
293

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.4

REVERSIBLE LOSSLESS TRANSFORMATION FROM OWL 2
ONTOLOGIES INTO RELATIONAL DATABASES

Ernestas Vyšniauskas, Lina Nemurait�, Rimantas Butleris, Bronius Paradauskas
Kaunas University of Technology, Department of Information Systems

Student� St. 50-308, LT-51368 Kaunas, Lithuania
e-mail: vernest@email.lt, lina.nemuraite@ktu.lt, rimantas.butleris@ktu.lt, bronius.paradauskas@ktu.lt

Abstract. The goal of the paper is to define reversible, information preserving transformation from OWL 2
ontologies into relational databases using our proposed hybrid approach, when a part of ontology constructs is directly
represented by relational database structures and another part having no direct correspondences in a relational database
is stored in metadata tables. The desirable transformation is defined in QVT Relations language following additional
requirements under which such transformation is reversible and does not lose semantic information when performing
from ontology to database and backward.

Keywords: Ontology, relational database, OWL 2, RDB, reversible lossless transformation, QVT Relations
language.

1. Introduction

Ontology comes from philosophy and defines fun-
damental concepts, relationships and constraints of the
problem domain. Its technological embodiment, the
Web Ontology Language OWL [1], now OWL 2 [2],
is the indispensable means for representing human-
readable and machine-processable semantics in the
Semantic Web. The problem of storing large onto-
logies is not new and currently it attracts more and
more attention. Native RDF repositories as OWLIM
[3] and commercial database management systems as
Oracle [4] are following the mentioned target, apart
other different implementations and approaches for re-
presenting OWL ontologies using relational database
constructs. Each of these approaches has its advan-
tages and drawbacks; none of them is recognized as a
standard. Recently, the W3C Consortium has announ-
ced “The Use Cases and Requirements for Mapping
Relational Databases to RDF “ [5]. Naturally, all these
efforts and achievements should be united for having
at least a common reference and understanding how
different representations could interact for reaching
the vision of “Linked data” [6].

In 2006, we have proposed a hybrid approach for
representing OWL ontology in relational database
when a part of ontology constructs is directly repre-
sented by relational database structures, and another
part is stored in metadata tables [7]. The approach
was extended for OWL 2 [8]. As the quality of map-
ping between ontologies and database belongs on cap-
ability to perform queries, we conducted an

experiment with a prototype of a tool for extracting
ontologies from relational databases, satisfying our
schema, and allowing the step-wise processing of
SPARQL queries where SPARQL was used for query-
ing ontology structures in a main memory and SQL
was used for querying instances in the database [9].
The experiment has shown that 1) it is possible to
restore the original ontology from a database created
using the hybrid approach; 2) query performance
times of our proposed method were better than using
the memory based methods when ontology is stored
using a native storage.

The limitation of our approach is the fact that on-
tologies undergo changes, and database structures
representing ontology concepts are obliged for chang-
ing too. Metadata tables do not belong on these
changes; it is an advantage of the hybrid approach.
Also, the intuition tells that changes of ontology
axioms represented in metadata tables are occurring
much faster than changes in tables representing classes
and properties of ontology. Nevertheless, the ensuring
of lossless transformations in the sense of preserving
information is a very important issue when ontology
or database evolves.

 For firming our approach, we present the specifi-
cation of OWL2ToRDB transformation in QVT Relation
(QVTR) language that is capable for defining
bidirectional transformations. Information preserving
transformations have additional requirements with
regards to which we propose a reversible transfor-
mation that does not lose semantics during performing
forward from ontology to database and backward.

http://dx.doi.org/10.5755/j01.itc.40.4.979

http://dx.doi.org/10.5755/j01.itc.40.4.979

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

294

The rest of the paper is organized as follows. In
Section 2, the overview of related works is presented.
Section 3 introduces OWL 2 and RDB metamodels
and the overall OWL2ToRDB transformation. Section 4
analyses transformations of OWL 2 classes and class
axioms; Section 5 – OWL 2 object properties, pro-
perty axioms and restrictions. Section 6 summarizes
the transformation of remaining OWL 2 constructs.
Section 7 analyses the OWL2ToRDB transformation with
regards to requirements of being a lossless
transformation in the information preserving sense.
Section 8 gives conclusions and highlights the future
work.

2. Related Works

OWL 2, a new version of OWL, has occupied the
positions of its predecessor straight after its occur-
rence in 2009 [2], [10]. OWL 2 offers new constructs
for describing properties such as qualified cardinality
restrictions; property chain axioms; local reflexivity
restrictions; disjoint, reflexive, irreflexive, symmetric
and antisymmetric properties; negative property
assertions; vocabulary sharing (punning) between
individuals, classes, and properties; the richer set of
datatypes and their restrictions etc. When extending
our previous mapping, we used the same hybrid
approach: direct mappings of OWL 2 class and
property concepts with RDB concepts, and storing the
problematic (in mapping sense) knowledge in
metatables.

There are a lot of approaches for representing on-
tologies in databases [11][21] and inverse mappings
from databases to ontology [22][26]. We can classify
ontology storage models into three main cases [9]:
storing ontology and its instances in the same manner
(one or three tables); storing ontology concepts in
database schema corresponding to full or partial
ontology metamodel; and storing ontology and its
instances in different schemas in order to improve
access to instances while retaining the capacity of
reasoning over the ontology. The first storage model
does not lose information, but it uses advantages of
relational databases just for saving many records, so
the performance of queries to ontology information
normally should be slow e.g. [14]. As an exception,
the similar method is highly powered in Oracle Se-
mantic Storage as it is supported with the native func-
tionality of the Oracle database and optimizing
techniques [4]. The second approach does not lose
information, but it is oriented at storing ontologies and
does not consider their relation to existing databases
and advantages of database management systems [11],
[15], [18], [21]. The third approach unites capabilities
of ontologies and database management systems (e.g.
[16], [17]). However, existing methods of that kind are
losing semantics as they do not cover the sufficient
subset of ontology concepts. Our proposed method
intends to fill this gap by showing that it is possible to
cover all ontology constructs by storing them in

metadata tables, and to perform efficient querying by
retaining ontology classes and properties as native
RDB constructs.

There are a lot of approaches to defining transfor-
mations: the Z notation [27]; abstract syntax trees and
attributes [28]; atomic and composite transformation
models [29]; two-level transformations [30] etc. Every
approach has its rationale, but for our work reversible,
information preserving transformations are of great
importance. Such transformations are vital for valida-
tion and evolution of ontology or database. First, the
question about information preserving in OWL2ToRDB
transformation arises as not every ontology construct
may be directly mapped to a relational database. Se-
condly, ontologies and databases are evolving in time.
Recurrent OWL2ToRDB and RDBToOWL2 transformations
should not damage existing data and ensure the
coherent performance.

