
61

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2011. No. 6(112)
 ELEKTRONIKA IR ELEKTROTECHNIKA

ELECTRONICS
T 170

ELEKTRONIKA

 Verification of Initialization Sequences for Sequential Circuits

K. Morkunas, R. Seinauskas
Software Engineering Department, Kaunas University of Technology,
Studentu str. 50-406, LT-51368 Kaunas, Lithuania, phone: +370 670 75907, e-mail: kestutis.morkunas@ktu.lt

Introduction

An initializing sequence is a set of inputs that
switches a system from any unknown state into a single
fixed state. Such sequences may not exist, or be hard to
find.

There are two ways to set flip-flop values in
sequential circuits. One is inputting patterns which switch
flip-flop values from unfixed to fixed ones. It is also
possible to use scan, pushing required values directly into
flip-flops. Both methods have their advantages and
disadvantages.[1–12] An initializing sequence may not
exist, be too long, or set a circuit into an undesired state
[1–4]. Using scan allows easy flip-flop setting, but also
increases chip size due to direct access requirement. This
increase the chip price, heat output and power
consumptions. Breaks in these extra connection lines may
result in failed quality tests.

Finding an initializing sequence is not an easy task. It
is simple if states and transitions vectors sets are fully
known. Forming such a transition tree is difficult for large
circuits with many flip-flops present [2]. I.e. 3 inputs and 3
triggers would result in a state space size of 8 and 8 inputs.
It will take 64 computation cycles to test transitions from
state to state for all possible input/state combinations. 14
inputs and 6 triggers result in 1’048’576 computation
cycles. s35932 circuit from ISCAS’89 would require
5,20e+530 computation cycles for a full test.

Previous work and experiment pre-conditions

This article is based on random search algorithm. It
was used to discover initializing sequences for circuits.
The circuits’ operations were emulated using software
prototypes and not actual hardware. These emulating
prototypes were translated from ISCAS’89 verilog source
files.

Such method operates under more difficult
conditions, as there is no knowledge of the inner circuit
wiring and elements [6–10]. Therefore, separate elements,
gates, flip-flops may not be analysed, joined into groups or
removed as suggested by other researchers. In experiments
the results proved to be as good as or better to those in
similar research papers [6–8].

Verification of found initializing sequences is based
on heuristics. We state that, if input patterns managed to
bring a system from a large number of starting states
(50,000) into a fixed state, there is a good chance it will do
so with larger numbers as well. Yet there is no 100%
guarantee until transitions from all possible starting states
are checked.

Initializing sequences were revalidated against some
of the ISCAS’89 benchmark circuits using Verilog, part of
Cadence collection. Verilog is a hardware description
language that allows creation of tests using four values
logic (0,1,X,Z). In our experiments, only three (0,1,X)
were used. X stands for an unknown trigger value, which
may be 0 or 1.

An initializing sequences were found and validated
using two different methods with two sets of results as an
outcome. First set came from using and initializing
sequence with an algorithm described. Second set of
results was produced by emulating the operation of circuit
using Verilog. S386 circuit (it’s emulated software
prototype) was tested.

Table 1. AND(&) gates calculation difference
AND, & 0 1 X
0 0 0 0
1 0 1 X
X 0 X X

 The results from two methods differed. Our random
search algorithm uses two value logic. Verilog’s decisions
are explained in Table 1.

Result difference between ternary and bi-valued logics

Upon noticing differences in results, additional
inspection and checks were used. To do this, an entire
trigger state space was generated. S386 circuit has 6
triggers, which results in 64 possible states. An initializing
sequence was used, which consisted of two different input
patterns. Change of state space was inspected after using
each of input patterns.

Table 2 displays some of the changes in the state
space using an algorithm described in this article. The
process goes like this: a system exists in an unknown state.

http://dx.doi.org/10.5755/j01.eee.112.6.446

62

Each input pattern from the initializing sequence is used.
Each input transfers the system from a previous state to a
new one. Output is also produced

Table 2. Changes in state space using binary logic

Description/Action State space
Starting space set 000000, 000001 …111111
First input pattern is applied
Resulting state space
(unique states only)

001100, 000100, 000000

Second input pattern is applied using resulting states space
Resulting state space
(unique states only)

001100

Table 2 clearly displays that using and initializing

sequence of two input patterns and a full state space, all
circuit’s triggers are switched into a fixed state (001100).
After using first input pattern on full trigger state space,
three unique states appear in output. It means that the first
input signal is able to switch circuit’s triggers into one of
three possible states, no matter what was the starting state
of circuit’s memory and trigger values. So, a full
initialization of all 6 of 6 triggers is achieved.

Using the same initializing sequence on Verilog
provided different results. The number of initialized
triggers was 5 out of 6. Upon closer inspection, it appeared
that this difference in results might be caused by Verilog’s
use of 3-valued logic. It appears that after step 1 Verilog
discovered that triggers 1,2,5,6 were fully initialized. For
triggers 3 and 4 it generated and used all possible states
(00;01;10;11), although Table 2 clearly displays, that 10
state can never be reached during operation of the circuit.
If all 4 states are used (Verilog’s 3-value logic example)
instead of 3 states (proposed algorithm based on 2-value
logic), then one of the triggers stays in an unset state (X).

