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1. Introduction 

Ontology comes from philosophy and defines fun-
damental concepts, relationships and constraints of the 
problem domain. Its technological embodiment, the 
Web Ontology Language OWL [1], now OWL 2 [2], 
is the indispensable means for representing human-
readable and machine-processable semantics in the 
Semantic Web. The problem of storing large onto-
logies is not new and currently it attracts more and 
more attention. Native RDF repositories as OWLIM 
[3] and commercial database management systems as 
Oracle [4] are following the mentioned target, apart 
other different implementations and approaches for re-
presenting OWL ontologies using relational database 
constructs. Each of these approaches has its advan-
tages and drawbacks; none of them is recognized as a 
standard. Recently, the W3C Consortium has announ-
ced “The Use Cases and Requirements for Mapping 
Relational Databases to RDF “ [5]. Naturally, all these 
efforts and achievements should be united for having 
at least a common reference and understanding how 
different representations could interact for reaching 
the vision of  “Linked data” [6].            

In 2006, we have proposed a hybrid approach for 
representing OWL ontology in relational database 
when a part of ontology constructs is directly repre-
sented by relational database structures, and another 
part is stored in metadata tables [7].  The approach 
was extended for OWL 2 [8]. As the quality of map-
ping between ontologies and database belongs on cap-
ability to perform queries, we conducted an 

experiment with a prototype of a tool for extracting 
ontologies from relational databases, satisfying our 
schema, and allowing the step-wise processing of 
SPARQL queries where SPARQL was used for query-
ing ontology structures in a main memory and SQL 
was used for querying instances in the database [9]. 
The experiment has shown that 1) it is possible to 
restore the original ontology from a database created 
using the hybrid approach; 2) query performance 
times of our proposed method were better than using 
the memory based methods when ontology is stored 
using a native storage. 

The limitation of our approach is the fact that on-
tologies undergo changes, and database structures 
representing ontology concepts are obliged for chang-
ing too. Metadata tables do not belong on these 
changes; it is an advantage of the hybrid approach. 
Also, the intuition tells that changes of ontology 
axioms represented in metadata tables are occurring 
much faster than changes in tables representing classes 
and properties of ontology. Nevertheless, the ensuring 
of lossless transformations in the sense of preserving 
information is a very important issue when ontology 
or database evolves.   

 For firming our approach, we present the specifi-
cation of OWL2ToRDB transformation in QVT Relation 
(QVTR) language that is capable for defining 
bidirectional transformations. Information preserving 
transformations have additional requirements with 
regards to which we propose a reversible transfor-
mation that does not lose semantics during performing 
forward from ontology to database and backward.   
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The rest of the paper is organized as follows. In 
Section 2, the overview of related works is presented. 
Section 3 introduces OWL 2 and RDB metamodels 
and the overall OWL2ToRDB transformation. Section 4 
analyses transformations of OWL 2 classes and class 
axioms; Section 5 – OWL 2 object properties, pro-
perty axioms and restrictions. Section 6 summarizes 
the transformation of remaining OWL 2 constructs. 
Section 7 analyses the OWL2ToRDB transformation with 
regards to requirements of being a lossless 
transformation in the information preserving sense. 
Section 8 gives conclusions and highlights the future 
work. 

2. Related Works 

OWL 2, a new version of OWL, has occupied the 
positions of its predecessor straight after its occur-
rence in 2009 [2], [10]. OWL 2 offers new constructs 
for describing properties such as qualified cardinality 
restrictions; property chain axioms; local reflexivity 
restrictions; disjoint, reflexive, irreflexive, symmetric 
and antisymmetric properties; negative property 
assertions; vocabulary sharing (punning) between 
individuals, classes, and properties; the richer set of 
datatypes and their restrictions etc. When extending 
our previous mapping, we used the same hybrid 
approach: direct mappings of OWL 2 class and 
property concepts with RDB concepts, and storing the 
problematic (in mapping sense) knowledge in 
metatables. 

There are a lot of approaches for representing on-
tologies in databases [11][21] and inverse mappings 
from databases to ontology [22][26]. We can classify 
ontology storage models into three main cases [9]: 
storing ontology and its instances in the same manner 
(one or three tables); storing ontology concepts in 
database schema corresponding to full or partial 
ontology metamodel; and storing ontology and its 
instances in different schemas in order to improve 
access to instances while retaining the capacity of 
reasoning over the ontology. The first storage model 
does not lose information, but it uses advantages of 
relational databases just for saving many records, so 
the performance of queries to ontology information 
normally should be slow e.g. [14]. As an exception, 
the similar method is highly powered in Oracle Se-
mantic Storage as it is supported with the native func-
tionality of the Oracle database and optimizing 
techniques [4]. The second approach does not lose 
information, but it is oriented at storing ontologies and 
does not consider their relation to existing databases 
and advantages of database management systems [11], 
[15], [18], [21]. The third approach unites capabilities 
of ontologies and database management systems (e.g. 
[16], [17]). However, existing methods of that kind are 
losing semantics as they do not cover the sufficient 
subset of ontology concepts. Our proposed method 
intends to fill this gap by showing that it is possible to 
cover all ontology constructs by storing them in 

metadata tables, and to perform efficient querying by 
retaining ontology classes and properties as native 
RDB constructs.  

There are a lot of approaches to defining transfor-
mations: the Z notation [27]; abstract syntax trees and 
attributes [28]; atomic and composite transformation 
models [29]; two-level transformations [30] etc. Every 
approach has its rationale, but for our work reversible, 
information preserving transformations are of great 
importance. Such transformations are vital for valida-
tion and evolution of ontology or database. First, the 
question about information preserving in OWL2ToRDB 
transformation arises as not every ontology construct 
may be directly mapped to a relational database. Se-
condly, ontologies and databases are evolving in time. 
Recurrent OWL2ToRDB and RDBToOWL2 transformations 
should not damage existing data and ensure the 
coherent performance. 

The simplest way to ensure reversible, lossless 
transformations is to implement transformations in 
both directions and to test them. We have partially 
done this with our first prototype [7] and its extension 
[9]; now we are trying to surely verify the OWL2ToRDB 
transformation by defining it in a suitable, explicit 
transformation language. As candidate languages, ATL 
[31], QVT [32], formal language for model transfor-
mation specification [33], a use of predicates and 
functions [34], and triple graph grammars [36] were 
examined. The ATL is a popular but not bidirectional 
language; [33] presents promising, but undeveloped 
specification; [34] approach requires defining a lot of 
predicates and functions and is too cumbersome for 
complex transformations.  Also, except QVT and 
triple graph grammars, all these languages are not 
suitable for bidirectional transformations.      

