
111

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2011. No. 6(112)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

 Assessment of Dongle-based Software Copy Protection Combined with
Additional Protection Methods

A. Liutkevicius, A. Vrubliauskas, E. Kazanavicius

Real Time Computing Systems Centre, Kaunas University of Technology,
Studentų str. 50, LT-51368, Kaunas, Lithuania, e-mails: agnius@ifko.ktu.lt, aras@ifko.ktu.lt, ekaza@ifko.ktu.lt

Introduction

There are a lot of methods to fight against software
illegal use, which can be divided into two major groups:
software-based protection and hardware-based protection.
One of the popular hardware-based software copy
protection methods is based on special hardware called
“dongle”. Dongle is a small USB, RS232 or LPT interface
device usually, like USB flash pen, which protects
applications from being illegally replicated from original
copy. An application is not functional or looses major
functionality without dongle plugged in host PC.
Application is bound with particular dongle while dongle
itself is almost impossible to clone or hack, hence illegally
copied application is worthless. Many people and even
some software developers and vendors think, that dongle
based protection is very hard to break. But such method
has its weak spot – communication between dongle and
application logic. Communication security can be
improved by using standard well known methods [1], [2]
like AES, DES, 3DES, RC2, Rijndael, etc., however it
only protects low level data transfer between dongle and
application, and the attack can be performed at a higher
level. Usually application protection is implemented by
identifying dongle and checking some secret value, kept in
dongle memory. But the problem is that modern software,
independently from the programming languages and
technologies, can be reverse engineered, disassembled or
debugged. Attacker just needs to find code fragments,
where applications asks dongle for some value, and place
jump over those fragments, so hacked application
completely ignores presence of dongle. We found some
dongle vendors, which recommend having many calls to
dongle, make them randomly and so on, but this adds just
few additional minutes for attacker to spend without
making protection really stronger.

Recently more advanced dongles appeared, like
Rockey (rockey.com.my), Keylok (keylok.com) and some
other, which are able to hide some application part inside
of them, and execute that part directly in the dongle. This
is quite new and promising technology we believe is very

hard to break, but it requires more research regarding
security strength measurements. On the other hand there
are a lot of conventional dongle vendors and users, so our
investigation and experiments were intended to show, if it
was possible to implement good copy protection using
dongles without code execution in combination with other
well known software protection techniques, like software
packers, anti-debugging, code obfuscation and so on.

Additional protection methods for Dongle-based
protection

As described above, the main weak spot of dongle
protection is communication between protected application
and dongle itself. If attacker finds these calls using
debugging or disassembling techniques, protection is
breached completely despite communication complexity
and communication ciphering. Attacker does not need to
reverse engineer communication logic itself, but just place
a jump command to avoid dongle checking at all.

There are two possibilities to improve dongle-based
protection here. First of all, we need to make dongle-based
protection in such a way, that attacker could not find code
regions, where application is communicating with dongle,
or at least to make this task very difficult and time
consuming. Another option is to make protection in a way,
that breaking communication with dongle (using jump or
similar technique) would prevent program from normal
functioning. Later option is included in new generation
dongles like Rockey or Keylock, where dongle is no more
like a secured external memory, but rather a micro
computer with CPU, RAM, EEPROM or Flash memory,
which is able to execute some part of the secured
application. If the application developers use conventional
dongles without code execution abilities (which are still
very popular and widely used), then the only possibility to
make such protection stronger is to use additional software
based protection methods, to hide communication between
application and dongle. These methods include anti-
debugging, code obfuscation, software packers and few
others, which are covered below.

http://dx.doi.org/10.5755/j01.eee.112.6.459

112

“Anti-debugging encompasses the strategies,
techniques, and tricks that protected software uses to attack
debuggers and thwart reverse engineering” [3]. There are a
number of the known methods of anti-debugging which are
summarized in [4]. Also rootkits [5] and other virus like
techniques can be used to strengthen anti-debugging
protection. The general idea of anti-debugging is to detect
or exploit specific debuggers, like most popular OllyDbg,
IDA Pro or SoftICE. According to [4] the most commonly
used tracking software is OllyDbg and significant portion
of anti-dynamic tracking techniques are against it.

