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1. Introduction 
 
 The buried pipes are frequently analyzed by using 
numerical methods [1-3]. In numerical model of a buried 
pipe the plane strain condition is used. 
 Analytical method for the determination of stress 
state in a pipe subjected to internal pressure at plane strain 
condition and elasto plastic loading for incompressible 
material (Poisson’s ratio v = 0.5) is presented in work [4]. In 
this case tensile curve of material in elasto plastic loaded 
zone is approximated by linear function. Radial and cir-
cumference stresses in work [4] are determined by the de-
pendencies1: 
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Fig. 1 Distribution of stress (a) and strain (b) components 
in the thickness of pipe wall δ when E1 / E = 0.2 and 
rp = (rin + ret) / 2: ( ⎯⎯ ) obtained analytically when 
v = 0.5; ( − − − ) determined by FEA when v = 0.3 
and v*

 < 0.5 (v* is effective Poisson’s ratio) 
 
                                                           
1 lower index p denotes values at elasto plastic loaded zone 
   lower index e denotes values at elastic loaded zone 
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where σpl is limit of elasticity; rp is maximum pipe radius 
of elasto plastically deformed zone; rex is external radius of 
the pipe; E is modulus of elasticity; E1 is hardening modu-
lus of the material in elasto plastic zone. 
 The stress strain state components calculated ana-
lytically when v = 0.5 [4] and determined by FEA (finite 
element analysis) when v = 0.3 are shown in Fig. 1. In this 
case stress strain components mostly differ at external sur-
face of the pipe: σr – 2 %, σθ – 1.5 %, σz – 70 %, σi – 1.5 %, 
er – 85 %, eθ – 15 % and ei – 3 %. Therefore, the method 
presented in work [4] is inapplicable for the investigation of 
radial stiffness of a pipe under elasto plastic loading. 
 The analytical method for stress strain state determi-
nation in homogeneous pipe subjected to elasto plastic load-
ing at plane strain condition with taking into account com-
pressibility of the material (v ≤ 0.5) is presented in this paper. 
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2. Determination of stress strain state components in 

homogeneous pipe at elasto plastic loading 
 
 The solution is made by using the relative pa-
rameters: ρ = r / rin , s = δ / rin , ρin = 1, ρex = rex / rin = 1 + s, 
ξ = x / δ (0 ≤ ξ ≤ 1), ρ = (rin + x) / rin = 1 + ξ s (Fig. 2). 
 The load is determined by using relative co-
ordinate ξp which denotes the maximum value of elasto 
plastically deformed zone. 
 Stress intensity at plane strain condition 
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 By estimating that σz = v (σr + σθ) 
 

 ( ) ( ) ( ) θθθ σσσσσσσ rrri vv ++−−−= 22 1  (4) 
 

 
Fig. 2 Scheme of homogeneous pipe subjected to internal 

pressure at plane strain condition 
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 Strain intensity at plane strain condition 
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 In elasto plastically loaded zone in Eqs. (4) and 
(5) instead of v must be used effective Poisson’s ratio 
 
 v*

 = 0.5 − (0.5 − v) E' / E (6) 
 
where E' = σi p / ei p is secant modulus of material tensile curve. 
 In elastic loaded zone radial and circumference 
stresses may be determined by Lame’s equations [5] 2
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where pe is inner pressure when it is assumed that the ma-
terial is deformed only elastically (Eq. 10). 
 By taking into account Eqs. (4) and (7) the stress 
intensity at elastic loading 
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 Elasto plastic strains in the pipe appear when 
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 It is assumed that in elastically deformed zone, 
when p > pe max (ξp > 0), behavior of material is the same as 
in elastic loading. Therefore in elastically deformed zone 
for determination of stresses the fictitious inner pressure 
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is used, i.e. in Eqs. (7) and (8) when ξ ≥ ξp instead of pe the 
value pef must be used. 
 In elasto plastically loaded zone strain intensity 
ei p is calculated from the presumption, that the potential 
energy for elastic and elasto plastic loading is the same [6] 
(Fig. 3) 
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 From Eq. (11) follows that when tension curve of 
the material in elasto plastically loaded zone is approxi-
mated by power function 
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2 upper index L denote Lame’s equation 
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Fig. 3 Scheme for determination of strain intensity ei p in 
elasto plastically loaded zone when tension curve is 
approximated by: a – power function; b – linear 
function 