The most of formal methods related to bidirec-
tional transformations are based on graph grammars. 
Ehrig et al. presented a formal proof of the sufficient 
requirement for reversible transformations [35]. This 
requirement is based on the “notion of source transfor-
mation which is the projection of a triple graph trans-
formation to its source component. It is sufficient to 
show that a source structure can be constructed by 
source transformations only”. In this case, the forward 
transformation is “source consistent” and it “can be 
inverted, i.e. there is a backward transformation lead-
ing back to the same source structure as the original 
one”. It means, the projection of transformation on the 
source model should cover all source constructs. 
However, this requirement is sufficient to bijective 
transformations only whereas most of practical 
transformations are not bijective, and QWL2ToRDB is so 
too.  

The problem of defining information preserving, 
bidirectional and not bijective model transformations 
was analysed by Stevens [36]. She points that 
currently there is no transformation language that 
could guarantee the lossless transformations per se, 
this has to be verified. Stevens acknowledges the 
QVTR language as the most suitable language for 
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defining bidirectional transformations and formulates 
the requirements for ensuring the coherent (not bijec-
tive) transformations.  In Section 3, we present these 
criteria in more detail as they have an impact on the 
way transformations OWL2ToRDB are constructed. 

We are considering the reversible lossless trans-
formation as a limited bidirectional transformation 
that was defined by Hainaut [37]: a transformation 
T1: M	N� N is reversible iff for all instances m of 
source models M exists direct transformation T1 into 
instances n of target models N and also there exists a 
reverse transformation T2: M	N� M such that 
�m�M � T1(m, n)= n, n�N; �m�M �  T2 
(m,(T1(m, n)) = m, n�N. 

Transformation T1 is reversible, but not vice versa. 
That means for any arbitrary instance n�N may not 
satisfy T1 (T2 (m, n), n) = m.  If T2 is reversible as 
well, then T1 and T2 are called symmetrically revers-
ible and comprise a bidirectional lossless transforma-
tion T. Our OWL2ToRDB transformation is reversible 
and lossless, but not bidirectional and lossless one as 
the latter currently seems too big challenge because of 
different nature of ontologies and databases. Trans-
forming arbitrary database into ontology is rather 
reverse engineering task, requiring human intervention 
[38]; it may be very complex taking into account 
procedural components such as triggers and pro-
cedures.  

When defining transformations, we use the OWL 2 
metamodel [2] for representing ontology. For a 
relational database, we use the Common Warehouse 
Metamodel (CWM) [39], modified by eliminating its 
procedural elements. Also, we have analysed the 
ontology definition metamodel [40], which defines the 
(partial) QVT_R1.0 transformation between OWL1.1 
and UML2.1.2.  

3. The overall transformation between OWL 
2 and relational metamodels 

For transforming OWL 2 ontologies into database 
schemas, we use the original OWL 2 metamodel [2] as 
a source. Here we present only excerpts of that meta-
model for explaining presented transformations. Figu-
re 1 presents the top structure of OWL 2 metamodel – 
ontology, its annotations and axioms.  

Axiom is a main instrument to define OWL 2 se-
mantic constructs. OWL 2 building blocks are entities 
(i.e. classes, object properties, annotation properties, 
data properties, named individuals, and datatypes) that 
comprise the vocabulary or signature of ontology 
(Figure 2). One can declare an entity by stating an 
axiom. Conversely, annotations have no semantics but 
serve as a powerful means for associating additional 
information with ontologies, entities, and axioms. 

 
Figure 1. The OWL ontology structure and axioms 

 
Figure 2. OWL 2 entities 

As a target metamodel, we use a subset of CWM 
metamodel [39], obtained by eliminating procedural 
components of CWM and supplementing it with 
metatables (class Metatable) for preserving ontology 
elements having no corresponding constructs in the 

relational model. Also, we introduced SchemaName, 
TableName and ColumnName (same as a KeyName) for 
database schema names regarding possibly different 
rules for creating them (e.g. names of schemas and 
tables start with capital letters etc) (Figure 3). 
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Figure 3. Simplified Relational metamodel (adopted from [39]) 

First we present the overall transformation 
owl2ToRDB written in QVT Relations language [32]. 
For brevity, we assume that model of ontology under 
transformation, owl, has no importing ontology, does 
not import other ontologies etc. Also, we assume that 
all names of entities are represented as fullIRI and 
OWL 2 classes are inserted in stead of missing 
domains or ranges of properties where appropriate [2]. 
During this transformation, ontology is transformed 
into RDB schema, ontology IRI is transformed into 
RDB schema name, metatables are created, and a row 
is inserted into metatable OWLOntology for preserving 
ontology IRI and prefix (Figure 4).  
transformation owl2ToRDB(owl:OWL2,rdb:RDBM) 
{ key Ontology{iri}; 
  key Entity{iri};  
  key Schema{name}; 
  key Table{name,namespace}; 
  key Column{name,owner}; 
  key PrimaryKey{name,namespace}; 
  key ForeignKey{name,namespace,uniqueKey, 
  uniqueKey.namespace}; 
  key OWLclasses{classId}|{className};...; 
top relation OntologyToSchema 
{ checkonly domain owl ont:Ontology 
    {ontologyIRI=iri:IRI}; 
  enforce domain rdb schem:Schema{ 
    name=sn:SchemaName,  
    ownedElement�{classes:Metatable{ 
      name=’OWLClasses’, 
      feature�{mcl:Column{ 
        name=’classId’,type=Integer}, 
        mc2:Column{name=’className’, 
        type=Character}, 
        mc3:Column{name=’superClass’, 
        type=Integer}}, 
      ownedElement�{pk:PrimaryKey{ 
name=’classId,feature�first()=mc1}, 
      uk:UniqueConstraint{ 
        name=’ClassName’, 

        feature�first()=mc2}, 
      fk:ForeignKey{name=’SuperClassId’, 
        feature�first()=mc3}}, 
      mont:Metatable{name=’OWLOntology’, 
    feature�{mcl:Column{name=’ontologyId’, 
      type=Integer}, 
      mc2:Column{name=’prefixIRI’, 
      type=Character}}, 
    instance{r1:Row{ 
      slot�{sl1:Slot{feature=mc1, 
        value=genUniqId(mont)}, 
      sl2:Slot{feature=mc2, 
        value=iri.prefix().qNameToChar()}},        
  disjointClasses:Metatable{ 
    name=’OWLDisjointClasses’,       
         ...},...}}; 
  when {ont.versionIRI�isEmpty(); 
        ont.imports�isEmpty(); 
        ont.directImports�isEmpty()}; 
  where {IRIToName(iri,sn)};  
}//OntologyToSchema 

Here we omit the lengthy definition of the re-
maining metatables; some of them are presented in 
Figures 4, 8 and 12. Operation genUniqId(table 
:Table):Integer generates the unique identifier for a 
row of a table “table”. Operation prefix(iri:IRI) 
:Qname separates prefix from iri, where QName is a 
QualifiedName from XML Namespaces.  