Software that employs anti-debugging techniques can
determine if it’s being debugged by identifying artifacts—
side effects of the debugging process—whether from the
hardware, software, or human layers [4]. There are several
sources of identifying artifacts [3, 4]: API based detection;
process and thread block detection; hardware and register
based detection; timing based detection; modified code
detection; exception based detection.

The main disadvantage of anti-debugging is that there
are many plug-ins for popular debuggers and debugger
versions, like IDA Stealth for example, which aim to hide
the debugger from most common anti-debugging
techniques. Such stealth debuggers are significant threat to
any anti-debugging technique. But on the other hand,
covert anti-debugging methods provide some software
protection because reverse engineers can’t manually
circumvent anti-debugging techniques they don’t see.

Code obfuscation is the technique, which makes
program source code very hard to understand and is used
widely to limit the possibility of malicious reverse
engineering or attack activities on a software system [6].
Code obfuscation means original code transformation into
new code, which is more difficult to understand, while
having behavior identical to the original code. Code
obfuscation technology is mainly used in software
developed using .NET, Java and other interpretive
platforms to protect the intermediate code. Obfuscation
quality is defined by several factors: potency (level of
obscurity); resilience (difficulty to be broken); cost
(computational overhead); stealth (blending with the rest of
the code). Obfuscation methods are classified into three
groups [6]: layout obfuscations, data obfuscations, control-
flow obfuscations.

The main disadvantage of this protection method is
that obfuscators are good to hide custom code details and
logic, but they cannot obfuscate third party external library
calls. Hence it is relatively easy to find such calls to the
dongle even in obfuscated program, because obfuscator
cannot change names of libraries or their methods.

Packing compresses and/or encrypts the program
code in such way, that actual code stays hidden till runtime
(when the executable is unpacked) making it immune to
static analysis [7]. Packed program contains additional
code, which dynamically unpacks or generates original
program code in memory and then transfer control to it.

Since every packer has its associated unpacker to
undo packing, a successful generic unpacker is difficult to
come by [7]. Packing is considered as one of the best
protection against reverse engineering, because it can
combine other protection methods mentioned above: anti-
debugging, code obfuscation, etc. Kim et al. [8] concludes,

that there are no well-developed widespread secure binary
code packing tools for Linux-based embedded systems,
and propose their own packing methods for Linux
platform. On the other hand, there are a many widely used
packers for the Windows platform including ASPack,
ASProtect, PECompact, MoleBox, Armadillo, etc.

Though originally packers were created to minimize
size of executables, today they are primary used for
software protection, because packed code cannot be
analyzed statically. Dynamic analysis using debuggers is
also quite complicated, because it is sometimes difficult to
identify regions of original unpacked code.

The main disadvantage of this protection method is
the fact, that almost every commercial and widely used
packer has its own third party unpacker, which can remove
additional packer’s code leaving only original program
(preserving functionality while the unpacked code can
differ from original one). Every new version of
commercial packer sooner or later (usually sooner) has its
own unpacker, which can be found on Internet easily.

Related work

Dongle protection evaluation is quite rare topic

among researchers. Piazzalunga et al. [9] proposed general
model for dongle based security evaluation and identified
both “attack pattern catalog” and “defense pattern
catalog”. Authors of [9] developed attack tree model and
experimentally proved, that model based protection
measurements are quite similar to the field validation
results. On the other hand, the details of the field testing
are omitted, just presenting defense patterns used and time
spent for cracking.

Jozwiak et al. [10] proposed a special hardware
device, which is intended to make dongle cracking easier,
showing exact moments, when program is accessing
dongle. Though such device is good to crack simple and
short dongle protected programs, additional protection
methods like code packing, can make reverse engineering
process much more complicated and not so
straightforward. Also instead of proposed hardware
module simple USB packet sniffer or similar tools can be
used, making such kind of reverse engineering even much
easier.