 
 
and when approximated linearly – 
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where ξ ≤ ξp ; in this case in expression of σi e(ξ), i.e. in 
Eq. (8) instead of v must be used v*; m0 is power index of 
material hardening in elasto plastic zone. 
 At elasto plastic loading stress intensity 
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 ( ) ( )[ ] 1Eee plpiplpi −+= ξσξσ  (15) 
 
 When material of the pipe is deformed elasto 
plastically and σi e(ξp) = σpl , the inner pressure can be cal-
culated form the assumption that mean elastic circumfer-
ence stress expressed in term of p is equal to the mean cir-
cumference stress, when elasto plastic loading appears 
(Fig. 4), i.e. 
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where σ θ (ξ, p) is circumference stress calculated form Eq. 
(7) by substituting p instead of pe . 
 
 

 
Fig. 4 Scheme for determination of p 
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• p and σθ p(0) are determined by approaching method 
from Eqs. (18), (20) and taking into account σr p(0) = −p. 
In first approaching can be assumed p = pef (1 − 0.2 ξp). 

 Determination of  is complicated. 

Therefore, in this work it is accepted that 
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 The stresses state components in elasto plastically 
loaded zone (ξ ≤ ξp) are determined in this way: 
• ei p(ξ), σi p(ξ) and v* by approaching method from Eqs. 

(12), (14) or (13), (15) and (6) are determined. In ex-
pression of σi e(ξ), i.e. in Eq. (8) instead of v must be 
used v*. In first approaching can be assumed v*

 = v; 

 
where σθ p(0) is calculated by approaching method form 
Eq. (20), when σr p(0) = −p. 
 Then Eq. (16) can be written • σr(ξ), σθ(ξ) and σi(ξ) stresses are calculated from Eqs. 

(19), (20) and (4).  

( ) ( )[ ] ( )( )
( ) ( )ss

ss
p

s
p

p

pp
efp

L
p

p

ξ
ξξ

ξσσ
ξ

θθ ++

++−
++=

12
21

0
2

 (18)  Stresses in elastically loaded zone (ξ ≥ ξp) are 
calculated form Eqs. (7) and (8) by using pef instead of pe . 
 Strains er and eθ are calculated by generalized 
Hooke’s law. In elasto plastically loaded zone the v* and E' 
must be used instead of v and E. 

 
 The values of radial stresses σr in two points of 
elasto plastically loaded zone are known: σr p(0) = −p and 

. In other points of elasto plastically 
loaded zone stress σ

( ) ( )p
L
rppr ξσξσ =

r is calculated by assuming that it is 
distributed linearly 

 
3. Stresses and strains investigations at elasto plastic 

loading 
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 Dependence of stress strain state components dis-
tribution on ξp are shown in Fig. 5 and 6. In elasto plasti-
cally deformed zone with increasing of ξ stresses σr , σθ , 
σz increase while strains and stress intensity σi – decreases. 

 
 When σi p(ξ) and σr p(ξ) are known the circumfer-
ence stress at elasto plastic loaded zone can be calculated 
from Eq. (4) 
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 Comparison of stress strain components obtained 
analytically and determined by FEA is presented in Table. 
The disagreement increases with increasing elasto plasti-
cally deformed zone. When elasto plastically deformed 
zone increases up to 2/3 of wall thickness the disagreement 
for stresses is up to 4.5% and for strains – 5.5%. When 
elasto plastically deformed zone does not exceed mean ra-
dius of the pipe wall (ξp ≤ 0.5) disagreement for the stresses 
is up to 3.0% and for strains – 1.5%. 
 When the pipe is loaded elasto plastically a negli-
gible increase of inner pressure caused extensive increase of 
elasto plastically deformed zone (see Fig. 6). For example, 
for the pipe with s = 0.4, in order to reach plastic zone from 
ξp = 0.5 to ξp = 1.0 the inner pressure must increase only 
1.106 times and for the pipe with s = 0.2 – 1.054 times. 
Analogous results were obtained in work [7]. When elasto 
plastically deformed zone reaches the external surface of the 
pipe wall the stability of the structure may be loosed. There-
fore, in design of pipelines it is recommended that under 
instantaneous overloading the elasto plastically deformed 
zone should not exceed the mean radius of the pipe wall. 

 
where  Cv = v* (1 − v*). 
 For stress strain state determination in any point 
of the pipe at elasto plastic loading, when ξp is known, the 
inner pressure p must be determined in this way: 
• pe from Eq. (10) is calculated; 
• ei p(0), σi p(0) and v* by approaching method from Eqs. 

