
 	

MBSE Grid: A Simplified SysML-Based Approach for
Modeling Complex Systems

Aurelijus Morkevicius
No Magic Europe and Kaunas University of

Technology
Kaunas, LT-51480, Lithuania

aurelijus.morkevicius@nomagic.com

Aiste Aleksandraviciene

No Magic Europe
Kaunas, LT-51480, Lithuania

aiste.aleksandraviciene@nomagic.com

Donatas Mazeika
No Magic Europe and Kaunas University of

Technology
Kaunas, LT-51480, Lithuania

donatas.mazeika@nomagic.com

Lina Bisikirskiene

No Magic Europe and Kaunas University of
Technology

Kaunas, LT-51480, Lithuania
lina.bisikirskiene@nomagic.com

Zilvinas Strolia
No Magic Europe

Kaunas, LT-51480, Lithuania
zilvinas.strolia@nomagic.com

Copyright © 2017 by Aurelijus Morkevicius, Aiste Aleksandraviciene, Donatas Mazeika, Lina Bisikirskiene, Zilvinas Strolia.

Abstract. After an organization makes the decision to adopt model-based systems engineering
(MBSE), it must go a long way before this decision proves right. There are many obstacles in this
way, like stories about unsuccessful MBSE applications, insufficient information on how to
proceed, and employee resistance to the cultural change to name a few. Neither of them is a true
issue, if suitable enablers for MBSE adoption are chosen. Nowadays, MBSE is enabled by Systems
Modeling Language (SysML). However, SysML is neither a framework nor a method: it provides
no information about the modeling process and thus must be combined with some methodology to
become truly applicable. This paper summarizes the experience of various MBSE adoption projects
in the form of a new approach for MBSE. The approach is based on the framework organized in a
matrix view and is designated to guide system engineers through the modeling process and help
them answer the questions, like how to start, how to structure the model, what views to build, which
artefacts to deliver, and in what sequence.

Introduction
MBSE promises to alleviate communication across different engineering disciplines (Delp et al.,
2013). To reach this promise in practice, support of different architecture views for a single system
model is required. In many cases, these views are not compatible and completely disintegrated to
each other. To deal with this challenge, the organization is obliged to implement proper practices,
where language, method and framework as well as tool are the vital constructs.

Language
MBSE movement was reinforced with successful adoption of Unified Modeling Language (UML)
(OMG, 2007) and Model-Driven Architecture (MDA) (OMG, 2003). Before this, numerous
attempts to apply UML for MBSE haven't succeeded (Silingas and Butleris, 2009): UML was found

	

too complicated and non-natural for solving systems engineering (SE) domain-specific problems
(Morkevicius and Gudas, 2011). Therefore, Object Management Group (OMG) has initiated the
creation of the domain-specific language and in 2007 released the first version of SysML (OMG,
2012a). As SysML is a profile of UML, it has been easily adopted by most UML tool vendors.
UML versatility and compatibility with its profiles enables SysML integration with other OMG
standards based on UML, such as Unified Profile for MODAF and DoDAF (UPDM), Service
Oriented Architecture Modeling Language (SoaML), and Object Constraint Language (OCL).

It is common misunderstanding in SE, that SysML as modeling language is enough to successfully
apply MBSE in the organization. It is clearly stated in (Silingas and Butleris, 2009), that the
modeling language is just the language, and must be combined with a methodology to be useful.

Method and Framework
A number of methods available for MBSE is not significant (Nikolaidou et al., 2009). Most of them
provide no architecture framework to organize modeling effort and thus are too abstract for solving
a real-world problem. In systems and software engineering, the notion of architecture framework
dates to the 1970s (Dave and Jim, 2005). The motivation for the term definition is to promote
sharing the information about systems, architectures, and techniques for architecture description,
inter-working to enable improved understanding, and interoperability between architecture
communities who are using different conceptual foundations (Aurum and Wohlin, 2005).

Tool
It is important to understand that there is no way to adopt MBSE without having a specific software
tool. The strength of MBSE relies on the tools. The market nowadays offers a broad selection of
tools for systems modeling, each with its strengths and weaknesses. The following research is
carried out using the MagicDraw toolset. It was chosen because of several published studies, e.g.,
(Cloutier and Bone, 2010), and multiple papers, e.g., (Delp et al., 2013), (Spangelo et al., 2012).

Outline of the Paper

In this paper, a new approach for MBSE is proposed. The framework of this approach consists of
architecture viewpoints (further called domains) and aspects (further called pillars) organized in a
Zachman style matrix. Each cell is this matrix represents the architecture of the system-of-interest
(SoI) in accordance with certain architecture viewpoint and pillar (further called view
specification).

This paper is structured as follows: in Section 2, the related works are analyzed; in Section 3, the
proposed approach is presented; in Section 4, application of the proposed approach is described; in
Section 5, the achieved results, conclusions, and future work directions are indicated.