The simplest way to ensure reversible, lossless
transformations is to implement transformations in
both directions and to test them. We have partially
done this with our first prototype [7] and its extension
[9]; now we are trying to surely verify the OWL2ToRDB
transformation by defining it in a suitable, explicit
transformation language. As candidate languages, ATL
[31], QVT [32], formal language for model transfor-
mation specification [33], a use of predicates and
functions [34], and triple graph grammars [36] were
examined. The ATL is a popular but not bidirectional
language; [33] presents promising, but undeveloped
specification; [34] approach requires defining a lot of
predicates and functions and is too cumbersome for
complex transformations. Also, except QVT and
triple graph grammars, all these languages are not
suitable for bidirectional transformations.

The most of formal methods related to bidirec-
tional transformations are based on graph grammars.
Ehrig et al. presented a formal proof of the sufficient
requirement for reversible transformations [35]. This
requirement is based on the “notion of source transfor-
mation which is the projection of a triple graph trans-
formation to its source component. It is sufficient to
show that a source structure can be constructed by
source transformations only”. In this case, the forward
transformation is “source consistent” and it “can be
inverted, i.e. there is a backward transformation lead-
ing back to the same source structure as the original
one”. It means, the projection of transformation on the
source model should cover all source constructs.
However, this requirement is sufficient to bijective
transformations only whereas most of practical
transformations are not bijective, and QWL2ToRDB is so
too.

The problem of defining information preserving,
bidirectional and not bijective model transformations
was analysed by Stevens [36]. She points that
currently there is no transformation language that
could guarantee the lossless transformations per se,
this has to be verified. Stevens acknowledges the
QVTR language as the most suitable language for

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

295

defining bidirectional transformations and formulates
the requirements for ensuring the coherent (not bijec-
tive) transformations. In Section 3, we present these
criteria in more detail as they have an impact on the
way transformations OWL2ToRDB are constructed.

We are considering the reversible lossless trans-
formation as a limited bidirectional transformation
that was defined by Hainaut [37]: a transformation
T1: M	N� N is reversible iff for all instances m of
source models M exists direct transformation T1 into
instances n of target models N and also there exists a
reverse transformation T2: M	N� M such that
�m�M � T1(m, n)= n, n�N; �m�M � T2
(m,(T1(m, n)) = m, n�N.

Transformation T1 is reversible, but not vice versa.
That means for any arbitrary instance n�N may not
satisfy T1 (T2 (m, n), n) = m. If T2 is reversible as
well, then T1 and T2 are called symmetrically revers-
ible and comprise a bidirectional lossless transforma-
tion T. Our OWL2ToRDB transformation is reversible
and lossless, but not bidirectional and lossless one as
the latter currently seems too big challenge because of
different nature of ontologies and databases. Trans-
forming arbitrary database into ontology is rather
reverse engineering task, requiring human intervention
[38]; it may be very complex taking into account
procedural components such as triggers and pro-
cedures.

When defining transformations, we use the OWL 2
metamodel [2] for representing ontology. For a
relational database, we use the Common Warehouse
Metamodel (CWM) [39], modified by eliminating its
procedural elements. Also, we have analysed the
ontology definition metamodel [40], which defines the
(partial) QVT_R1.0 transformation between OWL1.1
and UML2.1.2.

3. The overall transformation between OWL
2 and relational metamodels

For transforming OWL 2 ontologies into database
schemas, we use the original OWL 2 metamodel [2] as
a source. Here we present only excerpts of that meta-
model for explaining presented transformations. Figu-
re 1 presents the top structure of OWL 2 metamodel –
ontology, its annotations and axioms.

Axiom is a main instrument to define OWL 2 se-
mantic constructs. OWL 2 building blocks are entities
(i.e. classes, object properties, annotation properties,
data properties, named individuals, and datatypes) that
comprise the vocabulary or signature of ontology
(Figure 2). One can declare an entity by stating an
axiom. Conversely, annotations have no semantics but
serve as a powerful means for associating additional
information with ontologies, entities, and axioms.

Figure 1. The OWL ontology structure and axioms

Figure 2. OWL 2 entities

As a target metamodel, we use a subset of CWM
metamodel [39], obtained by eliminating procedural
components of CWM and supplementing it with
metatables (class Metatable) for preserving ontology
elements having no corresponding constructs in the

relational model. Also, we introduced SchemaName,
TableName and ColumnName (same as a KeyName) for
database schema names regarding possibly different
rules for creating them (e.g. names of schemas and
tables start with capital letters etc) (Figure 3).

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

296

Figure 3. Simplified Relational metamodel (adopted from [39])

First we present the overall transformation
owl2ToRDB written in QVT Relations language [32].
For brevity, we assume that model of ontology under
transformation, owl, has no importing ontology, does
not import other ontologies etc. Also, we assume that
all names of entities are represented as fullIRI and
OWL 2 classes are inserted in stead of missing
domains or ranges of properties where appropriate [2].
During this transformation, ontology is transformed
into RDB schema, ontology IRI is transformed into
RDB schema name, metatables are created, and a row
is inserted into metatable OWLOntology for preserving
ontology IRI and prefix (Figure 4).
transformation owl2ToRDB(owl:OWL2,rdb:RDBM)
{ key Ontology{iri};
 key Entity{iri};
 key Schema{name};
 key Table{name,namespace};
 key Column{name,owner};
 key PrimaryKey{name,namespace};
 key ForeignKey{name,namespace,uniqueKey,
 uniqueKey.namespace};
 key OWLclasses{classId}|{className};...;
top relation OntologyToSchema
{ checkonly domain owl ont:Ontology
 {ontologyIRI=iri:IRI};
 enforce domain rdb schem:Schema{
 name=sn:SchemaName,
 ownedElement�{classes:Metatable{
 name=’OWLClasses’,
 feature�{mcl:Column{
 name=’classId’,type=Integer},
 mc2:Column{name=’className’,
 type=Character},
 mc3:Column{name=’superClass’,
 type=Integer}},
 ownedElement�{pk:PrimaryKey{
name=’classId,feature�first()=mc1},
 uk:UniqueConstraint{
 name=’ClassName’,

 feature�first()=mc2},
 fk:ForeignKey{name=’SuperClassId’,
 feature�first()=mc3}},
 mont:Metatable{name=’OWLOntology’,
 feature�{mcl:Column{name=’ontologyId’,
 type=Integer},
 mc2:Column{name=’prefixIRI’,
 type=Character}},
 instance{r1:Row{
 slot�{sl1:Slot{feature=mc1,
 value=genUniqId(mont)},
 sl2:Slot{feature=mc2,
 value=iri.prefix().qNameToChar()}},
 disjointClasses:Metatable{
 name=’OWLDisjointClasses’,
 ...},...}};
 when {ont.versionIRI�isEmpty();
 ont.imports�isEmpty();
 ont.directImports�isEmpty()};
 where {IRIToName(iri,sn)};
}//OntologyToSchema

Here we omit the lengthy definition of the re-
maining metatables; some of them are presented in
Figures 4, 8 and 12. Operation genUniqId(table
:Table):Integer generates the unique identifier for a
row of a table “table”. Operation prefix(iri:IRI)
:Qname separates prefix from iri, where QName is a
QualifiedName from XML Namespaces.