(12), (14) or (13), (15) and (6) are calculated. For the 
determination of σi e(0) by Eq. (8) instead of v must be 
used v*. In first approaching can be assumed v*

 = v; 
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Fig. 5 Dependences of strains distribution on ξp in the thickness of pipe wall determined analytically ( ⎯⎯ ) and by FEA 
( − − − ) when s = 0.4, v = 0.3 and m0 = 0.15: a – radial strain er ; b – circumference strain eθ ; c – strain intensity ei 
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Fig. 6 Dependences of stresses distribution on ξp in the thickness of pipe wall determined analytically ( ⎯⎯ ) and by FEA 
( − − − ) when s = 0.4, v = 0.3 and m0 = 0.15: a – radial stress σr ; b – circumference stress σθ ; c – axial stress σz ;  
d – stress intensity σi 

 
Table 

Comparison of stress strain state components obtained by the method presented in this works and determined by FEA 
Analytical 

(FEA) Disagreement, % Analytical 
(FEA) Disagreement, % 

ξ 
σr / σpl σθ / σpl σz / σpl σi / σpl σr / σpl σθ / σpl σz / σpl σi / σpl er / epl eθ / epl ei / epl er / epl eθ / epl ei / epl

ξp = 0.25 
-0.330 0.856 0.174 1.030 -0.795 1.075 1.221 0.00 (-0.327) (0.860) (0.177) (1.031) 0.92 0.47 1.69 0.10 (-0.800) (1.084) (1.229) 0.63 0.83 0.65 

-0.274 0.889 0.194 1.014 -0.667 0.990 1.098 0.125 (-0.275) (0.891) (0.195) (1.016) 0.36 0.22 0.51 0.20 (-0.673) (1.000) (1.108) 0.89 1.00 0.90 

-0.219 0.924 0.211 1.000 -0.560 0.927 1.000 
0.25 (-0.220) (0.924) (0.212) (1.001) 0.45 0.00 0.47 0.10 (-0.563) (0.929) (1.003) 0.53 0.22 0.30 

0.000 0.706 0.212 0.627 -0.275 0.642 0.627 1.00 (0.000) (0.707) (0.212) (0.628) 0.00 0.14 0.00 0.16 (-0.276) (0.643) (0.628) 0.36 0.16 0.16 

ξp = 0.50 
-0.366 0.858 0.176 1.063 -1.039 1.306 1.498 0.00 (-0.363) (0.859) (0.177) (1.061) 0.83 0.12 0.56 0.19 (-1.024) (1.294) (1.483) 1.46 0.93 1.01 

-0.258 0.920 0.217 1.027 -0.736 1.087 1.196 0.25 (-0.253) (0.928) (0.223) (1.029) 1.98 0.86 2.69 0.19 (-0.744) (1.103) (1.210) 1.08 1.45 1.16 

-0.151 0.987 0.251 1.000 -0.523 0.957 1.000 0.50 (-0.152) (0.987) (0.251) (1.001) 0.66 0.00 0.00 0.10 (-0.525) (0.959) (1.002) 0.38 0.21 0.20 

0.000 0.836 0.251 0.743 -0.326 0.761 0.743 1.00 (0.000) (0.837) (0.251) (0.744) 0.00 0.12 0.00 0.13 (-0.326) (0.761) (0.743) 0.00 0.00 0.00 

ξp = 0.75 
-0.390 0.873 0.184 1.096 -1.329 1.596 1.837 0.00 (-0.388) (0.867) (0.180) (1.088) 0.52 0.69 2.22 0.74 (-1.263) (1.527) (1.759) 5.23 4.52 4.43 

-0.234 0.958 0.245 1.039 -0.799 1.186 1.292 0.375 (-0.224) (0.971) (0.255) (1.041) 4.46 1.34 3.92 0.19 (-0.807) (1.207) (1.309) 0.99 1.74 1.30 

-0.078 1.054 0.293 1.000 -0.482 0.990 1.000 0.75 (-0.079) (1.054) (0.293) (1.000) 1.27 0.00 0.00 0.00 (-0.485) (0.992) (1.002) 0.62 0.20 0.20 