Related Works

MBSE methodologies
Systems engineering community all over the world has acknowledged and currently use numerous
MBSE methodologies. This paper describes and analyzes the most popular ones.

IBM Rational Harmony for SE. The process for integrated systems development by Harmony can
be represented by the classic “V” diagram. The left leg of the “V” describes the top-down design
flow, while the right-hand side shows the bottom-up integration phases from unit test to the final
system acceptance (Hoffmann, 2011). The workflow is iterative with incremental cycles through the
phases of the requirements analysis, system functional analysis, and design synthesis. Models that

	

support the requirements analysis phase are the requirement models and the system use cases
model. In the system functional analysis phase, each use case is transformed into an executable
model and the related system requirements are verified using model execution. The main executable
models in the design synthesis phase are architectural analysis model and system architecture
model. Harmony methodology is claimed to be compatible with SysML.

Object-Oriented Systems Engineering Methodology (OOSEM). This methodology is developed
by INCOSE (INCOSE, 2010). It combines object-oriented techniques, a model-based design
approach, and top-down waterfall-style system engineering practices. Analyze needs, define system
requirements, define logical architecture, synthesize allocated architectures, optimize and evaluate
alternatives, and verify & validate systems are the main activities of OOSEM. When designing a
system-of-systems, these activities are performed for each system individually. OOSEM was
integrated with ISO-15288 standard, which is dedicated to harmonize the processes used by any
organization or project throughout the full lifecycle of a man-made system (Pearce and Hause,
2008). The integration allows identifying the sequence of the processes needed to deliver the
essential products of the development. System Engineering processes are organized into five
groups: agreement, enterprise, project, technical, and special.

Vitech MBSE Methodology. Source requirements, behavior, architecture, and verification and
validation – these are the main domains of this methodology (Vitech). It uses MBSE System
Definition Language (SDL) to manage the syntax (structure) and semantics (meaning) of model
artefacts, which can be specified either in the form of schema or ontology. Vitech methodology also
uses iterations, so called, levels. These levels help to detail system specification, but they don't
solve the problem of information abstraction management (Estefan, 2008).

JPL State Analysis (SA). This methodology was created by the California Institute of Technology
Jet Propulsion Laboratory (JPL). It is based on a state control architecture, where state is defined to
be “a representation of the momentary condition of an evolving system,” and models describe how
state evolves (Ingham et al., 2006). SA methodology provides activities for state modeling
(modeling behavior according to state variables and relationships between them); state-based
software design (methods to achieve objectives); goal-directed operations engineering (preparing
detailed scenarios for mission objectives). Together, state and models supply what is needed to
operate a system, predict future state, control towards a desired state, and assess performance
(Estefan, 2008).

SYSMOD. It is dedicated to model systems by using SysML as modeling language. These are the
main phases of SYSMOD: project’s context description; requirement’s collection; system’s context
modeling; system’s use case and process modeling; system’s structure and state modeling; collect
domain knowledge. Starting with the description of the project context, requirements of the system
are captured and modeled. Use case specification allows clarifying requests and working scenarios.
Processes of the system are created simultaneously. Finally, the internal structure of the system is
created, parameters are defined, and behavior is modeled.

MBSE methodologies are solving different tasks of systems engineering process (Dickerson and
Mavris, 2009), (Friedenthal et al., 2007). Not only identification and gathering of artefacts in proper
sequence is challenging for them. They also need to deal with information complexity issue. Most
of the described methodologies use iterations to collect information step by step. However, this
doesn't help to identify different levels of abstraction, which may result in model incorrectness or
even become a serious obstacle to allocate responsibilities to teams, stakeholders, or contractors.

Enterprise Architecture Frameworks
To manage different levels of abstraction, enterprise architecture frameworks (EAFs) can be used.
(Bernard, 2004) describes EAF as “It is a structure for organizing information that defines the scope

	

of the architecture and how the areas of the architecture relate to each other”. A few categories of
EAFs can be distinguished: defense-oriented and industry-oriented.

Department of Defense Architecture Framework (DoDAF) (US Department of Defense, 2009),
Ministry of Defense Architecture Framework (MODAF), and NATO Architecture Framework
(NAF) are standardized frameworks for defense architectures. Currently, all are very similar from
the views and viewpoints point of view and different from the meta-model point of view. Despite
this difference, there is a common modeling language for both, developed and maintained by OMG.
It is called Unified Profile for DoDAF and MODAF (UPDM) (OMG, 2009). As UPDM is a profile
of UML, the versatility of UML and its compatibility with its profiles allows integrating UPDM
with other OMG standards based on UML, such as SysML (OMG, 2012a) and SoaML (OMG,
2012b). DoDAF/MODAF/NAF viewpoints allow modeling information in different levels of
abstraction. The main viewpoints are all, capability/strategic, operational, data and information,
systems, services/service oriented, project/acquisition, and standards/technical. These viewpoints
define the different aspects of modeled information in different levels of abstraction.