Additional experiments were made to test the
proposed algorithm in such conditions. The proposed
algorithm was altered to simulate basic 3-value logic. In
such case, the results changed and became the same as
those produced by Verilog’s emulation.

This proves, that using 2-value logic does have it’s
benefits. Such a method allows removing illegal states
from the state space, thus reducing it’s size and finding
more accurate initializing sequence. It also allows more
triggers to be switched into fixed states.

The search for an initializing sequence

Search for an initializing candidate consists of:
generating a small set of starting system states (20 in our
case) and a larger number of input patterns (100 in this
experiment). A state-to-state transition is checked for each
input pattern to starting state combination. After all
resulting states for each input pattern are calculated, an
analyzer starts. It checks how many flip flops are switched
from random into fixed states. After all input patterns are
tried, best setting pattern is added as a part of full circuit
initializing sequence. Such sequence may consist of 1 or
more input patterns. The length was limited to maximum
of 50 input patterns in this research. After this step, a new
set of input patterns is generated, yet the old, partly fixed
flip flop state set is used. The search is stopped if

initializing sequence length goes beyond the length limit or
the number of set flip-flops does not increase with newly
generated sets of input patterns.

Upon discovering an initializing candidate, it is taken
for verification. An initializing sequence made of one or
more input patterns is used, and a large number of starting
system states is randomly generated. 50,000 of starting
states were used for verification of solution in this
experiment.

There is no guarantee, that found initializing
sequence is 100% correct, because the starting states set is
only a small fraction of the whole set of possible states.

The presumption is based on an idea that if
initializing sequence is able to switch a system into a fixed
state from a small number of states, and also a large
number of states, it might be true for all starting states.
Small number of starting states is used to minimize the
computer calculation time consumption.

Process of initializing sequences verification

Verification normally approves the found solution,
yet sometimes the solution does not pass through [11]. In
this case, the validation process outputs the number of
fixed flip-flops. The number is always smaller, yet a
smaller result might still be an acceptable solution.

The pseudo-code of initialization sequence search
algorithm used is:

CALL generateInputs(100)
CALL generateStates(10)
FOR each input signal
 FOR each state
 CALCULATE CircuitOutput(input, state)
 END FOR
 IF resetFound(circuitOutputsArr) THEN
 SET initSeqCandidate
 ELSE
 INCREMENT initSeqPointer
 SET initSeqCandidatePart(initSeqPointer)
 END IF
END FOR

The validation of solution pseudo-code is:

CALL generateStates(50000)
FOR each state
 CALCULATE CircuitOutput(initSeqCandidate, state)
END FOR
IF resetFound(circuitOutputsArr) THEN
 DISPLAY validationSuccessful
ELSE
 DISPLAY actualValidationResults;
END IF

The number of set flip-flops during validation is more
reliable, as it uses a much large number of starting system
states. Imitation of ternary logic is implemented by adding

63

an additional randomization factor into validation process.
Pseudocode:

CALL generateStates(50000)
FOR each input pattern from initializing sequence
 FOR each state
 CALCULATE CircuitOutput(input, state)
 CALL randomizeUnsetTriggers();
 END FOR
END FOR
IF resetFound(circuitOutputsArr) THEN
 DISPLAY validationSuccessful
ELSE
 DISPLAY actualValidationResults;
END IF

 An additional randomization function was added.
This should create conditions more similar to Verilogs’
results. Comparing results on bivalue and ternary testing
for circuit s386 (described earlier in this article), this
method allows to imitate using X for unset values. In
previous example system could only gain values 00;01;11
and never 10 for two of it’s flip-flops. And randomization
after each input pattern could possibly introduce the
missing 10 into the state space used in calculations.

Results of both methods are displayed in Table 3.
Binary method is described in depth in [12].

Table 3. Verification results based on two approaches

Circui
t no.

Trigger
s

Set triggers
using binary

Set triggers,
terniary imit.

Seq.
length

s13207 638 477 (74,7%) 432 15
s1423 74 74 (100%) 74 3
s15850 534 458 (86%) 458 18
s298 14 14 (100%) 14 2

s38584 1426
1423

(99,78%) 1423 36
s386 6 6 (100%) 6 2
s526 21 21 (100%) 21 2
s5378 179 167 (93%) 163 9
s9234 211 154 (73%) 154 6
s953 29 25 (86%) 10 1

Only those circuits with an initialization sequence

length of 2 or more input patterns were analysed.
Tests using ternary logic turned out to decrease the

number of set flip-flops in three cases. Knowledge of
circuits inner structure was not used, therefore it is hard to
explain the large difference between circuit testing results.

