
101

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2011. No. 6(112)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Automated Regression Testing using Symbolic Execution

D. Barisas, T. Milasius, E. Bareisa
Software Engineering Department, Kaunas University of Technology,
Studentų str. 50, LT−51368 Kaunas, Lithuania, e-mail: dominykas.barisas@ktu.lt

Introduction
During development and support phases, software is

modified to enhance its functionality, detect faults, and
adapt it to different platforms. Regression testing is used to
identify faults that were introduced when modifying code
[1–18] or to assure that a change, for example a functional
enhancement, bug fix, patches or configuration changes,
did not introduce new faults. However, a lack of test inputs
that exercise a changer behavior is a common issue in
regression testing.

A large number of test inputs is generated in order to
cover modified parts of the code. Then the tests are
executed using generated test inputs on the old and new
versions of the code, differences are identified and
presented to developer with the details regarding the lines
of changed code and the differences [2]. The proposed
approach can provide developers with detailed information
regarding code coverage and various statistics.

Related Work

A lot of research has been done in the area of
automatic test case generation, for example an execution of
various elements in the program [11] or detection of
mutants [12, 21].

Test tools are used for test case execution (for
example, Parasoft JTest [13]) and random test input
generation. However, random test inputs may not be
sufficient to detect different behavior of the new version of
program. Other techniques define test input data using
OCL constraints [14], which eliminates the need for
random data generation.

Significant amount of research has been done in the
area of regression testing in the past few years. Some of
approaches [15, 16] rerun test case with the same test
inputs and check the outputs of the test case against the
captured outputs. Tests may be applied for the source code
generated from various UML or DSL specifications [17].

Another approach [18] generates test input set,
executes them and collects the return values and object
states after the execution of each method under test. The
following executions retrieve the same information and
check against the initially collected return values and
states. Many approaches focus on testing the changed parts

of two versions of a software application and takes into
account changes related to method return values, object
states, and program outputs.

In some cases, finding behavioral differences
between two versions of program may not be sufficient and
it can be expanded by predicting object state deviations of
a changed program or introducing mutation testing.

In some approaches, symbolic execution is used to
improve test input quality. One of such tools for the Java
language could be Java Pathfinder [4, 6] which is built on
top of a custom Java Virtual Machine (JVM) and here is
used for test input generation. Model checking is done via
execution of Java byte-codes, an approach that allows
different byte-code interpretations to be developed.

Fig. 1. An example of conditioned program and execution tree

One of the model checking modes in JPF is symbolic
execution [5]. Extended interpretation of byte-codes is
used to work with symbolic values. Symbolic JPF checks

http://dx.doi.org/10.5755/j01.eee.112.6.457

102

the code for conditional branches incorporating symbolic
values, then tries to find out if the branch condition is
satisfied for true and false possibilities and identifies
values for each branch.

There is a number of helper functions and classes
available for JPF, that allow to annotate code, and develop
extensions to change and monitor the execution of JPF.
One of them is the ability to register Java listeners for
various JPF events, for example monitor the execution of a
byte-code instruction. Therefore, it allows extensions to
access information used internally by JPF. The ability to
annotate code and monitoring JPF’s execution is helpful
for test generation [7].

An example of conditioned program and execution
tree of the conditioned program is provided in Fig. 1.

We aim to reach the following goals:
1. Detect regression faults in the program;
2. Reach as high code coverage as possible;
3. Improve test input quality by detecting mutants.

Problem Statement

In general, mutation describes the modification of a
program according to some fault model. Mutation testing is
the process of deriving test cases that identify as many
mutants as possible. One test input covers one path of the
method which may change after the modification of the
code and the path will not be executed. Therefore, there
will be paths that are never tested and it will cause lower
code coverage. Besides, a lot of test inputs and mutants
need to be randomly generated in order to cover all paths
and catch the mutants. Classic mutation process (Fig. 2)
and our proposed approach are illustrated in Fig. 3.

Fig. 2. Classic mutation process

Proposed approach

The proposed approach uses symbolic execution

which helps to improve code coverage and test input
quality by detecting code mutation.

Fig. 3. Comparison of classic mutation process and the proposed
approach

Testing Technique Proposal and Symbolic Execution

The process can be separated into these activities:
1. Path condition generation from the source code;

Fig. 4. A concept of the software testing process

2. Test data generation from path conditions. An
extension for symbolic execution will be
developed to improve test data generation [3],
which will detect mutation faults as well;

3. Execution of generated test cases;
4. Stored result comparison with the expected

results. The test case is considered to have failed

Legend

- State (constraint) - Path (constraints
collection)

- Mutated state
- Mutated and reversed

state

Test cases input
data

Random input
generation

Original system System with mutant #1

Execute SUT and all its mutants with every input data

Compare original system
output with every
mutant’s output.

