoDAF/MODAF/NAF viewpoints allow modeling information in different levels of 
abstraction. The main viewpoints are all, capability/strategic, operational, data and information, 
systems, services/service oriented, project/acquisition, and standards/technical. These viewpoints 
define the different aspects of modeled information in different levels of abstraction.  

TOGAF, FEAF, and Zachman are the most commonly cited in scientific researches and considered 
as “de facto” standards for industry architectures. TOGAF (The Open Group, 2009) is providing the 
structure, meta-model, and method for creating the enterprise architecture. It can be based on UML 
and Archimate modeling languages. Zachman framework is the first enterprise architecture 
framework defining the logical structure for classifying and organizing the descriptive 
representations of that enterprise (Lankhorst, 2009). The most common problem of industry EAFs 
is that there is no standardized way for storing and exchanging data, as opposed to defense EAFs, 
e.g., DoDAF provides a whole document describing data exchange, which is one of the biggest 
problems in defense domain (US Department of Defense, 2009).    

Taking industry demand in account and addressing changing landscape of defense architecture 
frameworks (adoption of IDEAS ontology for DoDAF and MODAF), in September of 2013, a 
Request for Proposal (RFP) for UPDM 3.0 (later renamed to UAF) was created. For the reason to 
support civil engineering needs, domains that are beyond the scope of defense frameworks like 
human machine integration, security, etc., UPDM 3.0 was renamed to UAF 1.0. The Alpha version 
of UAF specification is accepted by OMG in June 2016. The final version of UAF 1.0 specification 
is very likely to be published in June 2017 (Hause et al., 2016). MBSE Grid proposed in this paper 
is strongly influenced by emerging UAF specification, that is, tabular representation, concepts of 
domain and view specification, etc. 

EAFs bring up advantageous ideas on how to manage different layers of abstraction. However, they 
all consist of many different views, but none of them provides a simplified perspective that would 
address only subsets of each view. This is the reason why a new framework, which collects the best 
practices of existing frameworks and is dedicated particularly for systems modeling, would be very 
welcomed within systems engineering community.	

An approach: the MBSE Grid  

The proposed framework is based on (Anonymous, 2016), the work done in this area, and on the 
experience working with several systems engineering companies worldwide. The main idea is 
represented in the form of the grid (Figure 3), where columns are aspects, originating from 
(Friedenthal, 2008), (OMG, 2012a), also known as four pillars of SysML, and rows are viewpoints, 
originating from (US Department of Defense, 2009), (ISO, 2011), (OMG, 2009). Such, Zachman 
style matrix (Zachman, 1987) serves as a canvas to integrate different concerns, issues, and methods 
towards successful application of MBSE, while specific methods may use parts of it as a reference 
point (Nikolaidou et al., 2009). 



	

Originally, MBSE Grid was proposed in (Anonymous, 2016), where problem domain has been 
described. This paper adds slight modifications to the previously introduced problem domain, such 
as: (i) name change of the sub-domains, (ii) name change of some of the views, (iii) traceability 
updates, (iv) different, more mature case study, and (v) two examples from industry. (Anonymous, 
2016) does not analyze solution domain and traceability among view specifications in the problem 
and solution domains. It also does not describe the idea behind separating architecture into problem 
and solution domains.	

Influencers 
The MBSE Grid was strongly influenced by an expertise acquired working on real-world projects in 
transportation and defense industries.  

Bombardier Transportation (BT). The BT System Modeling Method (SysMM) describes how BT 
engineers analyze, define, and represent their system of interest using a Model-Based Systems 
Engineering approach. The purpose of the method is to manage complexity and increase quality of 
the design artefacts to reduce development costs (Naas et al., 2015). 

MBSE methodology applied in Bombardier Transportation consists of three main tasks. Each of the 
tasks are to analyze the system of interest on a different abstraction level (Figure 1). Operational 
Analysis task and its subtasks correspond to a black-box definition of the problem in the MBSE 
Grid. The missing peace in SysMM comparing to MBSE Grid is identification of MoEs. Functional 
Analysis task corresponds to a white-box definition of the problem and Technical Analysis task 
corresponds to the definition of solution (Naas et al., 2015). 

	
Figure 1.  BT System Modeling Method (Naas et al., 2015)  

Kongsberg Defense and Aerospace (KDA). Another influencer for MBSE Grid is the MBSE 
methodology applied in Kongsberg Defense and Aerospace (KDA). KDA System Architecture 
Framework depicted in Figure 2 consists of two parts: specification and design, which correspond 
to the problem and solution layers in MBSE Grid. Furthermore, design consists of the Functional, 
Logical, and Physical views, where the last one is in the scope of CAD systems (Soegaard, 2016). 