TOGAF, FEAF, and Zachman are the most commonly cited in scientific researches and considered
as “de facto” standards for industry architectures. TOGAF (The Open Group, 2009) is providing the
structure, meta-model, and method for creating the enterprise architecture. It can be based on UML
and Archimate modeling languages. Zachman framework is the first enterprise architecture
framework defining the logical structure for classifying and organizing the descriptive
representations of that enterprise (Lankhorst, 2009). The most common problem of industry EAFs
is that there is no standardized way for storing and exchanging data, as opposed to defense EAFs,
e.g., DoDAF provides a whole document describing data exchange, which is one of the biggest
problems in defense domain (US Department of Defense, 2009).

Taking industry demand in account and addressing changing landscape of defense architecture
frameworks (adoption of IDEAS ontology for DoDAF and MODAF), in September of 2013, a
Request for Proposal (RFP) for UPDM 3.0 (later renamed to UAF) was created. For the reason to
support civil engineering needs, domains that are beyond the scope of defense frameworks like
human machine integration, security, etc., UPDM 3.0 was renamed to UAF 1.0. The Alpha version
of UAF specification is accepted by OMG in June 2016. The final version of UAF 1.0 specification
is very likely to be published in June 2017 (Hause et al., 2016). MBSE Grid proposed in this paper
is strongly influenced by emerging UAF specification, that is, tabular representation, concepts of
domain and view specification, etc.

EAFs bring up advantageous ideas on how to manage different layers of abstraction. However, they
all consist of many different views, but none of them provides a simplified perspective that would
address only subsets of each view. This is the reason why a new framework, which collects the best
practices of existing frameworks and is dedicated particularly for systems modeling, would be very
welcomed within systems engineering community.	

An approach: the MBSE Grid

The proposed framework is based on (Anonymous, 2016), the work done in this area, and on the
experience working with several systems engineering companies worldwide. The main idea is
represented in the form of the grid (Figure 3), where columns are aspects, originating from
(Friedenthal, 2008), (OMG, 2012a), also known as four pillars of SysML, and rows are viewpoints,
originating from (US Department of Defense, 2009), (ISO, 2011), (OMG, 2009). Such, Zachman
style matrix (Zachman, 1987) serves as a canvas to integrate different concerns, issues, and methods
towards successful application of MBSE, while specific methods may use parts of it as a reference
point (Nikolaidou et al., 2009).

	

Originally, MBSE Grid was proposed in (Anonymous, 2016), where problem domain has been
described. This paper adds slight modifications to the previously introduced problem domain, such
as: (i) name change of the sub-domains, (ii) name change of some of the views, (iii) traceability
updates, (iv) different, more mature case study, and (v) two examples from industry. (Anonymous,
2016) does not analyze solution domain and traceability among view specifications in the problem
and solution domains. It also does not describe the idea behind separating architecture into problem
and solution domains.	

Influencers
The MBSE Grid was strongly influenced by an expertise acquired working on real-world projects in
transportation and defense industries.

Bombardier Transportation (BT). The BT System Modeling Method (SysMM) describes how BT
engineers analyze, define, and represent their system of interest using a Model-Based Systems
Engineering approach. The purpose of the method is to manage complexity and increase quality of
the design artefacts to reduce development costs (Naas et al., 2015).

MBSE methodology applied in Bombardier Transportation consists of three main tasks. Each of the
tasks are to analyze the system of interest on a different abstraction level (Figure 1). Operational
Analysis task and its subtasks correspond to a black-box definition of the problem in the MBSE
Grid. The missing peace in SysMM comparing to MBSE Grid is identification of MoEs. Functional
Analysis task corresponds to a white-box definition of the problem and Technical Analysis task
corresponds to the definition of solution (Naas et al., 2015).

	
Figure 1. BT System Modeling Method (Naas et al., 2015)

Kongsberg Defense and Aerospace (KDA). Another influencer for MBSE Grid is the MBSE
methodology applied in Kongsberg Defense and Aerospace (KDA). KDA System Architecture
Framework depicted in Figure 2 consists of two parts: specification and design, which correspond
to the problem and solution layers in MBSE Grid. Furthermore, design consists of the Functional,
Logical, and Physical views, where the last one is in the scope of CAD systems (Soegaard, 2016).

Both BT SysMM and KDA System Architecture Framework are defined having in mind three
major MBSE components: language, methodology, and tool. This makes both methods applicable
on real-world projects as opposed to theoretical methods where the third component – a modeling
tool – is missing.

	

	
Figure 2. KDA System Architecture Framework

MBSE Grid Structure
Pillars. Four pillars introduced in (Friedenthal, 2008) depict four main aspects of model-based
systems engineering using SysML: requirements, system structure, system behavior, and parameters
(parametric). They perfectly describe the main areas of the system model; however, it does not help
to manage different levels of abstraction and control level of granularity at each of them. This is the
rationale for having rows in the Grid.