In their next paper Jozwiak et al. [11] present
hypothetical hardware protection device, based on
ATMega128 MCU with real-time clock. Jozwiak et al.
show two methods to crack such protection: switching off
cycle checking of device’s presence and simple RTC
emulator. No additional protection methods like
obfuscation, anti-reverse engineering or packing are used.
The important conclusion can be found in [11], saying that
“primary strength of hardware-based protection centers on
a tight binding between protected software and hardware
key”. In our case the tight binding between dongle and
application is achieved using additional protection
techniques including anti-debugging, code obfuscation and
program packing.

Regarding related work, the aim of our investigation
was not only the assessment of dongle-based protection
combined with additional protection methods, but also
evaluation of possibility to break protection by

113

inexperienced attackers, using widely available tools and
methods found on Internet.

Experimental Setup

Security Dongle Hardware, Software and

Documentation. For our experimental evaluation we used
DLP-D USB-based security dongle manufactured by DLP
Design Inc. The dongle is pre-programmed with a unique
identification number and additionally has 128 bytes of
EEPROM user area to store custom data. API libraries for
accessing dongle were downloaded from
http://www.ftdichip.com/FTSupport.htm including .NET,
Java and C++. We also used application programming
interface (API) for the FTD2XX DLL function library
programmer’s guide, found at the same address provided
above. This guide was useful to find out the exact names of
API functions, called from the application during
authentication with dongle.

Program to Protect. We wrote experimental
command line program, which accesses dongle through
dongle API library and read the dongle ID. If dongle is
present, then dongle ID is read using dongle API and
compared to hardcoded ID value to confirm, that correct
dongle is inserted. If dongle is not present (dongle API
function returns false) program stays locked.

Software for Additional Protection. SoftwarePassport
version 8 (trial) based on well known and widely used
Armadillo engine from the Silicon Realms Toolworks
(http://www.siliconrealms.com) was used for program
packing.

Dotfuscator Community Edition was used to
obfuscate C# implementation of experimental program
(http://www.preemptive.com/products). This tool is a part
of MS Visual Studio 2008 distribution.

Another commercial tool we used for C# code
obfuscation was Crypto Obfuscator For .Net (v2011)
(http://www.ssware.com).

ProGuard (http://proguard.sourceforge.net/) free Java
class files shrinker, optimizer, obfuscator, and pre-verifier
was used to obfuscate Java implementation of
experimental program.

Reverse Engineering Tools. For the protected
program debugging and cracking any of above mentioned
debuggers is suitable. We used OllyDbg version 1.10,
which can be downloaded from http://www.ollydbg.de/.
Our OllyDbg version had additional “Olly Advanced”
plug-in for the anti-anti-debugging, making this debugger
“stealth” and undetectable by known anti-reverse
engineering methods and protections.

For the protected program decompiling .NET
Reflector version 6.6 (http://www.reflector.net), Dis#
.NET Decompiler version 3.1.4, JAD decompiler for Java
version 1.5.8 (http://www.varaneckas.com/jad), JD-GUI
Java Decompiler (http://java.decompiler.free.fr/) version
0.3.3 with JD-Core version 0.6.0, JODE java decompiler
and optimizer (http://jode.sourceforge.net/) version 1.1.2-
pre1 were used.

We used ArmStripper v0.1 beta 6 for the unpacking
purpose (http://www.woodmann.com/crackz/Packers.htm).

Programming Languages. Protected and later cracked
program was implemented using three popular

programming languages including C++ (Microsoft
compiler used), .NET C# and Java. All implementations
had the same functionality and calls to the same dongle
API functions from the different API libraries available for
different languages. Java and .NET are high level
interpreted languages, which are very suitable for the
obfuscation protection evaluation, while C++ is compiled
into the machine code directly, allowing to evaluate anti-
debugging and code packing techniques. Also it was
interesting to compare which languages (interpretive or
not) are more resistive to the reverse engineering attacks.

Operating system. All experiments there performed
on Windows Server 2003 R2 platform.