  
Figure 4. Metatables for keeping information  

about ontologies and their IRIs 
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A large subset of OWL 2 axioms is transformed 
into rows of metatables; e.g. SubclassOf is presented 
later in the paper.    
top relation AxiomToMetaRow 
{ checkonly domain owl ax:Axiom{ 
opposite(Ontology.axioms)=ont:Ontology}; 
  enforce domain rdb mrow:Row{ 
    namespace.namespace=schem:Schema}}; 
  when {OntologyToSchema(ont,schem)}; 
  where {ClassAxiomToMetaRow(ax,mrow}; 
         ObjectPropAxiomToMetaRow(ax,mrow}; 
         DataPropAxiomToMetaRow(ax,mrow}} 
}//AxiomToMetaRow 

  The important requirement for owl2ToRdb trans-
formation being bidirectional and lossless is a pos-
sibility to convert database schema names into IRIs. It 
means that we should preserve a prefix when con-
verting OWL 2 into RDB, or define a prefix if we 
wish to start a transformations from a database having 
no ontology. The transformation IRIToName itself is a 
simple one; however, the problem may be in defining 
a prefix if we wish to transform a freely chosen 
database schema that was not obtained by transfor-
ming some existing ontology. In such a case, we leave 
choosing a prefix as a decision. When transformation 
starts from the left side, the transformation IRIToName 
can be specified as operation in OCL: 
context owl2ToRDB:: 
  IRIToName(iri:IRI,sn:Character):Character 
post sn=let 
     n=iri.prefix().qNameToString().size(),  
     m=iri.iriToString().size() in  
     sn=iri.iriToString().substring 
     (lower=n+1,upper=m).stringToChar(), 

where operations qNameToString(), 
iriToString(), stringToChar() (and others, as 
qNameToChar() used in relation OntologyToSchema) 
perform conversions of corresponding data types. 

4.  Transforming OWL 2 classes and class 
axioms 

4.1. OWL 2 classes 

In OWL 2, classes and property expressions are 
used to construct class expressions that represent sets 
of individuals by formally specifying conditions on 
the individual properties; individuals satisfying these 
conditions are instances of the corresponding class 
expressions. OWL 2 provides axioms that allow estab-
lishing relationships between class expressions (Fi-
gure 5). 

When we are converting the OWL 2 ontology de-
scription to relational database schema, we map one 
ontology class to one database table.  

 
Figure 5. The OWL 2 metamodel for class axioms [2] 

As the name of an ontology class is unique in the 
ontology, and instances of the ontology class have 
unique names, we can automatically create a primary 
key for corresponding table and name the primary key 
column by adding some suffix to the class name, e.g. 
“Id”. Also, we create the additional column by adding 
“Name” suffix to the class name for saving names of 
instances of the class. This mapping and the example 
are illustrated in Figure 6. 

 
Figure 6. Illustration of transforming OWL 2 class  

into RDB table 

4.2. OWL 2 class axioms 

The fundamental taxonomic construct for classes 
is the SubClassOf axiom, which allows one to state 
that each instance of one class expression is also an 
instance of another class expression. It relates the 
specific class to the more generic class and enables to 
construct the hierarchy of classes. When transforming 
OWL 2 ontology representation into a relational data-
base schema, we create one table for every class in 
ontology with oneto-one (1:0..1) relationships bet-
ween tables representing classes and their subclasses 
defined by the axiom subClassOf (Figure 7). Here 
each value of the primary key of the supertable can 
appear as the foreign key (and also as the primary key) 
for at most one row of the subtable. The subclass does 
not need a column for saving names of its instances, 
because the instance of the subclass is also the ins-
tance of the superclass and its name is saved in the 
superclass table. 

The EquivalentClasses axiom allows one to state 
that several class expressions are equivalent to each 
other, i.e. these classes have precisely the same 
instances. The DisjointClasses axiom states that 
several class expressions are pairwise disjoint  an 
individual that is a member of one class cannot 
simultaneously be an instance of the other class. The 
DisjointUnion axiom allows constructing a class as a 
disjoint union of several class expressions. 
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Figure 7. Illustration of transforming OWL SubClassOf 

axiom into RDB 

We suggest saving this information in special 
metatables. All classes of the ontology are saved in 
OWLClasses metatable with two main columns 
classId, which is an automatically generated unique 
identification number, and className, which saves the 
unique name of the class (Figure 8).  

 
Figure 8. Metaschema of OWL 2 class axioms 

Also, the metatable OWLClasses has the column 
that is a foreign key named superClass which saves 
information about hierarchy of OWL classes, and the 
column – foreign key named annotation for relating a 
class with a set of its annotations. Information about 
groups of disjoint, disjoint union and equivalent 
classes is saved in metatables OWLDisjointClasses, 
OWLDisjointUnion and OWLEquivalentClasses (Fi-
gure 8). These tables have automatically generated 
unique primary keys, foreign keys from OWLClasses 
table and identification numbers of groups that are 
represented by foreign keys from metatable 
OWLUnitedGroups. Equivalent, disjoint and disjoint 
union classes have the same group identification num-
bers that are created during the transformation 
process. 

OWL 2 provides a new construct HasKey which 
allows keys to be defined for a given class. This 
construct gives a list of object or data properties, 
which together uniquely identify named instances of a 
given class. For example, if individuals of the class 
Automobile are uniquely identified by data properties 
modelTitle, produceYear and the object property 
isProducedBy, then the OWL 2 axiom HasKey 
(:Automobile :modelTitle :produceYear 

:isProducedBy) states that each named instance of 

the class Automobile is uniquely identified by this set 
of properties – that is, if two named instances of the 
class coincide on values for each of key properties, 
then these two individuals are the same.  

For converting the HasKey axiom on some proper-
ties for the certain class to the uniqueness constraint 
on columns of the corresponding table,  Depending on 
the number of HasKey properties (one or more), we 
create the unique key on the single column, or on a 
combination of columns of the table.  

4.3. Defining class and class axiom 
transformations in QVTR 

Transformation ClassToTable transforms common 
features inherent for all OWL 2 classes. It generalizes 
transformation TopClassToTable that transforms 
classes having no superclass expressions. Features of 
classes having superclass expressions are added to the 
corresponding table by transformation 
SubClassRelationToFK. Also, the transformation 
ClassToTable creates a row r for each class cl in the 
metatable OwlClasses. 
top relation ClassToTable 
{ checkonly domain owl cl:Class{ 
    entityIRI=ciri:IRI{}, 
    opposite(Axiom.entity). 
opposite(Ontology.axioms)=ont:Ontology}; 
  enforce domain rdb  t:Table{ 
    name=tn:TableName, 
    namespace=schem:Schema, 
    feature�{mcl:Column{ 
        name=tn+’Id’,type=Integer}}; 
  enforce domain rdb mr:Row{ 
    classifier=mt:Metatable{ 
      name=’OWLClasses’, 
      slot�{s1:Slot{feature=col1:Column{ 
        name=’classId’}, 
        value=genUniqId(mt)}, 
        s2:Slot{feature=col2:Column{ 
        name=’className’,value=tn} 
  when {OntologyToSchema(ont,schem);}; 
  where {tn=IRIToName(ciri,tn); 
         TopClassToTable(cl,t);};   
}//ClassToTable 