Domains. (Nikolaidou et al., 2009) revealed that enterprise architecture frameworks may serve
towards managing abstractions. A detailed comparison of existing EAFs is provided in (Franke et
al., 2008). According to comparison and our research, EAFs, especially ones in harmony with
MBSE, provide two main viewpoints: one to define problem in order to understand it, other to
provide one or several alternative solutions to solve it, e.g., operational and systems viewpoints in
DoDAF (US Department of Defense, 2009), logical and physical (Resources) in NAF, business and
engineer in Zachman framework (Zachman, 1987). In accordance to the best practices, the MBSE
Grid has two main rows: problem and solution. Besides these two, a need to provide the black-box
perspective separated from the white-box perspective of the problem domain was identified.

Figure 3. The MBSE Grid framework

Black-box perspective describes the SoI as a whole. In this perspective, stakeholder needs,
functions expected from the system, user scenarios, SoI interaction with environment, and
measurements of effectiveness are defined or in other words, the operational analysis of the system
(INCOSE, 2010) is performed.

White-box perspective, as opposed to the black-box perspective, describes behaviors that are
expected from subsystems of the SoI. In this perspective, environmental entities, including users of

	

the SoI are no longer considered: inputs and outputs of the SoI are delegated to its subsystems. The
result of the white-box analysis is system requirements specification, derived from the stakeholder
needs.

View Specifications. Cells of the grid (Figure 3) represent different views of model-based systems
engineering. View is a specific model, which can be visualized in a SysML diagram, IDEF diagram,
etc. According to ISO42010, it is a view specification and the instance of it is a view. In (ISO,
2011), a view is defined as “work product expressing the architecture of a system from the
perspective of specific system concerns”.

• Stakeholder Needs. Represents information captured from various stakeholders of the
system. This information includes primary user requirements, system-related government
regulations, policies, procedures, and internal guidelines to name a few. Stakeholder needs
can be elicited by interviewing various stakeholders, giving them questionnaires, discussing
in focus groups, studying documents written in diverse formats. Though elicited information
is raw, it does not need to be specially rewritten. Later refinements in the model make these
stakeholder needs structured and formalized. SysML requirements diagram or table, or them
both are used to capture stakeholder needs.

• Use Cases. Captures refinements of functional stakeholder needs in the form of SysML use
case diagram. Each use case defines what primary or secondary (maintainer, external
software, or hardware) users need to achieve by using the system. It also includes use case
scenarios defining flows of actions or events, prerequisites, constraints, etc.

• System Context. Captures how the SoI interacts with its environment. Origins of such
model can be found in DoDAF, known as High Level Operational Context (HLOC) (US
Department of Defense, 2009). The purpose of the model is to depict high level interfaces
needed for the system to communicate with its environment, e.g., GUI, UI, TCP/IP, etc.
SysML internal block diagram is used to capture the view of the system context.

• Measurements of Effectiveness. Depicts non-functional, user set goals for the system,
expressed in the numerical format. MoEs are captured in SysML block definition diagram.
Methods for calculating MoEs are described using SysML parametric diagrams.

• System Requirements. An input for system requirements specification is stakeholder needs
specification. By analyzing the stakeholder needs, system requirements are identified and
specified. SysML requirements diagram or table, or them both are used to capture system
requirements.

• Functional Analysis. It is the continuation of functional use case analysis, focusing on
internal system functions in some of the techniques known as processes (Morkevicius and
Gudas, 2012). Functional analysis also serves for identification of logical sub-systems,
which are responsible for performing a group of functions. Functional analysis can be
expressed in a form of multiple SysML activity diagrams.

• Logical Subsystems Communication. Used to identify how logical sub-systems, based on
the control and resource flows captured in the functional analysis model, relate to each
other. Logical interfaces are identified and defined. They serve as inputs to generate an
interface control document (ICD). A combination of both SysML block definition diagram
and SysML internal block diagram are used to capture this view.

• MoEs for Subsystems. Captures MoEs and Measurements of Performance (MoPs)
identified for each logical sub-system. MoEs and MoPs are captured in SysML block
definition diagram. Method for calculating MoEs are described using SysML parametric
diagrams.

• Component Requirements. Captures detailed, usually formal, requirements, e.g., design
constraints for every component identified. Component requirements are derived from
system requirements. SysML requirements diagram or table, or them both are used to
capture component requirements.

	

• Component Behavior. Used to define a detailed behavior of every component by defining
its states and actions, e.g., algorithm, operation call, signal handling, etc. Detailed behavior
is a subject for simulation. A combination of SysML state machine, activity, and sequence
diagrams can be used to capture the detailed behavior of a component.