Both BT SysMM and KDA System Architecture Framework are defined having in mind three 
major MBSE components: language, methodology, and tool. This makes both methods applicable 
on real-world projects as opposed to theoretical methods where the third component – a modeling 
tool – is missing. 



	

	
Figure 2.  KDA System Architecture Framework 

MBSE Grid Structure  
Pillars. Four pillars introduced in (Friedenthal, 2008) depict four main aspects of model-based 
systems engineering using SysML: requirements, system structure, system behavior, and parameters 
(parametric). They perfectly describe the main areas of the system model; however, it does not help 
to manage different levels of abstraction and control level of granularity at each of them. This is the 
rationale for having rows in the Grid.  

Domains. (Nikolaidou et al., 2009) revealed that enterprise architecture frameworks may serve 
towards managing abstractions. A detailed comparison of existing EAFs is provided in (Franke et 
al., 2008). According to comparison and our research, EAFs, especially ones in harmony with 
MBSE, provide two main viewpoints: one to define problem in order to understand it, other to 
provide one or several alternative solutions to solve it, e.g., operational and systems viewpoints in 
DoDAF (US Department of Defense, 2009), logical and physical (Resources) in NAF, business and 
engineer in Zachman framework (Zachman, 1987). In accordance to the best practices, the MBSE 
Grid has two main rows: problem and solution. Besides these two, a need to provide the black-box 
perspective separated from the white-box perspective of the problem domain was identified. 

 
Figure 3.  The MBSE Grid framework  

Black-box perspective describes the SoI as a whole. In this perspective, stakeholder needs, 
functions expected from the system, user scenarios, SoI interaction with environment, and 
measurements of effectiveness are defined or in other words, the operational analysis of the system 
(INCOSE, 2010) is performed. 

White-box perspective, as opposed to the black-box perspective, describes behaviors that are 
expected from subsystems of the SoI. In this perspective, environmental entities, including users of 



	

the SoI are no longer considered: inputs and outputs of the SoI are delegated to its subsystems. The 
result of the white-box analysis is system requirements specification, derived from the stakeholder 
needs. 

View Specifications. Cells of the grid (Figure 3) represent different views of model-based systems 
engineering. View is a specific model, which can be visualized in a SysML diagram, IDEF diagram, 
etc. According to ISO42010, it is a view specification and the instance of it is a view. In (ISO, 
2011), a view is defined as “work product expressing the architecture of a system from the 
perspective of specific system concerns”. 

• Stakeholder Needs. Represents information captured from various stakeholders of the 
system. This information includes primary user requirements, system-related government 
regulations, policies, procedures, and internal guidelines to name a few. Stakeholder needs 
can be elicited by interviewing various stakeholders, giving them questionnaires, discussing 
in focus groups, studying documents written in diverse formats. Though elicited information 
is raw, it does not need to be specially rewritten. Later refinements in the model make these 
stakeholder needs structured and formalized. SysML requirements diagram or table, or them 
both are used to capture stakeholder needs. 

• Use Cases. Captures refinements of functional stakeholder needs in the form of SysML use 
case diagram. Each use case defines what primary or secondary (maintainer, external 
software, or hardware) users need to achieve by using the system. It also includes use case 
scenarios defining flows of actions or events, prerequisites, constraints, etc. 

• System Context. Captures how the SoI interacts with its environment. Origins of such 
model can be found in DoDAF, known as High Level Operational Context (HLOC) (US 
Department of Defense, 2009). The purpose of the model is to depict high level interfaces 
needed for the system to communicate with its environment, e.g., GUI, UI, TCP/IP, etc. 
SysML internal block diagram is used to capture the view of the system context. 

• Measurements of Effectiveness. Depicts non-functional, user set goals for the system, 
expressed in the numerical format. MoEs are captured in SysML block definition diagram. 
Methods for calculating MoEs are described using SysML parametric diagrams. 

• System Requirements. An input for system requirements specification is stakeholder needs 
specification. By analyzing the stakeholder needs, system requirements are identified and 
specified. SysML requirements diagram or table, or them both are used to capture system 
requirements.   

• Functional Analysis. It is the continuation of functional use case analysis, focusing on 
internal system functions in some of the techniques known as processes (Morkevicius and 
Gudas, 2012). Functional analysis also serves for identification of logical sub-systems, 
which are responsible for performing a group of functions. Functional analysis can be 
expressed in a form of multiple SysML activity diagrams. 