Transformation of classes having no superclass ex-
pressions is further refined by the transformation  
TopClassToTable: 
relation TopClassToTable 
{ checkonly domain owl cl:Class{ 
    entityIRI=ciri:IRI{},    
    opposite(Axiom.entity). 
opposite(Ontology.axioms)=ont:Ontology}; 
  enforce domain rdb t:Table{ 
    name=tn:TableName, 
    namespace=schem:Schema,  
    feature�{tcl1:Column{ 
      name=tn+’Name’,type=Character}}, 
    ownedElement�{pk:PrimaryKey{ 
      name=tn+’Id’, 
      feature�select(pkcl:Column| 
        pkcl.name=tn+’Id’)}, 
      uk:UniqueConstraint{name=tn+’Name’, 
    feature�select(tcl1:Column|   
      tcl1.name=tn+’Name’)}}; 
  enforce domain rdb msl:Slot{    
    feature=col2:Column{ 
      name=’superClass’,value=’NULL’}, 
      instance=mr:Row{ 
      classifier=mt:OWLClasses{ 
      namespace=schem}, 
      slot�exists(msl1|msl1.feature.name=        
      ’className’ and msl1.value=tn)}};   
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  when {ClassToTable(cl,t); 
    cl.opposite(SubClassOf. 
    superClassExpression)�isEmpty()}; 
}//TopClassToTable 

Transformation of class cl having a superclass 
expression is refined by the transformation 
SubClassOfAxiomToFK, which creates a primary key 
pk for a table representing a subclass scl. This pk also 
is a foreign key from the table representing the corres-
ponding superclass. Also, the name stn of the table, 
which represents superclass scl, is inserted into the 
row representing class cl in metatable OWLClasses.   
top relation SubClassOfAxiomToFK 
{ checkonly domain owl sub:SubClassOf{  
    subclassExpression=cl:Class{ 
      entityIRI=cln:IRI}, 
    superClassExpression=scl:Class{ 
      entityIRI=scln:IRI}, 
opposite(Ontology.axioms)=ont:Ontology}; 
  enforce domain rdb fk:ForeignKey{ 
    name=tn+’Id’, 
    namespace=t:Table{name=tn, 
      namespace=schem:Schema},   
      feature�first()=fcol:Column, 
      uniqueKey=pk:PrimaryKey{ 
      namespace=st:Table{name=stn, 
        namespace=schem}, 
      feature�first()=pcol:Column}}; 
  enforce domain rdb ssl:Slot{ 
    feature=col2:Column{name=’superClass’, 
      value=opClassId(stn)}, 
    instance=mr:Row{ 
    classifier=mt:OWLClasses{ 
    namespace=schem}, 
    slot�exists(msl1|msl1.feature.name=        
    ’className’ and msl1.value=tn)}}; 
  when {OntologyToSchema(ont,schem); 
      ClassToTable(cl,t); 
      ClassToTable(scl,st);  
      t.feature�exists(clmn| 
        clmn.name=tn+’Id’ and fcol=clmn); 
      st.feature�exists(sclmn| 
        sclmn.name=stn+’Id’ and pcol=sclmn); 
  where {IRIToName(cln,tn); 
         IRIToName(sclln,stn); 
}// SubClassOfAxiomToFK 

For finding a row of a class cl in the metatable 
OWLClasses, the operation opClassId(cn: 

Character):Integer is defined that returns a value of 
the identifier of the row, which has the value of the 
column className equal to the cn, in the metatable 
OWLClasses: 
context OWLClasses::opClassId(cn:Character): 
  Integer 
post result=self.instance�select(crow:Row| 
  crow.slot�exists(csl:Slot| 
    csl.feature.name=’className’ and 
      csl.value=cn))�select(isl:Slot| 
        isl.feature.name=’classId’).value}}  

5. Transforming OWL 2 Object Properties, 
Object Property Axioms and Restrictions 

5.1. OWL 2 object properties 

OWL provides axioms for characterizing and es-
tablishing relationships between object property 
expressions. 

 
Figure 9. Illustration of transforming OWL 2 object 

properties into foreign keys or tables 

The object property in OWL 2 ontology relates the 
individual to other individuals. Depending on the car-
dinality of the object property (or the object property 
is functional or not), or existing a class with the same 
IRI as the object property, we transform the object 
property expression into the foreign key corres-
ponding to onetomany (1:0..*) relationship, or into 
the table corresponding to manytomany (0..*:0..*) 
relationship between classes (Figure 9). 

Metamodel of part of ObjectProperty axioms is 
presented in Figure 10. The ObjectPropertyDomain 
and ObjectPropertyRange axioms can be used to 
restrict the first and the second individual, connected 
by an object property expression, to be instances of 
the domain and range class expressions. 

The FunctionalObjectProperty(OPE) axiom 
allows one to state that an object property expression 
OPE is functional – that is, that for each individual x, 
there can be at most one distinct individual y such that 
x is connected by OPE to y (Figure 16). This axiom is 
a syntactic shortcut for the axiom 
SubClassOf(owl:Thing ObjectMaxCardinality(1 

OPE)).
So, if the OWL 2 object property is functional, or 

ObjectMaxCardinality or ObjectExact Cardi-

nality of the object property is 	 1, and the object 
property IRI does not match an IRI of any class in 
that ontology, then the foreign key corresponding to 
onetomany (1:0..*) relationship between tables is 
created. The possibility for having a class and an ob-
ject property or an individual with exactly the same 
IRI is a new feature of OWL 2 called “punning”. Pun-
ning allows, for example, defining properties for OWL 
2 object properties by attributing these properties to a 
class having the same name as the object property 
under consideration.  
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Figure 10. Fragment of the of OWL 2 metamodel representing part of object properties and object property axioms 

If the object property is not functional, or its exact, 
min or max cardinality is > 1, or it has no cardinality 
restrictions, or if the object property IRI matches the 
IRI of some class in that ontology, then the object 
property is transformed into the table corresponding to 
manytomany (0..*:0..*) relation between classes. In 
a case of punning, a table is needed for (1:0..*) 
relation for preserving properties of a class with IRI 
matching the object property IRI.  

5.2. Object property axioms  

In OWL 2 there are two forms of object 
subproperty axioms. The basic form is 
SubObjectPropertyOf (OPE1 OPE2). This axiom 
states that the object property expression OPE1 is a 
subproperty of the object property expression OPE2 – 
that is, if an individual x is connected by OPE1 to an 
individual y, then x is also connected by OPE2 to y. 
E.g. in our example the class Vehicle has the object 
property hasMaker, and the class Automobile has the 
object property isProducedBy, which is the sub-
property of the property hasMaker (Figure 11). 
Information that one property is a subproperty of 
another property we save in the metatable 
OWLObjectProperties (Figure 12).  