• Component Structure. Shows physical connections based on physical interfaces between
physical components. Physical components implement logical sub-systems created in a
problem viewpoint. The detailed design of a physical component is not a subject of this
view. A combination of both SysML block definition diagram and SysML internal block
diagram are used to capture this view.

• Component Parameters. Captures physical characteristics of each component,
dependencies between them, and specifies how these physical characteristics serve to
achieve MoEs and MoPs defined in the problem definition layer. Parameters are captured in
SysML block definition diagram. Method for calculating derived parameters are described
using SysML parametric diagrams.

	

Figure 4. MBSE Grid mapping to SysML

Instantiation methods of every view specification by SysML diagrams are listed in Figure
4.Traceability between different view specifications is depicted in Figure 8.

Extensions. The idea of MBSE Grid is to provide foundation for a new systems’ modeling
framework. It acts like a 150% model in product line engineering, where all possible view
specifications are in present. Users of the framework can produce a number of 100% models with
different variations of view specifications. A very good example is BT SysMM approach, where
parametrics pillar is not used (Naas et al., 2015). A very common example, especially in defense
and automotive, is the one, where contracting authority defines problem domain only, and
suppliers/contractors develop solution domain architectures (US Department of Defense, 2009). A
trade-off analysis is performed later to decide which solution architecture is the best for the given
problem architecture.

Case Study
Due to non-disclosure agreements with industry partners, the case study provided in this paper is
based neither on BT nor on KDA examples. It demonstrates an example of the climate control unit
of the vehicle. In this chapter, problem and solution domains for the climate control unit are
defined. The example model is based on SysML and is modeled in MagicDraw toolset.

	

Problem domain: black-box		
Stakeholder needs for the project are acquired from the stakeholders, including the customer.
Stakeholder needs can be captured directly in the SysML, or alternatively, they can be imported
from other tools and formats, such as: requirements management tools (for example, IBM®
Rational® DOORS®), spreadsheets (for example, Microsoft Excel file), ReqIF file (which contains
requirements data exported from another tool).

In SysML format, a piece of stakeholder needs is specified as requirement, which has a unique
identifier, name, and textual specification. The entire list of stakeholder needs can be displayed in a
single view – SysML requirement table or alternatively in SysML requirements diagram.
Stakeholder needs can be hierarchically related to each other by the containment relationships.

A fragment of stakeholder needs (SNs) for the climate control unit is depicted in SysML
Requirements Diagram (Figure 5a). These SNs are further analyzed and refined. For example, the
stakeholder need Heat and Cool Modes is refined by the use case Feel Comfortable Temperature
(Figure 5b). It is important to note that the refinement is derived from a single step in the use case
scenario (Figure 5c), called Reach Desired Temperature.

Use cases of the system can be defined by utilizing the infrastructure of SysML use case diagram
(Figure 2b). Supposed users of the system (humans, organizations, external systems) that perform
these use cases can be specified as actors or blocks and related to the use cases by using the
standard association relationship.

In the MBSE Grid, use cases should be grouped into contexts, which define various situations of
using the system. Thus, every SysML use case diagram should be created considering the context,
wherein the use cases it represents are performed. The context can be stored in the model as SysML
block. Figure 5b displays the use case Feel Comfortable Temperature in the Vehicle On context. A
single use case can be performed in different contexts.

Use cases are commonly supplemented with additional information required, e.g., post condition,
primary scenario, alternative scenario, etc. Each use case must have a primary scenario. Alternative
scenarios are optional. A use case scenario can be captured in a form of SysML activity diagram
and represented as flow of actions performed by the actor and the system. In Figure 5c, the primary
scenario of the use case Feel Comfortable Temperature is shown. Both the actor and the SoI are
represented as swimlanes. Activities performed are allocated to the actor and the system
accordingly. Activities performed by the Climate Control Unit are the top-level functions of the SoI.
Every top-level function is traced back to SN by using the refine relationship, e.g., the function
Reach Desired Temperature refines the SN Heat and Cool Modes.

For system context definition, the SysML internal block diagram is used (Figure 5d). It shows how
the system of interest interacts with its environment (actors, external systems, etc.) in a variety of
contexts identified while modeling use cases. Here it is necessary to remember that every context
defines the unique situation of using the system, thus the environment of the system may differ. In
Figure 5d, you can see the interactions between the Climate Control Unit and its environment units
within the Vehicle On context.

To define MoEs, SysML block definition diagram is used. MoEs captured in the diagram are
refining non-functional SNs. To define reusable set of MoEs, a separate block is created called
Climate Control MoEs (Figure 5e). The SoI inherits MoEs from the Climate Control MoEs. A
mechanism of redefinition in SysML allows to define different default values and refine different
requirements by every single MoE.