Protection Methods to Evaluate. The protection
methods we used for the experimental evaluation can be
divided into few groups: dongle only protection; dongle
protection with code obfuscation; dongle protection with
program (code) packing.

Dongle only protection was used to evaluate how
strong is pure dongle-based protection without any
additional protection techniques. It was tested using all
three above mentioned programming languages.

Additional code obfuscation was used for the .NET
and Java implementations of protected program.
Obfuscation is good for interpretive languages, because
such languages are quite easily decompiled into original
code. On the other hand, debugging is rather useless for
such languages, because they are compiled during runtime.
Additional anti-debugging protection does not make sense
in this case.

The anti-debugging methods can be used separately
from other protection methods, but today they are usually
combined with code packing techniques. We used
commercial SoftwarePassport packing software with
enabled anti-reverse engineering protection to evaluate
protection of program, written in C++. Since cracking of
C++ program was done at the assembly level using
debugger, we did not add additional obfuscation protection
to this implementation of protected program. At the
assembly level obfuscation is useless, because calls to
external libraries are leaved as they are in original
program.

Evaluation of protection

Dongle Only Protection. Dongle only protection

evaluation started with breaking program written in C++.
We used OllyDbg for reverse engineering purposes. The
main idea was to find calls to the dongle API library,
which are used to retrieve dongle ID and patch
experimental program to skip dongle checking. Actually
this task is extremely easy, because dongle vendors usually
give a programming guide with all API function
descriptions. OllyDbg environment allows making simple
search within assembly to find exact function names. The
result of this search is presented in Fig. 1, where call to
dongle API library can be seen. Even multiple calls to
dongle can be found in several minutes. The next step of
changing assembly code to ignore dongle calls was
performed using simple JMP command making patched
program successfully continue execution ignoring dongle
absence completely.

114

Fig. 1. Dongle API call found in OllyDbg environment

Even without knowing exact API function names, it

is quite easy to check all dongle library calls to find those
functions. If dongle has no special library, reverse
engineering is almost identical if not more simple. Just
instead of finding dongle library calls, attacker searches for
Windows API functions to communicate with I/O devices.
MSDN Windows API Reference contains all needed
documentation for this purpose.

Cracking of experimental program written in high
level interpreted Java and .NET languages is quite
different. OllyDbg and other assembly level reverse
engineering tools are not very suitable, because virtual
machine and interpreter hide execution logic at user level
and cracking should be performed at kernel level. Though
it is still possible using special software tools or plug-ins
for debuggers, more simple approach can be used. The
main drawback of interpretive programming languages is
that programs written in Java or .NET can be easily
decompiled into original code. We used .NET Reflector
software for C# and JD-GUI decompiler for Java to reverse
engineer binaries into source code. Next step was the same
like in case with C++ binaries. We made simple API call
search and in matter of few minutes found all calls to the
dongle.

This group of experiments proved that having
commonly available tools and some technical knowledge
given by dongle vendors or OS vendors, the dongle
protection breaking takes from several minutes to few
hours in extreme cases.

Dongle Combined with Code Obfuscation. First
group of experiments proved, that without additional
protection, dongles without code execution are easily
avoided, because there is no big deal to find exact places
where dongle is called from the protected program.
Logically next step was to see, how additional protection
methods like obfuscation will help to improve protection.
Obfuscation is useful to resist decompilation, because even
decompiled code looks like a mess. We obfuscated both
C# and Java implementations of protected program and
then decompiled them.

Fig. 2. Obfuscated C# program after decompilation with .NET
reflector

Actually obfuscation is very good method to hide

business logic of program, but in our case we do not care

about this. Attacker just wants to find calls to the dongle
and avoid them. Obfuscation is applicable to custom code,
but not to the third party library calls. It cannot change
names of dongle API functions and consequently these
calls can be found with the same ease as with non-
obfuscated program. C# implementation of experimental
program was obfuscated using standard Dotfuscator utility
found in Visual Studio 2008 IDE. Then program was
decompiled with .NET Reflector. Fig. 2 depicts obfuscated
program after decompilation with clearly seen code portion
calling dongle API.