Figure 4. Metatables for keeping information

about ontologies and their IRIs

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

297

A large subset of OWL 2 axioms is transformed
into rows of metatables; e.g. SubclassOf is presented
later in the paper.
top relation AxiomToMetaRow
{ checkonly domain owl ax:Axiom{
opposite(Ontology.axioms)=ont:Ontology};
 enforce domain rdb mrow:Row{
 namespace.namespace=schem:Schema}};
 when {OntologyToSchema(ont,schem)};
 where {ClassAxiomToMetaRow(ax,mrow};
 ObjectPropAxiomToMetaRow(ax,mrow};
 DataPropAxiomToMetaRow(ax,mrow}}
}//AxiomToMetaRow

 The important requirement for owl2ToRdb trans-
formation being bidirectional and lossless is a pos-
sibility to convert database schema names into IRIs. It
means that we should preserve a prefix when con-
verting OWL 2 into RDB, or define a prefix if we
wish to start a transformations from a database having
no ontology. The transformation IRIToName itself is a
simple one; however, the problem may be in defining
a prefix if we wish to transform a freely chosen
database schema that was not obtained by transfor-
ming some existing ontology. In such a case, we leave
choosing a prefix as a decision. When transformation
starts from the left side, the transformation IRIToName
can be specified as operation in OCL:
context owl2ToRDB::
 IRIToName(iri:IRI,sn:Character):Character
post sn=let
 n=iri.prefix().qNameToString().size(),
 m=iri.iriToString().size() in
 sn=iri.iriToString().substring
 (lower=n+1,upper=m).stringToChar(),

where operations qNameToString(),
iriToString(), stringToChar() (and others, as
qNameToChar() used in relation OntologyToSchema)
perform conversions of corresponding data types.

4. Transforming OWL 2 classes and class
axioms

4.1. OWL 2 classes

In OWL 2, classes and property expressions are
used to construct class expressions that represent sets
of individuals by formally specifying conditions on
the individual properties; individuals satisfying these
conditions are instances of the corresponding class
expressions. OWL 2 provides axioms that allow estab-
lishing relationships between class expressions (Fi-
gure 5).

When we are converting the OWL 2 ontology de-
scription to relational database schema, we map one
ontology class to one database table.

Figure 5. The OWL 2 metamodel for class axioms [2]

As the name of an ontology class is unique in the
ontology, and instances of the ontology class have
unique names, we can automatically create a primary
key for corresponding table and name the primary key
column by adding some suffix to the class name, e.g.
“Id”. Also, we create the additional column by adding
“Name” suffix to the class name for saving names of
instances of the class. This mapping and the example
are illustrated in Figure 6.

Figure 6. Illustration of transforming OWL 2 class

into RDB table

4.2. OWL 2 class axioms

The fundamental taxonomic construct for classes
is the SubClassOf axiom, which allows one to state
that each instance of one class expression is also an
instance of another class expression. It relates the
specific class to the more generic class and enables to
construct the hierarchy of classes. When transforming
OWL 2 ontology representation into a relational data-
base schema, we create one table for every class in
ontology with oneto-one (1:0..1) relationships bet-
ween tables representing classes and their subclasses
defined by the axiom subClassOf (Figure 7). Here
each value of the primary key of the supertable can
appear as the foreign key (and also as the primary key)
for at most one row of the subtable. The subclass does
not need a column for saving names of its instances,
because the instance of the subclass is also the ins-
tance of the superclass and its name is saved in the
superclass table.

The EquivalentClasses axiom allows one to state
that several class expressions are equivalent to each
other, i.e. these classes have precisely the same
instances. The DisjointClasses axiom states that
several class expressions are pairwise disjoint an
individual that is a member of one class cannot
simultaneously be an instance of the other class. The
DisjointUnion axiom allows constructing a class as a
disjoint union of several class expressions.

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

298

Figure 7. Illustration of transforming OWL SubClassOf

axiom into RDB

We suggest saving this information in special
metatables. All classes of the ontology are saved in
OWLClasses metatable with two main columns
classId, which is an automatically generated unique
identification number, and className, which saves the
unique name of the class (Figure 8).

Figure 8. Metaschema of OWL 2 class axioms

Also, the metatable OWLClasses has the column
that is a foreign key named superClass which saves
information about hierarchy of OWL classes, and the
column – foreign key named annotation for relating a
class with a set of its annotations. Information about
groups of disjoint, disjoint union and equivalent
classes is saved in metatables OWLDisjointClasses,
OWLDisjointUnion and OWLEquivalentClasses (Fi-
gure 8). These tables have automatically generated
unique primary keys, foreign keys from OWLClasses
table and identification numbers of groups that are
represented by foreign keys from metatable
OWLUnitedGroups. Equivalent, disjoint and disjoint
union classes have the same group identification num-
bers that are created during the transformation
process.

OWL 2 provides a new construct HasKey which
allows keys to be defined for a given class. This
construct gives a list of object or data properties,
which together uniquely identify named instances of a
given class. For example, if individuals of the class
Automobile are uniquely identified by data properties
modelTitle, produceYear and the object property
isProducedBy, then the OWL 2 axiom HasKey
(:Automobile :modelTitle :produceYear

:isProducedBy) states that each named instance of

the class Automobile is uniquely identified by this set
of properties – that is, if two named instances of the
class coincide on values for each of key properties,
then these two individuals are the same.

For converting the HasKey axiom on some proper-
ties for the certain class to the uniqueness constraint
on columns of the corresponding table, Depending on
the number of HasKey properties (one or more), we
create the unique key on the single column, or on a
combination of columns of the table.