	

Figure 5. Problem domain with SoI considered as a black box: a) Stakeholder Needs; b) Use
Cases; c) Use Case Scenario; d) System Context; e) Measurements of Effectiveness

Problem domain: white-box
Once the black-box of SoI is defined or in other words operational analysis of SoI is completed, the
next step is to open the black-box and define the white-box of the SoI including system
requirements, functional analysis, and logical architecture. This layer helps to understand what is
expected to be delivered instead of already providing a system design. For a single problem
definition, there can be multiple alternative solutions provided.

System requirements are related to all the view specifications in the domain and are derived
step-by-step from stakeholder needs while working on other view specifications. System
requirements are related to all the view specifications in the domain and are derived step-by-step
while working on functional analysis and logical sub-systems communication view specifications.
Figure 6a depicts the SR Heating and cooling derived from the SN Heat and Cool Modes.

Functional analysis is a continuation of use case refinement using SysML activity diagrams. Once
top level functions of the SoI are identified as black-boxes, they can be further refined. There are
some rules for refinement in the MBSE Grid approach to make consistency among levels of
granularity in different pillars, e.g., swimlanes displayed in SysML activity diagram created for the
top-level function of the SoI shall represent logical sub-systems of the SoI. For every function
allocated to SoI a new SysML activity diagram is created. Figure 6b. depicts a SysML activity
diagram for the function Reach Desired Temperature. There are two swimlanes in the diagram: one
represents the sub-system Data Transfer Group and another – the sub-system Control Group. Every
function identified in the diagram can: i) be further refined by a new SysML activity diagram; ii)
refine functional SR, e.g., the function Start Heating refines the SR Heating and cooling.

SysML activity diagram with swimlanes is very helpful for identifying logical sub-systems. When
logical sub-systems are identified, connectors and interfaces among them needs to be defined.

	

According to MBSE Grid, firstly, a SysML block definition diagram is created for SoI (Figure 6c),
secondly, it is created for each logical sub-system. The purpose of this diagram is to define the
sub-system of interest (SSoI) as a black-box. In this diagram, it is recommended to capture inputs
and outputs of the SSoI. It is common practice to capture MoEs of the SSoI as well.

Next, a SysML internal block diagram is created for the SoI. The purpose of this is to connect
usages of sub-systems via defined interfaces. Figure 6d depicts internal block diagram for the
Climate Control Unit. The diagram shows how the sub-system Control Group communicates with
other sub-systems, e.g., Data Transfer Group.

The last step is to specify MoEs for the sub-systems and define methods for evaluating them.
Methods for evaluating MoEs are defined using constraint blocks. It is recommended that MoEs
would have refine relationships to SRs.

The problem domain is all about requirements. Text-based requirements, including SNs and SRs in
this domain are related to all the view specifications. Horizontal traceability among requirements
and other model elements must be specified using refine relationships.

	
Figure 6. Problem domain with SoI considered as a White box: a) System Requirements; b)

Functional Analysis; c) System Definition; d) Logical Subsystems Communication

Solution domain

After defining a problem, one or more solutions for the problem can be identified. The solution
architecture according the proposed approach consists of component requirements, component
behavior, component structure, and component parameters. The word "component" does not mean
this level is a not talking about system and sub-system level of granularity. Solution architecture is
the complete architecture starting from system and going down as deep as the complexity of the
system requires. The purpose of the solution architecture is to provide a precise model or several
variants of the model of the SoI, that meet the requirements defined in the problem domain.	

In the solution architecture, more precise text-based requirements are specified. They are more
concrete and directly related to some physical component and its physical characteristics, e.g.,
design constraints. It is recommended all requirements in the solution domain are automatically
verifiable (Morkevicius and Jankevicius, 2015). Component requirements are derived from SRs.

	

Figure 7a illustrates the component requirement (CR) Noise derived from the SR Heating and
cooling. The CR Noise is very precise, where text fragment "no more than 45 dBA" is machine
readable and automatically verifiable.

The SoI structure is modeled next or at the same time with CR. Structure is modeled using SysML
block definition and SysML internal block diagrams. There are a few important differences from
the problem domain logical sub-systems communication diagram: (i) parts in component structure
diagrams represent physical parts of the system, (ii) interfaces modeled in component structure
diagrams are physical as opposed to logical, (iii) according to the best practices, components and
interfaces are categorized into categories, e.g., software, mechanical, electrical, optical, etc. It is
very important for detailed design to be carried out on every of the components. Physical
components implement logical components defined in the problem domain. Abstraction relationship
is used to capture this vertical trace. Figure 7d depicts a graph view of the structural decomposition
of the Climate Control System.

Figure 7. Solution domain: a) Component Requirements; b) Component Behavior; c) Component
Parameters; d) Component Structure

Component of interest (CoI) can have its behavior defined. In practice, this is done to simulate
component or a group of components answering one or another question about its or their behavior
or physical characteristics. For this reason, SysML state machine and SysML activity diagrams are
used. Figure 7b depicts a fragment of SysML state machine diagram for the Climate Control
Software.