0.000 0.976 0.293 0.868 -0.381 0.889 0.868 1.00 (0.000) (0.976) (0.293) (0.868) 0.00 0.00 0.00 0.00 (-0.381) (0.889) (0.868) 0.00 0.00 0.00 
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Fig. 7 Dependences of stresses distribution on v in the thickness of pipe wall determined analytically ( ⎯⎯ ) and by FEA 
( − − − ) when s = 0.4, ξp = 0.5 and m0 = 0.2: a – radial stress σr ; b – circumference stress σθ ; c – axial stress σz ;  
d – stress intensity σi 
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Fig. 8 Dependences of strains distribution on v in the thickness of pipe wall determined analytically ( ⎯⎯ ) and by FEA 
( − − − ) when s = 0.4, ξp = 0.5 and m0 = 0.2: a – radial strain er ; b – circumference strain eθ ; c – strain intensity ei 

 
 
 Dependence of stress strain state components dis-
tribution on Poison’s ratio v is shown in Figs. 7 and 8. With 
increasing v the axial stress σz and radial strain er increases, 
circumference stress σθ increases negligibly, circumference 
strain eθ at inner radius of the pipe negligibly increases and 
at external radius – decreases. Radial stress σr , intensities σi 
and ei practically does not depend on v. In this case dis-
agreement between stress state components values obtained 
by the method presented in this paper and determined by 
FEA does not exceed 3.0 % and strains – 2.0 %.   
 Under elasto plastic loading and cyclic characteris-
tics of the material are related [6, 8]. Therefore, the depend-
encies presented in this work enable to increase accuracy of 
the buried pipelines durability determination. 
 

4. Conclusions 
 
 Dependencies for stresses and strains determina-
tion in homogeneous pipe subjected to internal pressure at 
elasto plastic loading, plane strain condition and taking 
into account compressibility of the pipe material are pre-
sented in this paper. By FEA it is proved that accuracy of 
these dependencies is quite acceptable. 
 In design of pipelines it is recommended that un-
der instantaneous overloading the elasto plastically de-
formed zone does not exceed the mean radius of pipe wall 
(ξp  ≤ 0.5). 
 With increasing Poison’s ratio v the axial stress σz 
and radial strain er increases, circumference stress σθ in-
creases negligibly, circumference strain eθ at inner radius 
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of pipe negligibly increases and at external radius – de-
creases. Radial stress σr , stress intensity σi and strain in-
tensity ei practically does not depend on v (for example, 
when v changes by 40%, the σr changes only by 1.4%,  
σi – 1.1% and ei – 1.3%). 
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VAMZDŽIO, VEIKIAMO VIDINIO SLĖGIO, ĮTEMPIŲ 
IR DEFORMACIJŲ BŪVIO NUSTATYMAS ESANT 
PLOKŠČIAJAI DEFORMACIJAI IR TAMPRIAI 
PLASTINIAM APKROVIMUI 
 
R e z i u m ė  
 
 Darbe nagrinėjamas vienalyčio vamzdžio, vei-
kiamo vidinio slėgio, įtempiai ir deformacijos esant plokš-
čiajam deformacijų būviui. Šis būvis susidaro požeminiuo-
se vamzdynuose. Baigtinių elementų metodu patvirtinta, 
kad darbe siūloma įtempių ir deformacijų nustatymo meto-
dika yra gana tiksli. Darbe taip pat pateiktos įtempių ir 
deformacijų būvio komponenčių pasiskirstymo priklauso-
mybės nuo vidinio slėgio dydžio ir Puasono koeficiento. 
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DETERMINATION OF STRESS STRAIN STATE IN 
PIPE SUBJECTED TO INTERNAL PRESSURE AT 
PLANE STRAIN CONDITION UNDER ELASTO 
PLASTIC LOADING 
 
S u m m a r y  
 
 The stress strain state of homogeneous pipe sub-
jected to internal pressure at elasto plastic loading and 
plane strain condition is analyzed. The plane strain condi-
tion appears in buried pipelines. By using FEA it is proved 
that the accuracy of presented methodic for determination 
of stresses and strains is quite acceptable. Dependences of 
stress strain state components distribution on value of inner 
pressure and Poison’s ratio are also presented. 
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