Collect output data

Accept current input

Reject current input

Outputs mismatch

Outputs are equal

SUT source code

SUT model + mutated and reversed
constraints

Analyze SUT (perform symbolic execution)
and produce execution path’s model

Find suitable inputs by solving every
path (path’s constraints)

103

in case the result does not match the expected
result.

The aim is to produce unit tests because it may be run
multiple times and relatively fast. Fig. 44 illustrates the
described approach with more details.

Proposed concept will address the following faults
introduced because of:

1. Modification of the application code;
2. Update of the packets that application is using.

The functionality should remain unchanged;
3. Changes of the platform.
Symbolic execution and software testing isn’t the

same. By proceeding from model checking to jUnit
framework it was found that symbolic execution gives an
interval of variable values in order to execute concrete path
of the program. However there are cases when the infinite
value set is returned and only one value needs to be chosen
for the path. Only one choice doesn’t always guarantee that
regression faults will be detected. In order to solve this
ambiguity, mutation testing will be introduced, which aims
to help generating more precise test data [8, 9, 10]. This is
explained in the following section with more details and an
example.

Main classes involved in test data retrieval and
mutated test case generation are presented in Fig.5.

Fig. 5. Symbolic execution extension diagram including mutant
generation

Mutation Process and Test Result Assessment

After test data generation we are not sure that it
detects changes in the program. Suppose we have this
code:

After symbolic execution two paths are found and
returned:

1. (b_2_SYMINT [0] + a_1_SYMINT [1]) >
c_3_SYMINT [0];

2. (b_2_SYMINT [0] + a_1_SYMINT [0]) <=
c_3_SYMINT [0].

These paths are used to generate corresponding test
cases:

1. testMe (1,0,0) -> Return value:
(a_1_SYMINT + b_2_SYMINT);

2. testMe (0,0,0) -> Return value:
c_3_SYMINT.

They are entirely correct test cases as all the program
paths are executed at least once. However, after the
modification of the program these test cases can be no
longer adequate as they do not ensure that the faulty
change of the program will be found. For example,
suppose we had this code: "if (a + b > c)"; and it
was changed to "if (a - b> c)" condition. Both the
test with testMe(1,0,0) and testMe(0,0,0) will
return a successful test execution value "Passed", although
at least one of them should return "Failed" value. Both of
these tests will not detect changes in the program and the
possible fault.

For these reasons, we introduce mutation testing and
trying to predict possible changes in the program. The
main idea is that the generated test cases should fit the
initial version of the program, but may not be suitable for
the mutants (changed versions of the program). In other
words, generated test cases will successfully pass using the
initial application and fail using mutated application. In
order to generate needed test cases, we do not mutate the
program itself, but the expressions of execution paths. This
approach has the following advantages:

1. The process of mutation is simplified because we
do not try to replace the original byte-code
instructions with mutated instructions. There is
no need to modify the software code, compile it
and execute a full analysis of the model in order
to get the program execution paths and new test
cases;

2. There is no need to compare execution paths (the
initial program and the mutant), so we can
combine them and get those test cases that meet
the initial version of the program and would not
be appropriate to mutants.

Disadvantages of the proposed technique are the
following:

1. We do not know what the mutant returns. The
execution path is mutated, and not the program
itself, therefore it may be difficult to determine
what values the mutated method will return.

public class TestPaths {
 public static void main(String[] args){
 testMe(1, 2, 3);
 }

 public static int testMe(int a, int b, int c){
 if (a + b > c) {
 return (a + b);
 } else {
 return c;
 }
 }
}

104

However, this is not needed for test case
generation and test execution;

2. With more complex paths, especially when there
are unreachable states in the initial program, it is
not possible to have 100% code coverage. One
suggestion for the future work could be the
extension to detect unreachable code and report
it.

Once the analysis of the model of SUT is finished and
the expressions of program execution paths obtained, it can
be mutated and connected to the initial expressions, as
illustrated in Fig. 6.

Fig. 6. A process of test data generation

1. Let’s assume we analyze this condition of the
application code;

2. We obtain two program execution paths with such
conditions;

3. Obtained expressions are mutated. In this case the
mutant „+” -> „-“ is applied;

4. Looking for a reverse functions of the mutated,
because the new test data should not fit to mutant

5. Reverse functions are connected with the initial
functions so that the generated data satisfies both
conditions;

6. Concrete test data is found. It satisfies the initial
condition (), but does not satisfy the mutant ().

This explained how the test cases are obtained which

take the mutants into account and the program changes
(possible errors) are detected.