According to the MoEs defined in the problem domain, parametric models are set-up on the
physical SoI model. Parametrics can calculate derived physical characteristics of the component,
e.g., sound level of the Compressor System as depicted in Figure 7c. The sound level is calculated
for every component making noise, and finally the total noise level of the SoI is calculated and
evaluated.

Not all characteristics of the physical components can be calculated statically. It is a common
practice to run behavioral simulations in combination with SysML parametrics. It is very useful

	

practice to perform trade-studies among different solution architectures trying to find the best
alternative to solve the defined problem.			

Traceability

Traceability among view specifications is very important aspect of the MBSE Grid approach. The
approach helps to organize model while creating it. However, after the model is created, it needs to
be maintained, e.g., changes need to be managed, impact analysis needs to be performed, etc. This
is not possible without having specified traceability.

Figure 8. Traceability in the MBSE Grid

In the SysML, there are four different kinds of trace specifications: (i) direct relationship, e.g.,
derive, satisfy, allocation, refine; (ii) metaproperty, e.g., subject, owner; (iii) composition (part
property for structure and call behavior action for activities); (iv) computational derivation. Trace
kinds including relationship names recommended for use among different view specifications in the
MBSE Grid are depicted in the Figure 8.

Conclusions and Future Works
Analysis of MBSE methods and enterprise architecture frameworks discloses that majority of them
are conceptual and thus can hardly be used in combination with systems modeling techniques, such
as SysML, in practice. In contrast to them, the MBSE Grid approach proposed in this paper is fully
compatible with SysML. Based on the transparent system architecture framework, it clearly defines
the modeling process, reveals what model artifacts should be produced in each step of system
specification and design, and explains how to manage traceability relationships (both horizontal and
vertical). The case study later in this paper proves applicability of MBSE Grid in combination with
MagicDraw toolset, which supports SysML.

Currently, the MBSE Grid approach is mainly oriented to the creation of a system model. Thus, it
will be extended to include support of system variants, engineering analysis, and verification &
validation. In the father future, the approach is considered to support a full model lifecycle

	

management, including its creation, usage, and configuration management.		

References
Aurum A., Wohlin C. 2005. Engineering and Managing Software Requirements. Springer.
Bernard, S. A. 2004. An Introduction to Enterprise Architecture. Bloomington, Indiana: Author

House.
Cloutier, R., Bone, M. 2010. Compilation of SysML RFI- Final Report, Systems Modeling

Language (SysML), from: http://www.omgwiki.org/ MBSE/
lib/exe/fetch.php?media=mbse:omg_rfi_final_report_02_20_2010-1.pdf

Dave, D., Jim, D. 2005. The new, improved RUP SE Architecture Framework, IBM Rational Edge.
Delp, C., Lam, D., Fosse, E., Cin-Young Lee. 2013. Model based document and report generation

for systems engineering, Aerospace Conference, 2013, IEEE.
Dickerson, C. E., Mavris, D. N. 2009. Architecture and Principles of Systems Engineering. Boca

Raton, FL, USA: CRC Press Auerbach Publications.
Estefan, J. 2008. INCOSE Survey of MBSE Methodologies. INCOSE TD 2007-003-02, Seattle,

WA, USA.
Franke, U., Hook, D., Konig, J., Lagerstrom, R., Narman, et. al. 2009. EAF2 Framework. 10th

ACIS International Conference on Software Engineering.
Friedenthal, S. 2008. A Practical Guide to SysML, Amsterdam, The Netherlands: Morgan

Kaufmann OMG Press.
Friedenthal, S., Griego, R., Sampson, M. 2007. INCOSE model based systems engineering (MBSE)

initiative. INCOSE International Symposium, USA.
Hause, M., Bleakley, G., Morkevicius, A. 2016. Technology Update on the Unified Architecture

Framework (UAF). INCOSE International Symposium, 26, pp. 1145–1160.
Hoffmann H. P. 2011. IBM Deskbook, from:

http://www-01.ibm.com/support/docview.wss?uid=swg27023356&aid=1
Ingham, M. D., Rasmussen, R. D., Bennett, M. B., Moncada, A. C. 2006. Generating Requirements

for Complex Embedded Systems Using State Analysis. Acta Astronautica, 58, Iss. 12, pp.
648-661.

INCOSE. 2010. INCOSE Systems Engineering Handbook. v.3.2,Seattle, WA, USA.
ISO. 2011. ISO/IEC/IEEE 42010:2011. Systems and software engineering — Architecture

description. Geneva.
Lankhorst, M. 2009. Enterprise Architecture at Work. Berlin: Springer.
Morkevicius, A., Gudas, S. 2012. An Approach: A Service-Oriented Functional Business and IT

Alignment. 18th International Conference, ICIST 2012.
Morkevicius, A., Gudas, S. 2011. Enterprise Knowledge Based Software Requirements Elicitation.