Results of initialization sequences verification process
(proposed approach)

For some circuits, found initializing sequences set
different number of flip-flops while using binary,
simulated ternary and hardware ternary logic. Testing the
manufactured hardware circuit using ternary logic provides
most reliable results displaying unset flip-flops as having
X values instead of fixed ones (0 or 1).

Fig. 1. Proposed algorithm for verification of initialization
sequences

Simulated ternary method described in this article

provides similar results, yet is based on heuristics, because
full set of state-transition vectors are not available. It is

64

possible to generate this set for small sized circuits, yet it is
not possible or impractical for circuits with large number
of flip-flops. Search using binary seems to provide best
results in terms of the number of set flip-flops and with the
minimal length of initializing sequence.

Due to this difference in results, and approach is
employed, which might give more reliable results. It is
described in Fig 1.

Conclusions

This article suggests and approch to verification of
initializing sequences for sequential circuits. Binary
method migt be considered as providing optimistic results,
as ternary – pesimistic ones. This article also explains the
difference between these two methods, the differences in
results and why this is happening.

Using ternary approach might prove useful if validation
results for both methods differ greatly. Binary method
appears to be more accurate at finding initializing
sequences, because of reduction to states space after each
of input patterns is used. This is not the case when using
ternary logic testing under Verilog.

References

1. Pomeranz I., Reddy S. M. On the Detection of Reset Faults

in Synchronous Sequential Circuits // VLSI Design, 1997. –
P. 470–474.

2. Cheng K., Agrawal V. Initializability consideration in
sequential machine synthesis // IEEE Trans. Comput, 1992. –
Vol. 41. – P. 374–379.

3. Wehbeh J. A., Saab D. G. On the Initializationof Sequential
Circuits // Intl. Test Conf., 1994. – P. 233–239.

4. Pomeranz I., Reddy S. M. On Removing Redundancies
from Synchronous Sequential Circuits with Synchronizing
Sequences // IEEE Trans., 1996. – P. 20–32.

5. Keim M., Becker B. On the (Non–)Resetability of
Synchronous Sequential Circuits // IEEE VLSI test
symposium, 1996. – P. 240–245.

6. Xiaojing H., Zhengxiang S. Ant Colony Optimizations for
Initalization of synchronous ssequential circuits // IEEE
Circuits and Systems International Conf., 2009. – P. 5–18.

7. Corno F., Prinetto P. Initializability analysis of synchronous
sequential circuits // ACM Trans. on Design Automation of
Electronic Systems, 2002. – Vol. 7. – No. 2. – P. 249–264.

8. Lu Y., Pomeranz I. Synchronization of Large Sequential
Circuits by Partial Reset // IEEE VLSI Test Symp., 1996. – P.
93–98.

9. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R.
Functional delay test generation based on software prototipe
// Microelectronics Reliability, 2009. – No. 49(12). – P.
1578–1585.

10. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R. On the
Enrichment of Functional Delay Fault Tests // Information
Technology and Control, 2009. – No. 38(3). – P. 208–216.

11. Bareisa E., Jusas V., Motiejunas K., Seinauskas R. On
Delay Test Generation for Non–scan Sequential Circuits at
Functional Level // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2011. – No. 3(109). – P. 67–70.

12. Morkūnas K., Šeinauskas R. Circuit Reset Sequences based
on Software Prototypes // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2010. – No. 7(103). –
P. 71–76.

Received 2011 02 15

K. Morkunas, R. Seinauskas. Verification of Initialization Sequences for Sequential Circuits // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2011. – No. 6(112). – P. 61–64.

This article suggests an approach for verification of initializing sequences. Such sequences were discovered using circuit emulating
software prototypes. Software prototypes operate using bivalent logics (0 and 1), while hardware testing employs ternary logic (0, 1 and
X). Experimental results show, that validation using ternary logic is too strict, labeling good initializing sequences as bad ones.
Experimental results are based on ISCAS’89 benchmark. Ill. 1, bibl. 12, tabl. 3 (in English; abstracts in English and Lithuanian).

K. Morkūnas, R. Šeinauskas. Mikroschemų sekų nustatymo verfikavimas // Elektronika ir elektrotechnika. – Kaunas:
Technologija, 2011. – Nr. 6(112). – P. 61–64.

Šiame straipsnyje pasiūlytas mikroschemų nustatymo sekų verifikavimo metodas. Tokios sekos buvo gautos naudojant
mikroschemas imituojančius programinės įrangos prototipus. Prototipai operuoja naudodami dvireikšmę logiką (0 ir 1), kai, testuojant
sintezuotas schemas, galima naudoti trireikšmę logiką (0, 1 ir X). Eksperimentų rezultatai rodo, kad trireikšmė logika yra per griežta ir
atmeta teisingas nustatymo sekas kaip klaidingas. Eksperimento rezultatai pagrįsti ISCAS’89 testinių mikroschemų rinkiniu. Il. 1, bibl.
12, lent. 3 (anglų kalba; santraukos anglų ir lietuvių k.).