A test case construction algorithm is defined as
follows:

For the experimental research tests were executed
using the following code snippet:

The application was tested three times: first with

random test input generation (JTest), second using
symbolic execution (JPF) which gives full code coverage
and the third with symbolic execution and the extension
enabled which takes mutants into account (>, <, <=,
>=, ==, !=, &&, ||, ^, +, -, *, /). There are
six conditions and five mutants for each of them, three
ampersand and five mathematical operator replacements
(6*5+3*2+5*3=51 mutants). The number of detected faults
is showed in Fig. 7.

0
10
20
30
40
50
60

Random Test

Inputs

Using Symbol ic

Execution

Symbol ic

Execution

with Mutation

Input Data

Number of
detected
faults

Fig. 7. Test result assessment using different test inputs

public int testMe(int x, int y, int z, boolean k)
throws Exception {

int res = 0;
if((15 > y) && (x + 10 < y) && (y > 10) && (y
> -x + 5)) {

switch(z) {
 case 0: res = 0; break;

case 1: res = x; break;
 default: res = y; break;
 }
 } else {
 if (k) {
 y *= 10;
 if (x > y) {
 res = y + 3;
 }
 } else {
 throw new Exception();
 }
 }
 return res;
}

MethodsToBeTested : List of methods which should be tested
MethodsInfoList : List of collected information about
methods
TestSuite : A set of returned testcases

1. MethodsInfoList ::= []
2. TestSuite ::= []
3. for each method in MethodsToBeTested
4. MethodInfo = new MethodInfo;
5. MethodInfo.method = method;
6. MethodInfo.pathConditions =

JPF.findPathConditions(method);
7. MethodsInfoList.append(MethodInfo);
8. end for
9. for each MethodInfo in MethodsInfoList
10. for each pathCondition in

MethodInfo.pathConditions
11. mutatedPathConditions =

mutate(PathCondition);
12. mutatedPathConditions =

invert(mutatedPathConditions);
13. for each mPC in mutatedPathConditions
14. mPC = pathCondition && mPC;
15.
 MethodInfo.mutatedPathConditions.append(mPC);
16. end for
17. end for
18. end for
19. TestSuite = generateTestCases(

MethodInfo.pathConditions,
MethodInfo.mutatedPathConditions);

20. return TestSuite;

if(a + b > c)

[a + b > c] [a + b <= c]

[a - b > c] [a - b <= c]

[a - b <= c] [a - b > c]

[a + b > c] &&
[a - b <= c]

[a + b <= c] &&
[a - b > c]

a=1;
b=1;
c=0;

a=0;
b=-1;
c=0;

1

2

3

4

5

6

105

The number of detected faults increased from 42 to
51 in the experiment. Test results show that symbolic
execution with our extension increases the number of
detected possible faults using the same number of test
inputs.

Conclusions

This paper presented a formal technique to the
regression testing process satisfying structural code
coverage with a higher quality of test data.

Experimental results showed that test data generated
with symbolic execution gives a full structural code
coverage which increases a number of detected faults in
the program comparing to randomly generated test inputs.
However, some of mutation faults still remain. This is
solved using symbolic execution extension and improved
test data generation which increases test case quality and
detect more mutants using the same number of test inputs.

Tasks that could be accomplished in the future:
1. Combine a number of test cases derived from the

different mutants into one test case;
2. Create and integrate jUnit extension in test code

which keeps track of how many lines of code
were executed using the generated tests;

3. Add extension that supports complex data
structures;

4. Add extension that verifies the correctness of
code not only according to the returned values,
but also based on the inner states of objects or
functions.

References

1. Orso A., Xie T. BERT: BEhavioral Regression Testing //
Proceedings of the 2008 international workshop on dynamic
analysis: held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA 2008). – Seattle, Washington, 2008. – P. 36–42.

2. Oezbek C. Introducing Automated Regression Testing in
Open Source Projects // Proceedings of the OSS’2010. –
Notre Dame, IL, 2010. – P. 361–366.

3. Visser W., Pasareanu C., Khurshid S. Test Input
Generation with Java PathFinder // Proceedings of
ISSTA’2004. – Boston, MA, 2004. – P. 97–107.

4. Khurshid S., Pasareanu C. S., Visser W. Generalized
Symbolic Execution for Model Checking and Testing //
Proceedings of TACAS’2003. – Warsaw, Poland, 2003. – P.
553–568.

5. Pasareanu C. S., Visser W. Symbolic Execution and Model
Checking for Testing // Verification Conference, 2007. – P.
17–18.