4.3. Defining class and class axiom
transformations in QVTR

Transformation ClassToTable transforms common
features inherent for all OWL 2 classes. It generalizes
transformation TopClassToTable that transforms
classes having no superclass expressions. Features of
classes having superclass expressions are added to the
corresponding table by transformation
SubClassRelationToFK. Also, the transformation
ClassToTable creates a row r for each class cl in the
metatable OwlClasses.
top relation ClassToTable
{ checkonly domain owl cl:Class{
 entityIRI=ciri:IRI{},
 opposite(Axiom.entity).
opposite(Ontology.axioms)=ont:Ontology};
 enforce domain rdb t:Table{
 name=tn:TableName,
 namespace=schem:Schema,
 feature�{mcl:Column{
 name=tn+’Id’,type=Integer}};
 enforce domain rdb mr:Row{
 classifier=mt:Metatable{
 name=’OWLClasses’,
 slot�{s1:Slot{feature=col1:Column{
 name=’classId’},
 value=genUniqId(mt)},
 s2:Slot{feature=col2:Column{
 name=’className’,value=tn}
 when {OntologyToSchema(ont,schem);};
 where {tn=IRIToName(ciri,tn);
 TopClassToTable(cl,t);};
}//ClassToTable

Transformation of classes having no superclass ex-
pressions is further refined by the transformation
TopClassToTable:
relation TopClassToTable
{ checkonly domain owl cl:Class{
 entityIRI=ciri:IRI{},
 opposite(Axiom.entity).
opposite(Ontology.axioms)=ont:Ontology};
 enforce domain rdb t:Table{
 name=tn:TableName,
 namespace=schem:Schema,
 feature�{tcl1:Column{
 name=tn+’Name’,type=Character}},
 ownedElement�{pk:PrimaryKey{
 name=tn+’Id’,
 feature�select(pkcl:Column|
 pkcl.name=tn+’Id’)},
 uk:UniqueConstraint{name=tn+’Name’,
 feature�select(tcl1:Column|
 tcl1.name=tn+’Name’)}};
 enforce domain rdb msl:Slot{
 feature=col2:Column{
 name=’superClass’,value=’NULL’},
 instance=mr:Row{
 classifier=mt:OWLClasses{
 namespace=schem},
 slot�exists(msl1|msl1.feature.name=
 ’className’ and msl1.value=tn)}};

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

299

 when {ClassToTable(cl,t);
 cl.opposite(SubClassOf.
 superClassExpression)�isEmpty()};
}//TopClassToTable

Transformation of class cl having a superclass
expression is refined by the transformation
SubClassOfAxiomToFK, which creates a primary key
pk for a table representing a subclass scl. This pk also
is a foreign key from the table representing the corres-
ponding superclass. Also, the name stn of the table,
which represents superclass scl, is inserted into the
row representing class cl in metatable OWLClasses.
top relation SubClassOfAxiomToFK
{ checkonly domain owl sub:SubClassOf{
 subclassExpression=cl:Class{
 entityIRI=cln:IRI},
 superClassExpression=scl:Class{
 entityIRI=scln:IRI},
opposite(Ontology.axioms)=ont:Ontology};
 enforce domain rdb fk:ForeignKey{
 name=tn+’Id’,
 namespace=t:Table{name=tn,
 namespace=schem:Schema},
 feature�first()=fcol:Column,
 uniqueKey=pk:PrimaryKey{
 namespace=st:Table{name=stn,
 namespace=schem},
 feature�first()=pcol:Column}};
 enforce domain rdb ssl:Slot{
 feature=col2:Column{name=’superClass’,
 value=opClassId(stn)},
 instance=mr:Row{
 classifier=mt:OWLClasses{
 namespace=schem},
 slot�exists(msl1|msl1.feature.name=
 ’className’ and msl1.value=tn)}};
 when {OntologyToSchema(ont,schem);
 ClassToTable(cl,t);
 ClassToTable(scl,st);
 t.feature�exists(clmn|
 clmn.name=tn+’Id’ and fcol=clmn);
 st.feature�exists(sclmn|
 sclmn.name=stn+’Id’ and pcol=sclmn);
 where {IRIToName(cln,tn);
 IRIToName(sclln,stn);
}// SubClassOfAxiomToFK

For finding a row of a class cl in the metatable
OWLClasses, the operation opClassId(cn:

Character):Integer is defined that returns a value of
the identifier of the row, which has the value of the
column className equal to the cn, in the metatable
OWLClasses:
context OWLClasses::opClassId(cn:Character):
 Integer
post result=self.instance�select(crow:Row|
 crow.slot�exists(csl:Slot|
 csl.feature.name=’className’ and
 csl.value=cn))�select(isl:Slot|
 isl.feature.name=’classId’).value}}

5. Transforming OWL 2 Object Properties,
Object Property Axioms and Restrictions

5.1. OWL 2 object properties

OWL provides axioms for characterizing and es-
tablishing relationships between object property
expressions.

Figure 9. Illustration of transforming OWL 2 object

properties into foreign keys or tables

The object property in OWL 2 ontology relates the
individual to other individuals. Depending on the car-
dinality of the object property (or the object property
is functional or not), or existing a class with the same
IRI as the object property, we transform the object
property expression into the foreign key corres-
ponding to onetomany (1:0..*) relationship, or into
the table corresponding to manytomany (0..*:0..*)
relationship between classes (Figure 9).

Metamodel of part of ObjectProperty axioms is
presented in Figure 10. The ObjectPropertyDomain
and ObjectPropertyRange axioms can be used to
restrict the first and the second individual, connected
by an object property expression, to be instances of
the domain and range class expressions.

The FunctionalObjectProperty(OPE) axiom
allows one to state that an object property expression
OPE is functional – that is, that for each individual x,
there can be at most one distinct individual y such that
x is connected by OPE to y (Figure 16). This axiom is
a syntactic shortcut for the axiom
SubClassOf(owl:Thing ObjectMaxCardinality(1

OPE)).
So, if the OWL 2 object property is functional, or

ObjectMaxCardinality or ObjectExact Cardi-

nality of the object property is 	 1, and the object
property IRI does not match an IRI of any class in
that ontology, then the foreign key corresponding to
onetomany (1:0..*) relationship between tables is
created. The possibility for having a class and an ob-
ject property or an individual with exactly the same
IRI is a new feature of OWL 2 called “punning”. Pun-
ning allows, for example, defining properties for OWL
2 object properties by attributing these properties to a
class having the same name as the object property
under consideration.

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

300

Figure 10. Fragment of the of OWL 2 metamodel representing part of object properties and object property axioms

If the object property is not functional, or its exact,
min or max cardinality is > 1, or it has no cardinality
restrictions, or if the object property IRI matches the
IRI of some class in that ontology, then the object
property is transformed into the table corresponding to
manytomany (0..*:0..*) relation between classes. In
a case of punning, a table is needed for (1:0..*)
relation for preserving properties of a class with IRI
matching the object property IRI.