Fig. 3. Obfuscated C# program after decompilation with Dis#
decompiler

Next obfuscator we tried for C# program, was

commercial Crypto Obfuscator For .Net (v2011). It allows
not only obfuscation, but also packing and anti-reverse
engineering protection. In this case only obfuscation
protection was enabled. For decompiling we used both
.NET Reflector and Dis# tools. Reflector was not able to
disassemble code correctly (showing error message), while
Dis# was able to show mixed assembler and C# code,
which again contained clear logic of how dongle API
library functions are called, as depicted in Fig. 3.

Java implementation of experimental program was
obfuscated using ProGuard obfuscator. This is quite
sophisticated tool, which allows many obfuscation options
to make obfuscated code very hard to understand. The bad
thing is that protected program must call native dongle API
library functions and these calls cannot be obfuscated. This
restriction makes reverse engineering straightforward. We
decompiled obfuscated java binaries and jar files and
simply found native method calls (Fig. 4). Then we traced
all calls to these methods (after obfuscation classes and
methods were renamed like “a”, “b”, “a.b”, etc.) and easily
found exact places, were experimental program checks the
dongle. Program was patched and compiled back into
binary code.

This group of experiments showed, that code
obfuscation almost does not add any significant additional
protection for the dongle-based protection solutions. Places
where dongle API library is called can be found quickly
leading to the simple program patching to ignore dongle
presence.

Dongle Combined with Program Packing and Anti-
debugging. Last group of experiments included evaluation
of dongle protection improved with packing and anti-
debugging. For this purpose trial version of
SoftwarePassport commercial software was used. C++
implementation of experimental program was packed using

DateTime now = DateTime.Now;
int num2 = checkKey();
TimeSpan span = (TimeSpan)(DateTime.Now - now);
if (num2 == 0)
{

Console.WriteLine(“checkKey()=PASSED, execution time=”
+ span);

call DateTime DateTime.get_Now()
dup
pop
stloc.1
call int Program.checkKey()
dup
pop
stloc.2
call DateTime DateTime.get_Now()
dup
pop

MOV DWORD PTR SS:[ESP+10],ECX
MOV BYTE PTR SS:[ESP+4],DL
MOV DWORD PTR SS:[ESP+8],0
CALL DWORD PTR DS:[<&ftchipid.FTID_GetDeviceChipID>]
TEST EAX, EAX
JNZ SHORT _test_c_004010CA
MOV ECX,DWORD PTR SS:[ESP]

115

additional settings like license, anti-debugging and few
others.

Fig. 4. Obfuscated Java program after decompilation with JD-
GUI decompiler

Our first step of breaking packer protection started
with avoiding additional anti-reverse engineering
techniques applied by packer. Packed program did not
allow debugging at all, throwing warning message and
terminating. We used Olly Advanced plug-in for the
OllyDbg debugger. This plug-in is very easy to use simply
selecting few checkboxes with anti-reverse engineering
methods attacker would like to avoid. Checking all
checkboxes allowed analyzing program without any
inconvenience ignoring all anti-debugging protections.

In contrast with dongle only protection, on the first
look packing hides original program code details, because
original code is unpacked during runtime. Most simple
“brute force” solution is to step over assembly code using
debugger until original program is unpacked and loaded
into memory. Next phase is the same as in case with
dongle only protection: make search for dongle API calls
and patch them with JMP or similar techniques. Such
approach though simple, can require a lot of time. More
sophisticated protections can include time-based checking
and automatic program shutdown not allowing reaching
point, when program is fully loaded into memory. This
would increase time needed for attacker to break the
protection as well. Having this in mind, we used another
attack method, which can be applied even by
inexperienced attacker. We simply searched on Internet for
the “armadillo unpacker” and tried to use few first
matches. We found that even quite old unpacker
ArmStripper v0.1 beta 6 (designed for older versions of
Armadillo) unpacked our experimental program without
any problems. It was noticed though, that unpacked code

differs comparing with original code before packing, but
the functionality is equal. Unpacked code was analyzed
and calls to dongle API were found using debugger’s
search engine. These calls were patched like in previous
test cases.