Information Technology and Control vol. 40, no. 3, p. 181-190
Morkevicius, A., Jankevicius., N. 2015. An approach: SysML-based automated requirements

verification. In Systems Engineering (ISSE), 2015 IEEE International Symposium on, pp.
92-97. IEEE.

Naas O., Chami M., Oggier P., Heinz M. 2015. Real World Application of MBSE at Bombardier
Transportation. SWISSED 2015. from
http://ssse.ch/sites/default/files/page_images/%3Cem%3EEdit%20Basic%20page%3C/em%
3E%20SWISSED%202015/MBSE%20at%20BT%20-%20SWISSED2015%20-%20201509
08%20-%20V1_1.pdf.

Nikolaidou, M., Tsadimas, A., Alexopoulou, N., Anagnostopoulos, D. 2009. Architecture
Framework to Systematically Perform Model-Based System Engineering Activities. 42nd
Hawaii International Conference.

OMG. 2003. MDA Guide Version 1.0.1. Object Management Group.
OMG. 2012a. Systems Modeling Language (OMG SysML) Version 1.3.
OMG. 2007. Unified Modeling Language (OMG UML) Infrastructure, V2.1.2. Object Management

Group, Needham.

	

OMG. 2009. Unified Profile for the DoDAF and MODAF, Needham, MA.
OMG. 2012b. Service Oriented Architecture Modeling Language™(SoaML®), Version 1.0.1,

Needham, MA
Pearce P., Hause M. 2008. ISO-15288, OOSEM and Model-Based Submarine Design.
Silingas, D., Butleris, R. 2009. Towards customizing UML tools for enterprise architecture

modeling. IADIS international conference, Barcelona.
Soegaard S. E. 2016 Adopting MBSE using SysML in System Development – Joint Strike Missile

(JSM), No Magic World Symposium 2016. from
https://vimeopro.com/user28256466/no-magic-world-symposium-2016-presentations/page/3

Spangelo, S. C. et al. 2012. Applying model based systems engineering (MBSE) to a standard
CubeSat (2012) Aerospace Conference IEEE.

The Open Group. 2009. TOGAF Version 9. Zaltbommel: Van Haren Publishing.
US Department of Defense. 2009. DoD Architecture Framework Version 2.0 Volume 2:

Architectural Data and Models Architect’s Guide.
Vitech. from http://www.vitechcorp.com/solutions/strata.shtml.
Zachman, J. A. 1987. A framework for information systems architecture. IBM Syst. J., vol. 26, no.

3, pp. 276–292.

Biography
Aurelijus Morkevicius is OMG Certified UML, Systems Modeling and BPM professional.
Currently he is a Head of Solutions Department at No Magic Europe. He has the expertise of
model-based systems and software engineering, and defense architectures (DoDAF, NAF).
Aurelijus works with companies such as BAE Systems, Bombardier Transportation, Deutsche
Bahn, ZF, Ford, SIEMENS, BMW. He is also a chairman and one of the leading architects for the
current OMG UAF standard development group. In addition, Aurelijus is actively involved in
educational activities. He received a PhD in Informatics Engineering from the Kaunas University of
Technology in 2013. Aurelijus is also a lecturer, author of multiple articles, and a speaker in
multiple conferences.

Aiste Aleksandraviciene holds a Master of Information degree in Systems Engineering from
Kaunas University of Technology and is an OMG certified systems modeling professional
(OCSMP). Currently she is a Solution Architect at No Magic Europe and takes responsibility for
producing training material, organizing webinars, writing papers and making presentations at
systems engineering community events to promote the MBSE culture. Her expertise area is
model-based systems engineering with special focus on managing system requirements.

Donatas Mazeika is a Systems Analyst and Solution Architect at No Magic Europe. He has more
than 6 years of work experience in software development, business and systems analysis, and
requirements engineering. While working with worldwide-known companies, like SKA
Organization, Kongsberg Defence and Aerospace, he proved himself as UML and MBSE
professional, which is also acknowledged by OMG Certification program (OCSMP). Also, Donatas
is a PhD student and a	lecturer	at Kaunas University of Technology.

Lina Bisikirskiene is the Product Manager of the Cameo Enterprise Architecture software at No
Magic Europe. Her major expertise areas are model-based enterprise architecture solutions and
business process modeling techniques. Lina holds a PhD in Informatics Engineering from Kaunas
University of Technology and is an OMG certified UML and systems modeling professional as well
as an expert in BPM and ITIL V3. She actively participates in educational and consultancy
activities, writes papers and presents them at conferences.

Zilvinas Strolia holds a Master degree in Economics, also a Bachelor degree in Electronics
Engineering from Kaunas University of Technology and is an OMG certified systems modeling
professional (OCSMP). Currently he is a Solution Architect at No Magic Europe and takes

	

responsibility of delivering MBSE solutions and trainings to No Magic clients, such as Bombardier
Transportation, Deutsche Bahn, Renault-Nissan, and Siemens.