5.2. Object property axioms

In OWL 2 there are two forms of object
subproperty axioms. The basic form is
SubObjectPropertyOf (OPE1 OPE2). This axiom
states that the object property expression OPE1 is a
subproperty of the object property expression OPE2 –
that is, if an individual x is connected by OPE1 to an
individual y, then x is also connected by OPE2 to y.
E.g. in our example the class Vehicle has the object
property hasMaker, and the class Automobile has the
object property isProducedBy, which is the sub-
property of the property hasMaker (Figure 11).
Information that one property is a subproperty of
another property we save in the metatable
OWLObjectProperties (Figure 12).

Another form of OWL 2 object subproperty axiom
is ObjectPropertyChain. The axiom SubObject
PropertyOf(ObjectPropertyChain(OPE1... OPEn)

OPE) states that, if an individual x is connected by a
sequence of object property expressions OPE1, ...,
OPEn with an individual y, then x is also connected
with y by the object property expression OPE. E.g. we
have the class Automobile and the object property
isVerifiedBy with the range class Assurer. The class
Assurer has the object property employedBy with the
range class InsuranceCompany. We can declare the
axiom SubObjectPropertyOf (ObjectProperty
Chain(a:isVerifiedBy a:employedBy)

isInsuredBy) that means if some automobile is
verified by the assurer employed by some insurance

company, then this automobile is insured by this
company (Figure 11).

Figure 11. Illustration of transforming OWL 2 object

property chains

Object property chains can be used to derive some
additional information about relationships between
objects. E.g. if we have both object property assertions
isVerifiedBy and employedBy and the axiom
SubObjectPropertyOf(ObjectPropertyChain(a:isV

erifiedBy a: employedBy) isInsuredBy) on some
instance, we can derive the object property assertion
and automatically insert the appropriate value in the
column isInsuredBy of the table Automobile during
filling the database with instances.

ObjectPropertyChain axioms are represented in
metatable OWLObjectPropertyChains (Figure 13).
This table has links to the compound and component
object properties, and the sequence number of each
component property in the property chain.

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

301

Figure 12. Metaclasses for OWL 2 object properties

Figure 13. Metaschema of object property chains

5.3. Object property restrictions

In OWL 2 class expressions can be formed by
placing restrictions on object property expressions.
The ObjectSomeValuesFrom(OPE CE) class expres-
sion allows for existential quantification over an
object property expression OPE, and it contains those
individuals that are connected through an object pro-
perty expression OPE to at least one instance of a class
expression CE.

The ObjectAllValuesFrom(OPE CE) class expre-
ssion allows for universal quantification over an
object property expression OPE, and it contains those
individuals that are connected through an object
property expression OPE only to instances of a class
expression CE. The ObjectHasValue(OPE a) class
expression contains those individuals that are con-
nected by an object property expression OPE to a parti-
cular individual a. Finally, the ObjectHasSelf(OPE)
class expression contains those individuals that are
connected by an object property expression OPE to
themselves.

All semantic information about ontology const-
raints is saved in metatables (Figure 14).
ObjectAllValuesFrom, ObjectSomeValuesFrom and
ObjectHasValue restrictions have their own

metatables with column restrictedObject Property
, which links to the table OWLObject Properties.
Metatables for ObjectAllValuesFrom and
ObjectSomeValuesFrom restrictions also have a
column restrictedRange Class, which points to the
table of the corresponding restriction resource class.
The ObjectHasValue restriction metatable has the
column individualName for storing the value of the
restricted resource of the corresponding property.
Indication that object property has ObjectHasSelf
restriction is saved in the column objectHasSelf of
the OWLObjectProperties metatable.

Figure 14. Storing OWL object property restrictions in

RDB metaschema

5.4. Object property cardinality restrictions

Metamodel of object property cardinality restric-
tions is presented in Figure 15. The class expressions

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

302

ObjectMinCardinality, ObjectMaxCardinality, and
ObjectExactCardinality contain those individuals
that are connected by an object property expression to
at least, at most, and exactly a given number of
instances of a specified class expression, respectively.
E.g. a minimum cardinality expression ObjectMin-
Cardinality (n OPE CE) consists of a nonnegative
integer n, an object property expression OPE, and a
class expression CE, and contains all those individuals
that are connected by OPE to at least n different
individuals that are instances of CE. Similarly, the
cardinality constraints ObjectMaxCardinality and
ObjectExactCardinality are defined.

Figure 15. Metamodel of object property cardinality

restrictions [2]

Cardinality restrictions of object properties are
saved in the metatable OWLObjectCardinality. It has
the column restrictedObjectProperty, which links
to OWLObjectProperties table, and three additional
nullable columns for each type of OWL cardinality
restriction (Figure 14). E.g. if we have the object
property with the cardinality restriction
ObjectExactCardinality equal to 3, after trans-
formation this metatable has value 3 in the field
objectExactCardinality, and the other two columns
objectMinCardinality and objectMax Cardinality
have value “NULL”.

5.5. Object property axioms representing
characteristics

The metamodel of object property axioms
representing characteristics of object properties is
presented in Figure 16. The InverseObject Property
axiom can state that two object property expressions
are the inverse of each other. The Inverse

FunctionalObjectProperty axiom states that an
object property expression is inverse–functional. That
is, for each individual y there can be at most one
distinct individual x such that x is connected by OPE to
y. The ReflexiveObjectProperty, IrreflexiveOb-
jectProperty, SymmetricObjectProperty, Asymmet-
ricObjectProperty, and TransitiveObjectProperty
axioms allow one to state that an object property
expression is reflexive, irreflexive, symmetric, asym-
metric, or transitive.

OWL 2 object property axioms representing cha-
racteristics of object properties are transformed into
values of columns of the rows, representing the

corresponding object properties in the metatable
OWLObjectProperties (Figure 13 or Figure 14).