Java packers usually include wrapping Java bytecode
with C family program which leads to the same reverse
engineering process, like with C++ program
implementation (non-interpreted language).

C# implementation of program was obfuscated and
packed with Crypto Obfuscator. This was the only time,
when we were unable to decompile it using general tools.
However from the experience we got before, it is just a
matter of having the right knowledge and finding the right
tools for successful attack.

Our experiments emphasized problem associated with
packing-based protections: almost every known packer has
its own third party unpacker. The general recommendation
we can give is to use custom (unknown) packer, though we
understand that it is quite unrealistic that software
developers would spend additional time and money to
make protection mechanisms more expensive than
program they want to protect.

The summarized results of experimental evaluation
are presented in Table 1, showing the time spent to break
particular software protection method.

Conclusions and Future Work

In this paper assessment of dongle-based software
copy protection combined with additional protection
methods is presented. The security dongle without code
execution ability was used for experimental evaluation
combining it with additional protection methods including
code obfuscation, anti-reverse engineering and code
packing.

The experimental results show that even occasional
attacker can quite easily break dongle (without code
execution) protection using widely known tools and
information found on Internet.

Experiments proved that having commonly available
tools and some technical knowledge given by dongle
vendors or OS vendors, the dongle only protection
breaking takes from several minutes till few hours in
extreme cases.

Code obfuscation almost does not add any significant
additional protection for the dongle-based protection
solutions. Places where dongle API library is called can be
found quickly leading to the simple program patching to
ignore dongle presence.

Table 1. Time spent to break software protection

 Dongle Only Protection Dongle with Obfuscation Protection Dongle with Packing Protection
Programming
language

C++ .NET Java .NET Java C++ .NET

Additional
protection

Not
used

Not
used

Not
used

Dotfuscator
Crypto

Obfuscator
Pro

Guard
SoftwarePassport

(Armadillo)
Crypto

Obfuscator

Time (minutes) ~10 ~5 ~5 ~3 ~8 ~7 ~15 N/A

final a a()
{

if (this.a == null)
{

EEPROM localEEPROM = this;
 localEEPROM = this;
 if (!null.e())

throw new
IllegalStateException(a.a.a.a(EEPROM.class,
"error.notOpen"));

this.a = readDeviceDescriptor(null.b());
}
return this.a;

}

private static native a readDeviceDescriptor(long paramLong);

116

Packed versions of dongle protected programs are
more difficult to crack, comparing with obfuscated and
dongle protected or protected only with dongle programs.
On the other hand, we showed that with use of open source
and freely downloadable tools even packed programs can
be reverse engineered in matter of minutes.

In future works we are planning to evaluate the
dongles with code execution ability using well known
reverse engineering attack methods.

References

1. Toldinas J., Štuikys V., Ziberkas G., Naunikas D. Power

Awareness Experiment for Crypto Service–Based Algorithms
// Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 5(101). – P. 57–62.

2. Toldinas J., Stuikys V., Damasevicius R., Ziberkas G.,
Banionis M. Energy Efficiency Comparison with Cipher
Strength of AES and Rijndael Cryptographic Algorithms in
Mobile Devices // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2011. – No. 2(108). – P. 11–14.

3. Gagnon M.N., Taylor S., Ghosh A.K. Software Protection
through Anti–Debugging // IEEE Security & Privacy, 2007. –
Vol. 5. – Iss. 3. –P. 82–84.

4. Tang Jiutao, Lin Guoyuan. Research of Software Protection
// International Conference on Educational and Network
Technology (ICENT’2010), 2010. –P. 410–413.

5. Toldinas J., Rudzika D., Štuikys V., Ziberkas G. Rootkit
Detection Experiment within a Virtual Environment //

Electronics and Electrical Engineering – Kaunas:
Technologija, 2009. – No. 8(104). – P. 63–68.