Another form of OWL 2 object subproperty axiom 
is ObjectPropertyChain. The axiom SubObject 
PropertyOf(ObjectPropertyChain(OPE1... OPEn) 

OPE) states that, if an individual x is connected by a 
sequence of object property expressions OPE1, ..., 
OPEn with an individual y, then x is also connected 
with y by the object property expression OPE. E.g. we 
have the class Automobile and the object property 
isVerifiedBy with the range class Assurer. The class 
Assurer has the object property employedBy with the 
range class InsuranceCompany. We can declare the 
axiom SubObjectPropertyOf (ObjectProperty 
Chain(a:isVerifiedBy a:employedBy) 

isInsuredBy) that means if some automobile is 
verified by the assurer employed by some insurance 

company, then this automobile is insured by this 
company (Figure 11).  

 
Figure 11. Illustration of transforming OWL 2 object 

property chains 

Object property chains can be used to derive some 
additional information about relationships between 
objects. E.g. if we have both object property assertions 
isVerifiedBy and employedBy and the axiom 
SubObjectPropertyOf(ObjectPropertyChain(a:isV

erifiedBy a: employedBy) isInsuredBy) on some 
instance, we can derive the object property assertion 
and automatically insert the appropriate value in the 
column isInsuredBy of the table Automobile during 
filling the database with instances. 

ObjectPropertyChain axioms are represented in 
metatable OWLObjectPropertyChains (Figure 13). 
This table has links to the compound and component 
object properties, and the sequence number of each 
component property in the property chain. 
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Figure 12. Metaclasses for OWL 2 object properties 

 
Figure 13. Metaschema of object property chains 

5.3. Object property restrictions 

In OWL 2 class expressions can be formed by 
placing restrictions on object property expressions. 
The ObjectSomeValuesFrom(OPE CE) class expres-
sion allows for existential quantification over an 
object property expression OPE, and it contains those 
individuals that are connected through an object pro-
perty expression OPE to at least one instance of a class 
expression CE.  

The ObjectAllValuesFrom(OPE CE) class expre-
ssion allows for universal quantification over an 
object property expression OPE, and it contains those 
individuals that are connected through an object 
property expression OPE only to instances of a class 
expression CE. The ObjectHasValue(OPE a) class 
expression contains those individuals that are con-
nected by an object property expression OPE to a parti-
cular individual a. Finally, the ObjectHasSelf(OPE) 
class expression contains those individuals that are 
connected by an object property expression OPE to 
themselves. 

All semantic information about ontology const-
raints is saved in metatables (Figure 14). 
ObjectAllValuesFrom, ObjectSomeValuesFrom and 
ObjectHasValue restrictions have their own 

metatables with column restrictedObject Property 
,  which links to the table OWLObject Properties. 
Metatables for ObjectAllValuesFrom and 
ObjectSomeValuesFrom restrictions also have a 
column restrictedRange Class, which points to the 
table of the corresponding restriction resource class. 
The ObjectHasValue restriction metatable has the 
column individualName for storing the value of the 
restricted resource of the corresponding property. 
Indication that object property has ObjectHasSelf 
restriction is saved in the column objectHasSelf of 
the OWLObjectProperties metatable. 

 
Figure 14. Storing OWL object property restrictions in 

RDB metaschema 

5.4. Object property cardinality restrictions 

Metamodel of object property cardinality restric-
tions is presented in Figure 15. The class expressions 
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ObjectMinCardinality, ObjectMaxCardinality, and 
ObjectExactCardinality contain those individuals 
that are connected by an object property expression to 
at least, at most, and exactly a given number of 
instances of a specified class expression, respectively. 
E.g. a minimum cardinality expression ObjectMin-
Cardinality (n OPE CE) consists of a nonnegative 
integer n, an object property expression OPE, and a 
class expression CE, and contains all those individuals 
that are connected by OPE to at least n different 
individuals that are instances of CE. Similarly, the 
cardinality constraints ObjectMaxCardinality and 
ObjectExactCardinality are defined. 

 
Figure 15. Metamodel of object property cardinality 

restrictions [2] 

Cardinality restrictions of object properties are 
saved in the metatable OWLObjectCardinality. It has 
the column restrictedObjectProperty, which links 
to OWLObjectProperties table, and three additional 
nullable columns for each type of OWL cardinality 
restriction (Figure 14). E.g. if we have the object 
property with the cardinality restriction 
ObjectExactCardinality equal to 3, after trans-
formation this metatable has value 3 in the field 
objectExactCardinality, and the other two columns 
objectMinCardinality and objectMax Cardinality 
have value “NULL”.  

5.5. Object property axioms representing 
characteristics 

The metamodel of object property axioms 
representing characteristics of object properties is 
presented in Figure 16. The InverseObject Property 
axiom can state that two object property expressions 
are the inverse of each other. The Inverse 

FunctionalObjectProperty axiom states that an 
object property expression is inverse–functional. That 
is, for each individual y there can be at most one 
distinct individual x such that x is connected by OPE to 
y. The ReflexiveObjectProperty, IrreflexiveOb-
jectProperty, SymmetricObjectProperty, Asymmet-
ricObjectProperty, and TransitiveObjectProperty 
axioms allow one to state that an object property 
expression is reflexive, irreflexive, symmetric, asym-
metric, or transitive. 

OWL 2 object property axioms representing cha-
racteristics of object properties are transformed into 
values of columns of the rows, representing the 

corresponding object properties in the metatable 
OWLObjectProperties (Figure 13 or Figure 14). 