Figure 16. Metamodel of OWL 2 object property axioms

defining characteristics

5.6. Defining transformations of object properties,
object property axioms and restrictions in
QVTR

OWL 2 functional object properties (or, equiva-
lently, object properties having maximum cardinality
value less or equal to 1; or having exact cardinality
equal to 1) are transformed into foreign keys and fo-
reign key columns of a table representing a domain
class, where foreign key is defined by the primary key
of the table representing a range class. The exception
arises when ontology has a class C with the same IRI
as the object property under consideration, e,g. OPE.
Then the result of transforming OPE is merged with a
table representing class C (see transformation object
PropertyToTable).
top relation ObjectPropertyToFK
{ checkonly domain owl op:ObjectProperty{
 entityIRI=opn:IRI,
 opposite(ObjectPropertyDomain.
 objectPropertyExpression).
 domain=dcl:Class{entityIRI=diri:IRI,
 opposite(Axiom.entity).
 opposite(Ontology.axiom)=ont:Ontology},
 opposite(ObjectPropertyRange.
 objectPropertyExpression).
 range=rcl:Class{entityIRI=riri:IRI,
 opposite(Axiom.entity).
 opposite(Ontology.axiom=ont:Ontology)};
 enforce domain rdb fk:ForeignKey{
 name=fkn:ColumnName,
 feature�first()=col:Column{name=fkn;
 type=ColumnName;owner=dt:Table},
 namespace=dt:Table{name=dtn,
 namespace=schem:Schema},
 uniqueKey=pk:PrimaryKey{
 namespace=rt:Table(name=rtn;
 namespace=schem},
 feature�first()=rcol:Column{
 name=rtn+’Id’,namespace=schem}
 type=ColumnName;
 owner=rt:Table{name=rtn,
 namespace=schem}}};
 enforce domain rdb mr:Row{
 classifier=mt:OWLObjectProperties,
 namespace=schem},
 slot�{sl1:Slot{feature=col1:Column{
 name=’objectPropertyId’,
 type=Integer,value=genUniqId(mt)}},
 sl2:Slot{feature=col2:Column{
 name=’objectPropertyDomain’,
type=Integer,value=mt.opClassId(dtn}},
 s3:Slot={feature=col3:Column{
 name=’objectPropertyRange’,
type=Integer,value=mt.opClassId(rtn}},
 s4:Slot{feature=col4:Column{

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

303

 name=’objectPropertyName’,
 type=Character;value=fkn}}}};
 when (OntologyToSchema(ont,schem);
 ClassToTable(dcl,dt);
 ClassToTable(rcl,rt);
 IRIToName(diri,dtn);
 IRIToName(riri,rtn);
 op.opposite(ObjectPropertyAxiom.
 objectPropertyExpression)�
 exists(fp|fp.oclIsTypeOf
 (FunctionalObjectProperty))or
 let maxcar:ObjectMaxCardinality=
 op.opposite(ObjectMaxCardinality.
 objectPropertyExpression)
 in maxcar.classExpression=rcl
 and maxcar.cardinality<=1 or
 let exactcar:ObjectExactCardinality=
 op.opposite(ObjectExactCardinality.
 objectPropertyExpression)
 in exactcar.classExpression=rcl
 and exactcar.cardinality=1;
 not ont.axiom�exists(ax|
 ax.entity.oclIsTypeOf(Class) and
 ax.entity.entityIRI=op.entityIRI)};
 where {IRIToName(opn,fkn)};
}//ObjectPropertyToFK

OWL 2 object property having maximum, mini-
mum or exact cardinality value greater than 1, or
having unrestricted cardinality, or having a class with
the same IRI as the object property under conside-
ration is transformed into a table. Such transformation
has 2 cases: when a class with the same IRI exists and
when not. The semantics of QVTR allows specifying
these cases in one transformation because of its
“check and enforce” semantics: if class exists and it is
already transformed, only new features are added
during the transformation execution. It means, the
transformation adds new columns to the existing table.
top relation ObjectPropertyToTable
{ checkonly domain owl op:ObjectProperty{
 entityIRI=opn:IRI,
 opposite(objectPropertyExpression).
 domain=dcl:Class{entityIRI=diri:IRI,
 opposite(dcl.entity).
 opposite(Ontology.axiom)=ont:Ontology},
 opposite(objectPropertyExpression).
 range=rcl:Class{entityIRI=riri:IRI},
 opposite(rcl.entity).
 opposite(Ontology.axiom)=ont:Ontology}};
 enforce domain rdb tmn:Table{
 name=tmnn:TableName,
 namespace=schem:Schema,
 feature�{cmnl:Column{
 name=tn+’Id’,type=Integer},
 cmn2:Column{
 name=opn+’Name’,type=Character},
 cmn3:Column{
 name=dn:ColumnName,type=Integer},
 cmn4:Column{
 name=rn:ColumnName,type=Integer}},
 ownedElement�{pmn:PrimaryKey{
 feature�first()=cmn1},
 fkd:ForeignKey{uniqueKey=
 pkd:PrimaryKey{namespace=dt},
 feature�first()=cmn3}},
 fkr:ForeignKey{uniqueKey=
 pkr:PrimaryKey{namespace=rt},
 feature�first()=cmn4}},
 uk:UniqueConstraint{name=tn+’Name’,
 feature�first()=cmn2}}};
 enforce domain rdb mr:Row{
 classifier=mt:OWLObjectProperties,
 namespace=schem},
 slot�{sl1:Slot{feature=col1:Column{
 name=’objectPropertyId’,
 type=Integer,value=genUniqId(mt)}},
 sl2:Slot{feature=col2:Column{
 name=’objectPropertyDomain’,
type=Integer,value=mt.opClassId(dtn}},

 sl3:Slot={feature=col3:Column{
 name=’objectPropertyRange’,
type=Integer,value=mt.opClassId(rtn}},
 sl4:Slot{feature=col4:Column{
 name=’objectPropertyName’,
 type=Character;value=tmnn}}}};
 when (OntologyToSchema(ont,schem);
 ClassToTable(dcl,dt);
 ClassToTable(rcl,rt);
 IRIToName(diri,dtn);
 IRIToName(riri,rtn);
 not op.opposite(ObjectPropertyAxiom.
 objectPropertyExpression)�
 exists(fp|fp.oclIsTypeOf
 (FunctionalObjectProperty))or
 let maxcar:ObjectMaxCardinality=
 op.opposite(ObjectMaxCardinality.
 objectPropertyExpression)
 in maxcar.classExpression=rcl
 and maxcar.cardinality>1 or
 maxcar.oclIsUndefined() or
 let exactcar:ObjectExactCardinality=
 op.opposite(ObjectExactCardinality.
 objectPropertyExpression)
 in exactcar.classExpression=rcl
 and exactcar.cardinality>1 or
 exactcar.oclIsUndefined() or
 let mincar:ObjectMinCardinality=
 op.opposite(ObjectMinCardinality.
 objectPropertyExpression)
 in mincar.classExpression=rcl
 and mincar.cardinality>1 or
 mincar.oclIsUndefined()
 or ont.axiom�exists(ax|
 ax.entity.oclIsTypeOf(Class) and
 ax.entity.entityIRI=op.entityIRI)};
 where {IRIToName(opn,tmnn)};
}//ObjectPropertyToTable

Transformation of object property axioms in many
cases results in adding column values to rows
representing object property rows in metatables. E.g.
functionalObjectProperty, symmetricObject

Property axiom and others are represented by a
column having the same name as the corresponding
axiom in the metatable OWLObjectProperties (Figure
12). Equivalent and disjoint object property axioms
are represented in separate tables. Each set of
equivalent (or disjoint) properties comprise a property
group that is represented in the metatable OWLUnited
Groups (Figure 12).