6. Ceccato M., Di Penta M., Nagra J., Falcarin P., Ricca F.,
Torchiano M., Tonella P. The Effectiveness of Source Code
Obfuscation: an Experimental Assessment // IEEE 17th
International Conference on Program Comprehension
(ICPC’2009). – Vancouver, Canada, 2009. – P. 178–187.

7. Babar K., Khalid F. Generic Unpacking Techniques // 2nd
International Conference on Computer, Control and
Communication (IC4’2009), 2009. – P. 1–6.

8. Min–Jae Kim, Jin–Young Lee, Hye–Young Chang,
SeongJe Cho, Yongsu Park, Minkyu Park, Wilsey P. A.
Design and Performance Evaluation of Binary Code Packing
for Protecting Embedded Software against Reverse
Engineering // 2010 13th IEEE International Symposium on
Object/Component/Service–Oriented Real–Time Distributed
Computing (ISORC), 2010. – P. 80–86.

9. Piazzalunga U., Salvaneschi P., Balducci F., Jacomuzzi P.,
Moroncelli C. Security Strength Measurement for Dongle–
Protected Software // IEEE Security & Privacy, 2007. – Vol.
5. – Iss. 6. – P. 32–40.

10. Jozwiak I. J., Liber A., Marczak K. A Hardware–Based
Software Protection Systems–Analysis of Security Dongles
with Memory // International Multi–Conference on
Computing in the Global Information Technology
(ICCGI’2007), 2007.

11. Jozwiak I. J., Marczak K. A Hardware–Based Software
Protection Systems – Analysis of Security Dongles with Time
Meters // 2nd International Conference on Dependability of
Computer Systems (DepCoS–RELCOMEX '07), 2007. – P.
254–261.

Received 2011 03 29

A. Liutkevicius, A. Vrubliauskas, E. Kazanavicius. Assessment of Dongle-based Software Copy Protection Combined with
Additional Protection Methods // Electronics and Electrical Engineering. – Kaunas: Technologija, 2011. – No. 6(112). – P. 111–
116.

Dongle is a hardware device which is bound with software application in such way, that application functions only if dongle is
plugged in. The most modern dongles are able to hide some parts of application’s code and execute this code directly inside the dongle,
but today’s market has a lot of dongle types, which are not able to execute code. This paper presents our investigation regarding
evaluation of software protection using dongles without code execution ability. Commercial dongle is used for the case study,
combining it with well known software protection methods to hide application communication with dongle. The experimental results
show that even inexperienced attackers can quite easily break dongle without code execution protection using widely known tools and
information found on Internet. Ill. 4, bibl. 11, tabl. 1 (in English; abstracts in English and Lithuanian).

A. Liutkevičius, A. Vrubliauskas, E. Kazanavičius. Aparatiniais raktais su papildomais apsaugos metodais pagrįstos
programinės įrangos apsaugos įvertinimas // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 6(112). – P.
111–116.

Apsaugos raktas – tai specialus aparatinis įrenginys, susietas su taikomąja programa taip, kad be rakto programa neveikia. Nors
patys naujausi apsaugos raktų modeliai gali paslėpti dalį taikomosios programos funkcijų ir vykdyti jas rakto viduje, rinkoje vis dar
plačiai siūlomi raktai, negalintys vykdyti kodo. Šiame straipsnyje eksperimentiškai įvertinamas negalinčių vykdyti programos kodo
apsaugos raktų apsaugos lygis. Tam naudojamas komercinis apsaugos raktas, kurio komunikavimui su taikomąja programa paslėpti
naudojami gerai žinomi papildomi apsaugos metodai. Eksperimentų rezultatai rodo, kad net nepatyrę programinės įrangos piratai gali
apeiti apsaugos rakto užtikrinamą apsaugą, panaudodami plačiai žinomus programinius įrankius bei informaciją, laisvai prieinamą
internete. Il. 4, bibl. 11, lent. 1 (anglų kalba; santraukos anglų ir lietuvių k.).