 
Figure 16. Metamodel of OWL 2 object property axioms 

defining characteristics 

5.6. Defining transformations of object properties, 
object property axioms and restrictions in 
QVTR  

OWL 2 functional object properties (or, equiva-
lently, object properties having maximum cardinality 
value less or equal to 1; or having exact cardinality 
equal to 1) are transformed into foreign keys and fo-
reign key columns of a table representing a domain 
class, where foreign key is defined by the primary key 
of the table representing a range class. The exception 
arises when ontology has a class C with the same IRI 
as the object property under consideration, e,g. OPE. 
Then the result of transforming OPE is merged with a 
table representing class C (see transformation object 
PropertyToTable).  
top relation ObjectPropertyToFK 
{ checkonly domain owl op:ObjectProperty{ 
    entityIRI=opn:IRI, 
    opposite(ObjectPropertyDomain. 
    objectPropertyExpression). 
    domain=dcl:Class{entityIRI=diri:IRI, 
    opposite(Axiom.entity). 
    opposite(Ontology.axiom)=ont:Ontology}, 
    opposite(ObjectPropertyRange. 
    objectPropertyExpression). 
    range=rcl:Class{entityIRI=riri:IRI, 
    opposite(Axiom.entity). 
    opposite(Ontology.axiom=ont:Ontology)}; 
  enforce domain rdb fk:ForeignKey{ 
    name=fkn:ColumnName, 
    feature�first()=col:Column{name=fkn;   
    type=ColumnName;owner=dt:Table},  
    namespace=dt:Table{name=dtn, 
      namespace=schem:Schema}, 
    uniqueKey=pk:PrimaryKey{ 
      namespace=rt:Table(name=rtn; 
        namespace=schem}, 
      feature�first()=rcol:Column{   
        name=rtn+’Id’,namespace=schem} 
        type=ColumnName; 
        owner=rt:Table{name=rtn,   
        namespace=schem}}}; 
  enforce domain rdb mr:Row{ 
    classifier=mt:OWLObjectProperties, 
      namespace=schem}, 
      slot�{sl1:Slot{feature=col1:Column{ 
        name=’objectPropertyId’, 
        type=Integer,value=genUniqId(mt)}}, 
      sl2:Slot{feature=col2:Column{ 
        name=’objectPropertyDomain’, 
type=Integer,value=mt.opClassId(dtn}}, 
    s3:Slot={feature=col3:Column{ 
      name=’objectPropertyRange’, 
type=Integer,value=mt.opClassId(rtn}},     
    s4:Slot{feature=col4:Column{ 
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      name=’objectPropertyName’,    
      type=Character;value=fkn}}}}; 
  when (OntologyToSchema(ont,schem); 
        ClassToTable(dcl,dt); 
        ClassToTable(rcl,rt); 
        IRIToName(diri,dtn); 
        IRIToName(riri,rtn); 
    op.opposite(ObjectPropertyAxiom. 
      objectPropertyExpression)� 
        exists(fp|fp.oclIsTypeOf 
      (FunctionalObjectProperty))or 
  let maxcar:ObjectMaxCardinality=   
    op.opposite(ObjectMaxCardinality. 
      objectPropertyExpression) 
  in maxcar.classExpression=rcl  
      and maxcar.cardinality<=1 or 
  let exactcar:ObjectExactCardinality=   
    op.opposite(ObjectExactCardinality. 
      objectPropertyExpression) 
   in exactcar.classExpression=rcl  
      and exactcar.cardinality=1; 
  not ont.axiom�exists(ax| 
      ax.entity.oclIsTypeOf(Class) and  
      ax.entity.entityIRI=op.entityIRI)}; 
  where {IRIToName(opn,fkn)}; 
}//ObjectPropertyToFK 

OWL 2 object property having maximum, mini-
mum or exact cardinality value greater than 1, or 
having unrestricted cardinality, or having a class with 
the same IRI as the object property under conside-
ration is transformed into a table. Such transformation 
has 2 cases: when a class with the same IRI exists and 
when not. The semantics of QVTR allows specifying 
these cases in one transformation because of its 
“check and enforce” semantics: if class exists and it is 
already transformed, only new features are added 
during the transformation execution. It means, the 
transformation adds new columns to the existing table. 
top relation ObjectPropertyToTable 
{ checkonly domain owl op:ObjectProperty{ 
    entityIRI=opn:IRI, 
    opposite(objectPropertyExpression). 
    domain=dcl:Class{entityIRI=diri:IRI,   
    opposite(dcl.entity). 
    opposite(Ontology.axiom)=ont:Ontology}, 
    opposite(objectPropertyExpression). 
    range=rcl:Class{entityIRI=riri:IRI}, 
    opposite(rcl.entity). 
   opposite(Ontology.axiom)=ont:Ontology}}; 
  enforce domain rdb tmn:Table{ 
    name=tmnn:TableName, 
    namespace=schem:Schema, 
    feature�{cmnl:Column{ 
      name=tn+’Id’,type=Integer}, 
    cmn2:Column{ 
      name=opn+’Name’,type=Character}, 
    cmn3:Column{ 
      name=dn:ColumnName,type=Integer}, 
    cmn4:Column{ 
      name=rn:ColumnName,type=Integer}}, 
    ownedElement�{pmn:PrimaryKey{ 
        feature�first()=cmn1},       
      fkd:ForeignKey{uniqueKey= 
        pkd:PrimaryKey{namespace=dt}, 
        feature�first()=cmn3}}, 
      fkr:ForeignKey{uniqueKey= 
        pkr:PrimaryKey{namespace=rt}, 
        feature�first()=cmn4}},  
      uk:UniqueConstraint{name=tn+’Name’, 
        feature�first()=cmn2}}}; 
  enforce domain rdb mr:Row{ 
    classifier=mt:OWLObjectProperties, 
    namespace=schem}, 
    slot�{sl1:Slot{feature=col1:Column{ 
      name=’objectPropertyId’, 
      type=Integer,value=genUniqId(mt)}}, 
     sl2:Slot{feature=col2:Column{ 
      name=’objectPropertyDomain’, 
type=Integer,value=mt.opClassId(dtn}}, 

     sl3:Slot={feature=col3:Column{ 
      name=’objectPropertyRange’, 
type=Integer,value=mt.opClassId(rtn}},     
     sl4:Slot{feature=col4:Column{ 
      name=’objectPropertyName’,    
      type=Character;value=tmnn}}}}; 
  when (OntologyToSchema(ont,schem); 
        ClassToTable(dcl,dt); 
        ClassToTable(rcl,rt); 
        IRIToName(diri,dtn); 
        IRIToName(riri,rtn); 
  not op.opposite(ObjectPropertyAxiom. 
      objectPropertyExpression)� 
        exists(fp|fp.oclIsTypeOf 
      (FunctionalObjectProperty))or 
  let maxcar:ObjectMaxCardinality=   
    op.opposite(ObjectMaxCardinality. 
      objectPropertyExpression) 
  in maxcar.classExpression=rcl  
      and maxcar.cardinality>1 or    
        maxcar.oclIsUndefined() or 
  let exactcar:ObjectExactCardinality=   
    op.opposite(ObjectExactCardinality. 
      objectPropertyExpression) 
  in exactcar.classExpression=rcl  
      and exactcar.cardinality>1 or 
        exactcar.oclIsUndefined() or 
  let mincar:ObjectMinCardinality=   
    op.opposite(ObjectMinCardinality. 
      objectPropertyExpression) 
  in mincar.classExpression=rcl  
      and mincar.cardinality>1 or  
        mincar.oclIsUndefined()  
  or ont.axiom�exists(ax| 
    ax.entity.oclIsTypeOf(Class) and  
    ax.entity.entityIRI=op.entityIRI)}; 
  where {IRIToName(opn,tmnn)};  
}//ObjectPropertyToTable 

Transformation of object property axioms in many 
cases results in adding column values to rows 
representing object property rows in metatables. E.g. 
functionalObjectProperty, symmetricObject 

Property axiom and others are represented by a 
column having the same name as the corresponding 
axiom in the metatable OWLObjectProperties (Figure 
12). Equivalent and disjoint object property axioms 
are represented in separate tables. Each set of 
equivalent (or disjoint) properties comprise a property 
group that is represented in the metatable OWLUnited 
Groups (Figure 12). 