• Logical Subsystems Communication. Used to identify how logical sub-systems, based on 
the control and resource flows captured in the functional analysis model, relate to each 
other. Logical interfaces are identified and defined. They serve as inputs to generate an 
interface control document (ICD). A combination of both SysML block definition diagram 
and SysML internal block diagram are used to capture this view. 

• MoEs for Subsystems. Captures MoEs and Measurements of Performance (MoPs) 
identified for each logical sub-system. MoEs and MoPs are captured in SysML block 
definition diagram. Method for calculating MoEs are described using SysML parametric 
diagrams. 

• Component Requirements. Captures detailed, usually formal, requirements, e.g., design 
constraints for every component identified. Component requirements are derived from 
system requirements. SysML requirements diagram or table, or them both are used to 
capture component requirements.   



	

• Component Behavior. Used to define a detailed behavior of every component by defining 
its states and actions, e.g., algorithm, operation call, signal handling, etc. Detailed behavior 
is a subject for simulation. A combination of SysML state machine, activity, and sequence 
diagrams can be used to capture the detailed behavior of a component. 

• Component Structure. Shows physical connections based on physical interfaces between 
physical components. Physical components implement logical sub-systems created in a 
problem viewpoint. The detailed design of a physical component is not a subject of this 
view. A combination of both SysML block definition diagram and SysML internal block 
diagram are used to capture this view. 

• Component Parameters. Captures physical characteristics of each component, 
dependencies between them, and specifies how these physical characteristics serve to 
achieve MoEs and MoPs defined in the problem definition layer. Parameters are captured in 
SysML block definition diagram. Method for calculating derived parameters are described 
using SysML parametric diagrams. 

	

Figure 4.  MBSE Grid mapping to SysML 

Instantiation methods of every view specification by SysML diagrams are listed in Figure 
4.Traceability between different view specifications is depicted in Figure 8. 

Extensions. The idea of MBSE Grid is to provide foundation for a new systems’ modeling 
framework. It acts like a 150% model in product line engineering, where all possible view 
specifications are in present. Users of the framework can produce a number of 100% models with 
different variations of view specifications. A very good example is BT SysMM approach, where 
parametrics pillar is not used (Naas et al., 2015). A very common example, especially in defense 
and automotive, is the one, where contracting authority defines problem domain only, and 
suppliers/contractors develop solution domain architectures (US Department of Defense, 2009). A 
trade-off analysis is performed later to decide which solution architecture is the best for the given 
problem architecture. 

Case Study 
Due to non-disclosure agreements with industry partners, the case study provided in this paper is 
based neither on BT nor on KDA examples. It demonstrates an example of the climate control unit 
of the vehicle. In this chapter, problem and solution domains for the climate control unit are 
defined. The example model is based on SysML and is modeled in MagicDraw toolset.  



	

Problem domain: black-box		
Stakeholder needs for the project are acquired from the stakeholders, including the customer. 
Stakeholder needs can be captured directly in the SysML, or alternatively, they can be imported 
from other tools and formats, such as: requirements management tools (for example, IBM® 
Rational® DOORS®), spreadsheets (for example, Microsoft Excel file), ReqIF file (which contains 
requirements data exported from another tool). 

In SysML format, a piece of stakeholder needs is specified as requirement, which has a unique 
identifier, name, and textual specification. The entire list of stakeholder needs can be displayed in a 
single view – SysML requirement table or alternatively in SysML requirements diagram. 
Stakeholder needs can be hierarchically related to each other by the containment relationships. 

A fragment of stakeholder needs (SNs) for the climate control unit is depicted in SysML 
Requirements Diagram (Figure 5a). These SNs are further analyzed and refined. For example, the 
stakeholder need Heat and Cool Modes is refined by the use case Feel Comfortable Temperature 
(Figure 5b). It is important to note that the refinement is derived from a single step in the use case 
scenario (Figure 5c), called Reach Desired Temperature. 

Use cases of the system can be defined by utilizing the infrastructure of SysML use case diagram 
(Figure 2b). Supposed users of the system (humans, organizations, external systems) that perform 
these use cases can be specified as actors or blocks and related to the use cases by using the 
standard association relationship. 

In the MBSE Grid, use cases should be grouped into contexts, which define various situations of 
using the system. Thus, every SysML use case diagram should be created considering the context, 
wherein the use cases it represents are performed. The context can be stored in the model as SysML 
block. Figure 5b displays the use case Feel Comfortable Temperature in the Vehicle On context. A 
single use case can be performed in different contexts. 