6. Artho C., Drusinsky D., Goldberg A., Havelund K.,
Lowry M., Pasareanu C., Rosu G., Visser W. Experiments
with Test Case Generation and Runtime Analysis //
Proceedings of the abstract state machines 10th international
conference on Advances in theory and practice. – Taormina,
Italy, 2003. – P. 87–108.

7. Walkinshaw N., Bogdanov K., Ali S., Holcombe M.
Automated discovery of state transitions and their functions
in source code // Software Testing, Verification and
Reliability. – Wiley InterScience, 2007. – P. 99–121.

8. Bybro M, Arnborg S. A Mutation Testing Tool for Java
Programs. Thesis, Department of Numerical Analysis and
Computer Science, Nada at the Royal Institute of
Technology. – KTH, Sweden, 2003. – P. 6–22.

9. Offutt J., Untch R. H. Mutation 2000: Uniting the
orthogonal // In Mutation 2000 Conference: Mutation Testing
in the Twentieth and the Twenty First Centuries. – San Jose,
CA, 2000. – P. 45–55.

10. Kim S., Clark J. A., McDermid J. A. Class Mutation:
Mutation Testing for Object–oriented Programs //
Proceedings of the Net.ObjectDays Conference on Object–
Oriented Software Systems, 2000. – P. 9–12.

11. Gupta N., Mathur, A.P., Soffa, M.L. Generating Test Data
for Branch Coverage // ASE’00, 2000. – P. 219–227.

12. DeMillo R., Offutt, J. Experimental results from an
automatic test case generator // ACM TOSEM, 1993. – P.
109–127.

13. Taneja K., Xie T. DiffGen: Automated Regression Unit–
Test Generation // Automated Software Engineering
(ASE’2008), 2008. – P. 407–410.

14. Packevičius Š., Ušaniov A., Bareiša E. The Use of Model
Constraints as Imprecise Software Test Oracles // Information
Technology And Control. – Kaunas, Technologija, 2007. –
Vol. 36. – No. 2. – P. 246 – 252.

15. Saff D., Artzi S., Perkins J. H., Ernst M. D. Automatic test
factoring for Java // In Proc. IEEE International Conference
on Automated Software Engineering (ASE’2005), 2005. – P.
114–123.

16. Orso A., Kennedy B. Selective capture and replay of
program executions // In Proc. International ICSE Workshop
on Dynamic Analysis (WODA’2005), 2005. – P. 29–35.

17. Pavalkis S., Nemuraitė L., Tarvydas P., Noreika A.
Specification of Finite Element Model of Electronic Device
using Model–driven Wizard–based Guidance // Electronics
and Electrical Engineering. – Kaunas: Technologija, 2010. –
No. 2(98). – P. 59–62.

18. Xie T. Augmenting automatically generated unit–test suites
with regression oracle checking // In Proc. European
Conference on Object–Oriented Programming
(ECOOP’2006), 2006. – P. 380–403.

Received 2011 04 12

D. Barisas, T. Milasius, E. Bareisa. Automated Regression Testing using Symbolic Execution // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2011. – No. 6(112). – P. 101–105.

The aim of this paper is to describe a way to construct tests which validate that changes made during software evolution did not introduce regression
faults. Developers usually run a new version of the program against the same set of tests. In order to achieve this goal, symbolic execution was used for
test input generation and full structural code coverage. Moreover, the extension of symbolic execution was developed to increase the quality of tests. As a
result, regression faults were detected in the program. The concept of the technique and an example model are presented. Ill. 7, bibl. 18 (in English;
abstracts in English and Lithuanian).

D. Barisas, T. Milašius, E. Bareiša. Programinės įrangos regresinis testavimas naudojant simbolinius vyksmus // Elektronika ir elektrotechnika.
– Kaunas: Technologija, 2011. – Nr. 6(112). – P. 101–105.

Pateikiamas būdas, kaip aprašyti kūrimą testų, kurie tikrina, ar dėl programinės įrangos pakeitimų neatsirado regresinių klaidų. Programuotojai
paprastai vykdo naują programos versiją naudodami tą patį testų rinkinį. Siekiant šio tikslo modelio tikrinimas buvo naudojamas testiniams įėjimams
generuoti, šitaip siekiant padengti visas programos būsenas. Modeliui tikrintii buvo sukurtas praplėtimas, kuris padėjo pagerinti testų kokybę ir surasti
daugiau regresinių klaidų. Perteikta pagrindinė idėja ir pavyzdinis modelis. Il. 7, bibl. 18 (anglų kalba; santraukos anglų ir lietuvių k.).