6. The coherence of OWL 2ToRDB 
transformation 

As stated in [36], the coherent transformation is 
the one that is correct, hippocratic and undoable. The 
correctness of our transformation means that for every 
construct of OWL 2 ontology metamodel the direct 
and reverse transformation exist and they are related 
by QVTR relations. The hipocraticness or “check 
then enforce” means that if transformation is not bi-
jective, then it must look at both source and target 
models and do not damage them by rewriting already 
transformed elements. While according to Stevens 
[36] correctness and hipocraticness are clearly placed 
on QVTR in its specification (we consider [32]) and 
are ensured by constructing relations, undoability also 
requires that any changes in source and target models 
could be undone. That means we should not define 
transformations that lead to irrevocable changes.  
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For example, changing ontology IRI into RDB 
schema name would become irrevocable if the 
operation IRIToName(iri:IRI,sn:Character): Cha-
racter cannot be executed in the reverse order, i.e. a 
result of operation NameToIRI(sn:Character, 

iri:IRI):IRI is undefined (we dealt with this issue 
in Section 3). The same requirements were applied to 
all OWL2ToRDB transformations including ones defined 
as operations in OCL.     

Let consider the correctness of the transformation 
OWL2ToRDB. As was mentioned in Section 0, correct-
ness or “source consistency” means that all variety of 
source constructs is covered by the transformation. 
For meeting this requirement, first, definitions of 
source models should be complete though these defi-
nitions may be spread over multiple transformations; 
secondly, different conditions, concerning the different 
transformations of the same concept, may be specified 
in several “when” clauses.  

For example, the transformation ClassToTable, 
presented in the paper, has two cases: 
TopClassToTable, when class C has no superclass, 
and SubclassOfAxiomToFK, when class C has a 
superclass. The transformation ClassToTable defines 
the common properties of classes and their cor-
responding tables (i.e. OWL2 class is transformed into 
RDB table, class IRI – into the identifier column of the 
table and a row in metatable OWLClasses with two slot 
values of columns representing class identifier and 
class name). TopClassToTable adds a column 
representing the class name, defines a primary key on 
that column, and adds a slot value “NULL” for a co-
lumn superClass in the row representing that class. 
The transformation SubclassOfAxiomToFK adds pro-
perties to tables representing classes having super-
classes; clauses “when” of these transformations 
involve both cases:  
Context class inv: 
self.opposite(SubClassOf. 
    superClassExpression)�isEmpty()or 
self.opposite(SubClassOf. 
    superClassExpression)�notEmpty() 

Similarly, transformations of object properties and 
data properties, having the class as their domain, add 
columns and foreign keys to the table, create rows and 
slot values for corresponding metatables, etc. Note 
that here we limit our considerations to a case when 
OWL 2 class may have only one superclass as mul-
tiple inheritance is not permitted in well formed 
ontologies.                

7. Conclusions 

In this paper we presented the reversible and 
nonbijective transformations between OWL 2 onto-
logy and relational database applying hybrid mapping 
that combines direct representation of ontology 
classes, properties and instances in database tables 
with representing axioms and restrictions in meta-
tables. Aiming at a lossless storing of ontologies in 

databases and the lossless retrieval of them into onto-
logy reasoning tools, we presented our transformation 
in QVT-R language and followed the conditions under 
which such a transformation is coherent.     

To our knowledge, reversible and lossless transfor-
mation from OWL 2 ontology into relational database 
was not defined for storing ontology and its instances 
in different schemas. Currently, we are working on the 
extension of our previous OWL2ToRDB implementation 
in two directions: 1) to implement complete reversible 
OWL2ToRDB transformations based on the presented 
QVTR specification and 2) fulfilment of well-roun-
ded experiments with various ontologies for compre-
hensively investigating and making further improve-
ments in querying capabilities of the hybrid OWL2RDB 
approach. 

References 
 [1] W3C, 2004. OWL Web Ontology Language Over-

view. W3C Recommendation 10 February 2004. 
Available from: http://www.w3.org/TR/owl-features/ 
[Accessed 10 Jan 2011]. 

 [2] B. Motik, P.F. Patel-Schneider, B. Parsia. OWL 2 
Web Ontology Language Structural Specification and 
Functional-Style Syntax. W3C Proposed Recommen-
dation 22 September 2009. Available from: http:// 
www.w3.org/TR/2009/PR-owl2-syntax-20090922/. 
[Accessed 10 Jan 2011]. 

 [3] Ontotext, 2010. Bringing the Semantic Web Closer to 
its Tipping Point. Available from:  http://www. 
ontotext. com/owlim/OWLIM_FactForge_ jul10.pdf 
[Accessed 10 Jan 2011]. 

 [4] Z. Wu, G. Eadon, S. Das, E.I. Chong, V. Kolovski, 
M. Annamalai, J. Srinivasan. Implementing an 
Inference Engine for RDFS/OWL Constructs and 
User-Defined Rules in Oracle. Proceedings of IEEE 
24th International Conference on Data Engineering, 
2008, 1239–1248. 

 [5] W3C, 2010. Use Cases and Requirements for Map-
ping Relational Databases to RDF. W3C Working 
Draft 8 June 2010. Available from: http://www.w3. 
org/TR/rdb2rdf-ucr/ [Accessed 10 Jan 2011]. 

 [6] C. Bizer, T. Heath, T. Berners-Lee. Linked Data  
The Story So Far. International Journal on Semantic 
Web and Information Systems (IJSWIS), Special Issue 
on Linked Data, 5(3), 2009, 122. 

 [7] E. Vyšniauskas, L. Nemuraite. Transforming Onto-
logy Representation from OWL to Relational Data-
base. Information Technology and Control, 35(3A), 
2006, 333–343. 

 [8] E. Vyšniauskas, L. Nemurait�, A. Šukys, B. Para-
dauskas. Enhancing connection between ontologies 
and databases with OWL 2 concepts and SPARQL. 
Information Technologies 2010: Proceedings of the 
16th International Conference on Information and 
Software Technologies, IT 2010, Kaunas, Lithuania, 
2010, 350–357. 

 [9] E. Vyšniauskas, L. Nemurait�, A. Šukys. A hybrid 
approach for relating OWL 2 ontologies and relational 
databases. In P. Forbrig, H. Gunther (Eds.): Perspek-
tives in Business Informatics Research. Proceedings of 
the 9th international conference, BIR 2010, Rostock, 



Reversible Lossless Transformation from OWL 2 Ontologies into Relational Databases 

305 

Germany, September 29 – October 1, 2010, Berlin-
Heidelberg-New York, Springer, 2010, 86–101. 

[10] C. Golbreich, E.K. Wallace, P.F. Patel-Schneider. 
OWL 2 Web Ontology Language New Features and 
Rationale. W3C Proposed Recommendation, 2009, 
Available from: http://www.w3.org/TR/2009/PR-owl2-
new-features-20090922/ [Accessed 11 Jan 2011]. 

[11] J. Broekstra, A. Kampman, F. van Harmelen. Sesa-
me: An Architecture for Storing and Querying RDF 
Data and Schema Information. In The Semantic Web – 
ISWC 2002, LNCS 2342, Springer Berlin Heidelberg, 
2002, 54–68. 