Use cases are commonly supplemented with additional information required, e.g., post condition, 
primary scenario, alternative scenario, etc. Each use case must have a primary scenario. Alternative 
scenarios are optional. A use case scenario can be captured in a form of SysML activity diagram 
and represented as flow of actions performed by the actor and the system. In Figure 5c, the primary 
scenario of the use case Feel Comfortable Temperature is shown. Both the actor and the SoI are 
represented as swimlanes. Activities performed are allocated to the actor and the system 
accordingly. Activities performed by the Climate Control Unit are the top-level functions of the SoI. 
Every top-level function is traced back to SN by using the refine relationship, e.g., the function 
Reach Desired Temperature refines the SN Heat and Cool Modes. 

For system context definition, the SysML internal block diagram is used (Figure 5d). It shows how 
the system of interest interacts with its environment (actors, external systems, etc.) in a variety of 
contexts identified while modeling use cases. Here it is necessary to remember that every context 
defines the unique situation of using the system, thus the environment of the system may differ. In 
Figure 5d, you can see the interactions between the Climate Control Unit and its environment units 
within the Vehicle On context. 

To define MoEs, SysML block definition diagram is used. MoEs captured in the diagram are 
refining non-functional SNs. To define reusable set of MoEs, a separate block is created called 
Climate Control MoEs (Figure 5e). The SoI inherits MoEs from the Climate Control MoEs. A 
mechanism of redefinition in SysML allows to define different default values and refine different 
requirements by every single MoE. 



	

 

Figure 5.  Problem domain with SoI considered as a black box: a) Stakeholder Needs; b) Use 
Cases; c) Use Case Scenario; d) System Context; e) Measurements of Effectiveness 

Problem domain: white-box  
Once the black-box of SoI is defined or in other words operational analysis of SoI is completed, the 
next step is to open the black-box and define the white-box of the SoI including system 
requirements, functional analysis, and logical architecture. This layer helps to understand what is 
expected to be delivered instead of already providing a system design. For a single problem 
definition, there can be multiple alternative solutions provided. 

System requirements are related to all the view specifications in the domain and are derived 
step-by-step from stakeholder needs while working on other view specifications. System 
requirements are related to all the view specifications in the domain and are derived step-by-step 
while working on functional analysis and logical sub-systems communication view specifications. 
Figure 6a depicts the SR Heating and cooling derived from the SN Heat and Cool Modes. 

Functional analysis is a continuation of use case refinement using SysML activity diagrams. Once 
top level functions of the SoI are identified as black-boxes, they can be further refined. There are 
some rules for refinement in the MBSE Grid approach to make consistency among levels of 
granularity in different pillars, e.g., swimlanes displayed in SysML activity diagram created for the 
top-level function of the SoI shall represent logical sub-systems of the SoI. For every function 
allocated to SoI a new SysML activity diagram is created. Figure 6b. depicts a SysML activity 
diagram for the function Reach Desired Temperature. There are two swimlanes in the diagram: one 
represents the sub-system Data Transfer Group and another – the sub-system Control Group. Every 
function identified in the diagram can: i) be further refined by a new SysML activity diagram; ii) 
refine functional SR, e.g., the function Start Heating refines the SR Heating and cooling. 

SysML activity diagram with swimlanes is very helpful for identifying logical sub-systems. When 
logical sub-systems are identified, connectors and interfaces among them needs to be defined. 



	

According to MBSE Grid, firstly, a SysML block definition diagram is created for SoI (Figure 6c), 
secondly, it is created for each logical sub-system. The purpose of this diagram is to define the 
sub-system of interest (SSoI) as a black-box. In this diagram, it is recommended to capture inputs 
and outputs of the SSoI. It is common practice to capture MoEs of the SSoI as well. 

Next, a SysML internal block diagram is created for the SoI. The purpose of this is to connect 
usages of sub-systems via defined interfaces. Figure 6d depicts internal block diagram for the 
Climate Control Unit. The diagram shows how the sub-system Control Group communicates with 
other sub-systems, e.g., Data Transfer Group. 

The last step is to specify MoEs for the sub-systems and define methods for evaluating them. 
Methods for evaluating MoEs are defined using constraint blocks. It is recommended that MoEs 
would have refine relationships to SRs. 

The problem domain is all about requirements. Text-based requirements, including SNs and SRs in 
this domain are related to all the view specifications. Horizontal traceability among requirements 
and other model elements must be specified using refine relationships. 