6. The coherence of OWL 2ToRDB
transformation

As stated in [36], the coherent transformation is
the one that is correct, hippocratic and undoable. The
correctness of our transformation means that for every
construct of OWL 2 ontology metamodel the direct
and reverse transformation exist and they are related
by QVTR relations. The hipocraticness or “check
then enforce” means that if transformation is not bi-
jective, then it must look at both source and target
models and do not damage them by rewriting already
transformed elements. While according to Stevens
[36] correctness and hipocraticness are clearly placed
on QVTR in its specification (we consider [32]) and
are ensured by constructing relations, undoability also
requires that any changes in source and target models
could be undone. That means we should not define
transformations that lead to irrevocable changes.

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

304

For example, changing ontology IRI into RDB
schema name would become irrevocable if the
operation IRIToName(iri:IRI,sn:Character): Cha-
racter cannot be executed in the reverse order, i.e. a
result of operation NameToIRI(sn:Character,

iri:IRI):IRI is undefined (we dealt with this issue
in Section 3). The same requirements were applied to
all OWL2ToRDB transformations including ones defined
as operations in OCL.

Let consider the correctness of the transformation
OWL2ToRDB. As was mentioned in Section 0, correct-
ness or “source consistency” means that all variety of
source constructs is covered by the transformation.
For meeting this requirement, first, definitions of
source models should be complete though these defi-
nitions may be spread over multiple transformations;
secondly, different conditions, concerning the different
transformations of the same concept, may be specified
in several “when” clauses.

For example, the transformation ClassToTable,
presented in the paper, has two cases:
TopClassToTable, when class C has no superclass,
and SubclassOfAxiomToFK, when class C has a
superclass. The transformation ClassToTable defines
the common properties of classes and their cor-
responding tables (i.e. OWL2 class is transformed into
RDB table, class IRI – into the identifier column of the
table and a row in metatable OWLClasses with two slot
values of columns representing class identifier and
class name). TopClassToTable adds a column
representing the class name, defines a primary key on
that column, and adds a slot value “NULL” for a co-
lumn superClass in the row representing that class.
The transformation SubclassOfAxiomToFK adds pro-
perties to tables representing classes having super-
classes; clauses “when” of these transformations
involve both cases:
Context class inv:
self.opposite(SubClassOf.
 superClassExpression)�isEmpty()or
self.opposite(SubClassOf.
 superClassExpression)�notEmpty()

Similarly, transformations of object properties and
data properties, having the class as their domain, add
columns and foreign keys to the table, create rows and
slot values for corresponding metatables, etc. Note
that here we limit our considerations to a case when
OWL 2 class may have only one superclass as mul-
tiple inheritance is not permitted in well formed
ontologies.

7. Conclusions

In this paper we presented the reversible and
nonbijective transformations between OWL 2 onto-
logy and relational database applying hybrid mapping
that combines direct representation of ontology
classes, properties and instances in database tables
with representing axioms and restrictions in meta-
tables. Aiming at a lossless storing of ontologies in

databases and the lossless retrieval of them into onto-
logy reasoning tools, we presented our transformation
in QVT-R language and followed the conditions under
which such a transformation is coherent.

To our knowledge, reversible and lossless transfor-
mation from OWL 2 ontology into relational database
was not defined for storing ontology and its instances
in different schemas. Currently, we are working on the
extension of our previous OWL2ToRDB implementation
in two directions: 1) to implement complete reversible
OWL2ToRDB transformations based on the presented
QVTR specification and 2) fulfilment of well-roun-
ded experiments with various ontologies for compre-
hensively investigating and making further improve-
ments in querying capabilities of the hybrid OWL2RDB
approach.

References
 [1] W3C, 2004. OWL Web Ontology Language Over-

view. W3C Recommendation 10 February 2004.
Available from: http://www.w3.org/TR/owl-features/
[Accessed 10 Jan 2011].

 [2] B. Motik, P.F. Patel-Schneider, B. Parsia. OWL 2
Web Ontology Language Structural Specification and
Functional-Style Syntax. W3C Proposed Recommen-
dation 22 September 2009. Available from: http://
www.w3.org/TR/2009/PR-owl2-syntax-20090922/.
[Accessed 10 Jan 2011].

 [3] Ontotext, 2010. Bringing the Semantic Web Closer to
its Tipping Point. Available from: http://www.
ontotext. com/owlim/OWLIM_FactForge_ jul10.pdf
[Accessed 10 Jan 2011].

 [4] Z. Wu, G. Eadon, S. Das, E.I. Chong, V. Kolovski,
M. Annamalai, J. Srinivasan. Implementing an
Inference Engine for RDFS/OWL Constructs and
User-Defined Rules in Oracle. Proceedings of IEEE
24th International Conference on Data Engineering,
2008, 1239–1248.

 [5] W3C, 2010. Use Cases and Requirements for Map-
ping Relational Databases to RDF. W3C Working
Draft 8 June 2010. Available from: http://www.w3.
org/TR/rdb2rdf-ucr/ [Accessed 10 Jan 2011].

 [6] C. Bizer, T. Heath, T. Berners-Lee. Linked Data
The Story So Far. International Journal on Semantic
Web and Information Systems (IJSWIS), Special Issue
on Linked Data, 5(3), 2009, 122.

 [7] E. Vyšniauskas, L. Nemuraite. Transforming Onto-
logy Representation from OWL to Relational Data-
base. Information Technology and Control, 35(3A),
2006, 333–343.

 [8] E. Vyšniauskas, L. Nemurait�, A. Šukys, B. Para-
dauskas. Enhancing connection between ontologies
and databases with OWL 2 concepts and SPARQL.
Information Technologies 2010: Proceedings of the
16th International Conference on Information and
Software Technologies, IT 2010, Kaunas, Lithuania,
2010, 350–357.

 [9] E. Vyšniauskas, L. Nemurait�, A. Šukys. A hybrid
approach for relating OWL 2 ontologies and relational
databases. In P. Forbrig, H. Gunther (Eds.): Perspek-
tives in Business Informatics Research. Proceedings of
the 9th international conference, BIR 2010, Rostock,

Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases

305

Germany, September 29 – October 1, 2010, Berlin-
Heidelberg-New York, Springer, 2010, 86–101.

[10] C. Golbreich, E.K. Wallace, P.F. Patel-Schneider.
OWL 2 Web Ontology Language New Features and
Rationale. W3C Proposed Recommendation, 2009,
Available from: http://www.w3.org/TR/2009/PR-owl2-
new-features-20090922/ [Accessed 11 Jan 2011].

[11] J. Broekstra, A. Kampman, F. van Harmelen. Sesa-
me: An Architecture for Storing and Querying RDF
Data and Schema Information. In The Semantic Web –
ISWC 2002, LNCS 2342, Springer Berlin Heidelberg,
2002, 54–68.