[12] A. Gali, C.X. Chen, K.T. Claypool, R. Uceda-Sosa. 
From Ontology to Relational Databases. In S. Wang, 
D.Yang, K. Tanaka, F. Grandi, S. Zhou, E.E. Mangi-
na, T.W. Ling, I.-Y. Song, J. Guan, D.G. Yang, , 
H.C. Mayr (Eds.): Conceptual Modeling for Advanced 
Application Domains, ER Workshops 2004, LNCS 
3289, Springer, Heidelberg, 2004, 278–289. 

[13] S. Bechhofer, I. Horrocks, D. Turi. The OWL Ins-
tance Store: System Description. In R. Nieuwenhuis 
(Ed.): CADE 2005. LNCS (LNAI), 3632, Springer, 
Heidelberg, 2005, 177–181. 

[14] J. Lee, R. Goodwin. Ontology management for large-
scale enterprise systems. Electronic Commerce Re-
search and Applications 5(1), 2006, 2–15. 

[15] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, Y. Pan. 
Minerva: A Scalable OWL Ontology Storage and 
Inference System. In The Semantic Web – ASWC 
2006, LNCS 4185, 2006, 429443. 

[16] I. Astrova, N. Korda, A. Kalja. Storing OWL Onto-
logies in SQL Relational Databases. International 
Journal of Electrical, Computer and Systems Engi-
neering, 2007, 1(4), 242–247. 

[17] C.D. Barranco, J.R. Campana, J.M. Medina, 
O. Pons. On Storing Ontologies Including Fuzzy 
Datatypes in Relational Databases. IEEE International 
Proceedings of Fuzzy Systems Conference 2007, 2007, 
1–6. 

[18] J. Lu, L. Ma, L. Zhang, J.S. Brunner, C. Wang, 
Y. Pan, Y. Yu. SOR: a practical system for ontology 
storage, reasoning and search. Proceedings of the 33rd 
International Conference on Very Large Data Bases, 
Vienna, Austria, 2007, 1402–1405. 

[19] B. Motik, I. Horrocks, U. Sattler. Bridging the Gap 
Between OWL and Relational Databases. In WWW 
2007, International World Wide Web Conference, 
2007, 807–816. 

[20] N. Konstantinou, D.M. Spanos, M. Nikolas. Ontolo-
gy and database mapping: a survey of current im-
plementations and future directions. Journal of Web 
Engineering 7(1), 2008, 001–024. 

[21] A. Khalid, A.H. Shah, M.A. Qadir. OntRel: An On-
tology Indexer to store OWL-DL Ontologies and its 
Instances. Proc. of 2009 International Conference of 
Soft Computing and Pattern Recognition, 2009, 478–
483. 

[22] C.P. De Laborda, S. Conrad. Relational OWL – A 
Data and Schema Representation Format Based on 
OWL. In Proc. Second Asia-Pacific Conference on 
Conceptual Modelling (APCCM2005). Newcastle 
Australia CRPIT 43, 2005, 89–96. 

[23] C.P. De Laborda, S. Conrad. Database to Semantic 
Web Mapping using RDF Query Languages. In Con-

ceptual Modeling – ER 2006, 25th International 
Conference on Conceptual Modeling, Tucson, Arizo-
na, LNCS 4215, Springer Verlag, 2006, 241–254. 

[24] R. Ghawi, N. Cullot. Database-to-Ontology Mapping 
Generation for Semantic Interoperability. In VDBL’07 
conference, VLDB Endowment ACM, 2007, 1–8. 

[25] G. Hillairet, F. Bertrand, J. Yves, J.Y. Lafaye. 
MDE for publishing Data on the Semantic Web. In 
Workshop on Transformation and Weaving Ontologies 
and Model Driven Engineering TWOMDE, 395, 2008, 
32–46. 

[26] M. Seleng, M. Laclavík, Z. Balogh, Z. Hluchý. 
RDB2Onto: Approach for creating semantic metadata 
from relational database data. In INFORMATICS´ 
2007: proceedings of the ninth international confe-
rence on informatic, Bratislava Slovak Society for 
Applied Cybernetics and Informatics, 2007, 113–116. 

[27] K. Czarnecki, S. Helsen. Feature–based survey of 
model transformation approaches. IBM Systems Jour-
nal, 45(3), 2006, 621–645. 

[28] A. Armonas, L. Nemurait�. Using Attributes and 
Merging Algorithms for Transforming OCL Expres-
sions to Code. Information Technology and Control, 
2009, 38(4), 283– 293. 

[29] L. Ablonskis, L. Nemurait�. Discovery of Complex 
Model Implementation Patterns in Source Code. Infor-
mation Technology and Control, Kaunas, Technologi-
ja, 2010, 39(4), 291–300. 

[30] V.Štuikys, R.Damaševi�ius. Design of Ontology-
Based Generative Components Using Enriched Fea-
ture Diagrams and Meta-Programming. Information 
Technology and Control, 2008, 37(4), 301–310. 

[31] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 
Valduriez, P. ATL: a QVT-like transformation lan-
guage. In Proc. OOPSLA Companion, 2006, 719–720. 

[32] OMG, 2011. Meta Object Facility (MOF) 2.0 Query/ 
View/Transformation Specification. OMG Document 
Number: formal/2011-01-01, 2011. 

[33] D. Song, K. He, P. Liang, W. Liu. A formal language 
for model transformation specification. Available 
from: http://www.cs.rug.nl/search/uploads/Publica-
tions/song2005flm.pdf [Accessed 10 Jan 2011]. 

[34] S.H. Tirmizi, J. Sequeda, D. Miranker. Translating 
SQL Applications to the Semantic Web. In Procee-
dings of the 19th international conference on Data-
base and Expert Systems Applications, LNCS 5181, 
2008, 450–464. 

 [35] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, 
G. Taentzer. Information preserving bidirectional mo-
del transformations. In Proceedings of Fundamental 
Approaches to Software Engineering (FASE 2007), 
LNCS 4422, 2007, Springer, Heidelberg, 72–86. 

[36] P. Stevens. Bidirectional model transformations in 
QVT: semantic issues and open questions, Software 
and Systems Modeling, 9, 2010, 7–20. 

[37] J.L. Hainaut, C. Tonneau, M. Joris, M. Chandelon. 
Transformation-based Database Reverse Engineering. 
In Proceedings of the 12th International Conference 
on the Entity-Relationship Approach, LNCS, 823, 
Springer-Verlag, 1993, 364–375. 



E. Vyšniauskas, L. Nemurait�, R. Butleris, B. Paradauskas 

 

[38] B. Paradauskas, A. Laurikaitis.  Extracting concep-
tual data specifications from legacy information sys-
tems. Electronics and Electrical Engineering, 2011, 
1(107), 46–50. 

[39] OMG, 2006. Common Warehouse Metamodel Speci-
fication. Object Management Group, OMG Document 
Number: pas/06-04-02, 2006. 

[40] OMG, 2009. Ontology Definition Metamodel. Ver-
sion 1.0.  OMG Document Number: formal/2009-05-
01, 2009. 

Received March 2011. 