	
Figure 6.  Problem domain with SoI considered as a White box: a) System Requirements; b) 

Functional Analysis; c) System Definition; d) Logical Subsystems Communication 

Solution domain 

After defining a problem, one or more solutions for the problem can be identified. The solution 
architecture according the proposed approach consists of component requirements, component 
behavior, component structure, and component parameters. The word "component" does not mean 
this level is a not talking about system and sub-system level of granularity. Solution architecture is 
the complete architecture starting from system and going down as deep as the complexity of the 
system requires. The purpose of the solution architecture is to provide a precise model or several 
variants of the model of the SoI, that meet the requirements defined in the problem domain.	

In the solution architecture, more precise text-based requirements are specified. They are more 
concrete and directly related to some physical component and its physical characteristics, e.g., 
design constraints. It is recommended all requirements in the solution domain are automatically 
verifiable (Morkevicius and Jankevicius, 2015). Component requirements are derived from SRs. 



	

Figure 7a illustrates the component requirement (CR) Noise derived from the SR Heating and 
cooling. The CR Noise is very precise, where text fragment "no more than 45 dBA" is machine 
readable and automatically verifiable. 

The SoI structure is modeled next or at the same time with CR. Structure is modeled using SysML 
block definition and SysML internal block diagrams. There are a few important differences from 
the problem domain logical sub-systems communication diagram: (i) parts in component structure 
diagrams represent physical parts of the system, (ii) interfaces modeled in component structure 
diagrams are physical as opposed to logical, (iii) according to the best practices, components and 
interfaces are categorized into categories, e.g., software, mechanical, electrical, optical, etc. It is 
very important for detailed design to be carried out on every of the components. Physical 
components implement logical components defined in the problem domain. Abstraction relationship 
is used to capture this vertical trace. Figure 7d depicts a graph view of the structural decomposition 
of the Climate Control System. 

 

Figure 7. Solution domain: a) Component Requirements; b) Component Behavior; c) Component 
Parameters; d) Component Structure 

Component of interest (CoI) can have its behavior defined. In practice, this is done to simulate 
component or a group of components answering one or another question about its or their behavior 
or physical characteristics. For this reason, SysML state machine and SysML activity diagrams are 
used. Figure 7b depicts a fragment of SysML state machine diagram for the Climate Control 
Software. 

According to the MoEs defined in the problem domain, parametric models are set-up on the 
physical SoI model. Parametrics can calculate derived physical characteristics of the component, 
e.g., sound level of the Compressor System as depicted in Figure 7c. The sound level is calculated 
for every component making noise, and finally the total noise level of the SoI is calculated and 
evaluated. 

Not all characteristics of the physical components can be calculated statically. It is a common 
practice to run behavioral simulations in combination with SysML parametrics. It is very useful 



	

practice to perform trade-studies among different solution architectures trying to find the best 
alternative to solve the defined problem.			

Traceability 

Traceability among view specifications is very important aspect of the MBSE Grid approach. The 
approach helps to organize model while creating it. However, after the model is created, it needs to 
be maintained, e.g., changes need to be managed, impact analysis needs to be performed, etc. This 
is not possible without having specified traceability. 

 

Figure 8.  Traceability in the MBSE Grid 

In the SysML, there are four different kinds of trace specifications: (i) direct relationship, e.g., 
derive, satisfy, allocation, refine; (ii) metaproperty, e.g., subject, owner; (iii) composition (part 
property for structure and call behavior action for activities); (iv) computational derivation. Trace 
kinds including relationship names recommended for use among different view specifications in the 
MBSE Grid are depicted in the Figure 8. 

Conclusions and Future Works  
Analysis of MBSE methods and enterprise architecture frameworks discloses that majority of them 
are conceptual and thus can hardly be used in combination with systems modeling techniques, such 
as SysML, in practice. In contrast to them, the MBSE Grid approach proposed in this paper is fully 
compatible with SysML. Based on the transparent system architecture framework, it clearly defines 
the modeling process, reveals what model artifacts should be produced in each step of system 
specification and design, and explains how to manage traceability relationships (both horizontal and 
vertical). The case study later in this paper proves applicability of MBSE Grid in combination with 
MagicDraw toolset, which supports SysML. 

Currently, the MBSE Grid approach is mainly oriented to the creation of a system model. Thus, it 
will be extended to include support of system variants, engineering analysis, and verification & 
validation. In the father future, the approach is considered to support a full model lifecycle 



	

management, including its creation, usage, and configuration management.		
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