[12] A. Gali, C.X. Chen, K.T. Claypool, R. Uceda-Sosa.
From Ontology to Relational Databases. In S. Wang,
D.Yang, K. Tanaka, F. Grandi, S. Zhou, E.E. Mangi-
na, T.W. Ling, I.-Y. Song, J. Guan, D.G. Yang, ,
H.C. Mayr (Eds.): Conceptual Modeling for Advanced
Application Domains, ER Workshops 2004, LNCS
3289, Springer, Heidelberg, 2004, 278–289.

[13] S. Bechhofer, I. Horrocks, D. Turi. The OWL Ins-
tance Store: System Description. In R. Nieuwenhuis
(Ed.): CADE 2005. LNCS (LNAI), 3632, Springer,
Heidelberg, 2005, 177–181.

[14] J. Lee, R. Goodwin. Ontology management for large-
scale enterprise systems. Electronic Commerce Re-
search and Applications 5(1), 2006, 2–15.

[15] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, Y. Pan.
Minerva: A Scalable OWL Ontology Storage and
Inference System. In The Semantic Web – ASWC
2006, LNCS 4185, 2006, 429443.

[16] I. Astrova, N. Korda, A. Kalja. Storing OWL Onto-
logies in SQL Relational Databases. International
Journal of Electrical, Computer and Systems Engi-
neering, 2007, 1(4), 242–247.

[17] C.D. Barranco, J.R. Campana, J.M. Medina,
O. Pons. On Storing Ontologies Including Fuzzy
Datatypes in Relational Databases. IEEE International
Proceedings of Fuzzy Systems Conference 2007, 2007,
1–6.

[18] J. Lu, L. Ma, L. Zhang, J.S. Brunner, C. Wang,
Y. Pan, Y. Yu. SOR: a practical system for ontology
storage, reasoning and search. Proceedings of the 33rd
International Conference on Very Large Data Bases,
Vienna, Austria, 2007, 1402–1405.

[19] B. Motik, I. Horrocks, U. Sattler. Bridging the Gap
Between OWL and Relational Databases. In WWW
2007, International World Wide Web Conference,
2007, 807–816.

[20] N. Konstantinou, D.M. Spanos, M. Nikolas. Ontolo-
gy and database mapping: a survey of current im-
plementations and future directions. Journal of Web
Engineering 7(1), 2008, 001–024.

[21] A. Khalid, A.H. Shah, M.A. Qadir. OntRel: An On-
tology Indexer to store OWL-DL Ontologies and its
Instances. Proc. of 2009 International Conference of
Soft Computing and Pattern Recognition, 2009, 478–
483.

[22] C.P. De Laborda, S. Conrad. Relational OWL – A
Data and Schema Representation Format Based on
OWL. In Proc. Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005). Newcastle
Australia CRPIT 43, 2005, 89–96.

[23] C.P. De Laborda, S. Conrad. Database to Semantic
Web Mapping using RDF Query Languages. In Con-

ceptual Modeling – ER 2006, 25th International
Conference on Conceptual Modeling, Tucson, Arizo-
na, LNCS 4215, Springer Verlag, 2006, 241–254.

[24] R. Ghawi, N. Cullot. Database-to-Ontology Mapping
Generation for Semantic Interoperability. In VDBL’07
conference, VLDB Endowment ACM, 2007, 1–8.

[25] G. Hillairet, F. Bertrand, J. Yves, J.Y. Lafaye.
MDE for publishing Data on the Semantic Web. In
Workshop on Transformation and Weaving Ontologies
and Model Driven Engineering TWOMDE, 395, 2008,
32–46.

[26] M. Seleng, M. Laclavík, Z. Balogh, Z. Hluchý.
RDB2Onto: Approach for creating semantic metadata
from relational database data. In INFORMATICS´
2007: proceedings of the ninth international confe-
rence on informatic, Bratislava Slovak Society for
Applied Cybernetics and Informatics, 2007, 113–116.

[27] K. Czarnecki, S. Helsen. Feature–based survey of
model transformation approaches. IBM Systems Jour-
nal, 45(3), 2006, 621–645.

[28] A. Armonas, L. Nemurait�. Using Attributes and
Merging Algorithms for Transforming OCL Expres-
sions to Code. Information Technology and Control,
2009, 38(4), 283– 293.

[29] L. Ablonskis, L. Nemurait�. Discovery of Complex
Model Implementation Patterns in Source Code. Infor-
mation Technology and Control, Kaunas, Technologi-
ja, 2010, 39(4), 291–300.

[30] V.Štuikys, R.Damaševi�ius. Design of Ontology-
Based Generative Components Using Enriched Fea-
ture Diagrams and Meta-Programming. Information
Technology and Control, 2008, 37(4), 301–310.

[31] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.,
Valduriez, P. ATL: a QVT-like transformation lan-
guage. In Proc. OOPSLA Companion, 2006, 719–720.

[32] OMG, 2011. Meta Object Facility (MOF) 2.0 Query/
View/Transformation Specification. OMG Document
Number: formal/2011-01-01, 2011.

[33] D. Song, K. He, P. Liang, W. Liu. A formal language
for model transformation specification. Available
from: http://www.cs.rug.nl/search/uploads/Publica-
tions/song2005flm.pdf [Accessed 10 Jan 2011].

[34] S.H. Tirmizi, J. Sequeda, D. Miranker. Translating
SQL Applications to the Semantic Web. In Procee-
dings of the 19th international conference on Data-
base and Expert Systems Applications, LNCS 5181,
2008, 450–464.

 [35] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann,
G. Taentzer. Information preserving bidirectional mo-
del transformations. In Proceedings of Fundamental
Approaches to Software Engineering (FASE 2007),
LNCS 4422, 2007, Springer, Heidelberg, 72–86.

[36] P. Stevens. Bidirectional model transformations in
QVT: semantic issues and open questions, Software
and Systems Modeling, 9, 2010, 7–20.

[37] J.L. Hainaut, C. Tonneau, M. Joris, M. Chandelon.
Transformation-based Database Reverse Engineering.
In Proceedings of the 12th International Conference
on the Entity-Relationship Approach, LNCS, 823,
Springer-Verlag, 1993, 364–375.

E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas

[38] B. Paradauskas, A. Laurikaitis. Extracting concep-
tual data specifications from legacy information sys-
tems. Electronics and Electrical Engineering, 2011,
1(107), 46–50.

[39] OMG, 2006. Common Warehouse Metamodel Speci-
fication. Object Management Group, OMG Document
Number: pas/06-04-02, 2006.

[40] OMG, 2009. Ontology Definition Metamodel. Ver-
sion 1.0. OMG Document Number: formal/2009-05-
01, 2009.

Received March 2011.

