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Introduction 
 

An initializing sequence is a set of inputs that 
switches a system from any unknown state into a single 
fixed state. Such sequences may not exist, or be hard to 
find.   

There are two ways to set flip-flop values in 
sequential circuits. One is inputting patterns which switch 
flip-flop values from unfixed to fixed ones. It is also 
possible to use scan, pushing required values directly into 
flip-flops. Both methods have their advantages and 
disadvantages.[1–12] An initializing sequence may not 
exist, be too long, or set a circuit into an undesired state 
[1–4]. Using scan allows easy flip-flop setting, but also 
increases chip size due to direct access requirement. This 
increase the chip price, heat output and power 
consumptions. Breaks in these extra connection lines may 
result in failed quality tests.  

Finding an initializing sequence is not an easy task. It 
is simple if states and transitions vectors sets are fully 
known. Forming such a transition tree is difficult for large 
circuits with many flip-flops present [2]. I.e. 3 inputs and 3 
triggers would result in a state space size of 8 and 8 inputs. 
It will take 64 computation cycles to test transitions from 
state to state for all possible input/state combinations. 14 
inputs and 6 triggers result in 1’048’576 computation 
cycles. s35932 circuit from ISCAS’89 would require 
5,20e+530 computation cycles for a full test. 
 
Previous work and experiment pre-conditions 
 

This article is based on random search algorithm. It  
was used to discover initializing sequences for circuits. 
The circuits’ operations were emulated using software 
prototypes and not actual hardware. These emulating 
prototypes were translated from ISCAS’89 verilog source 
files. 

Such method operates under more difficult 
conditions, as there is no knowledge of the inner circuit 
wiring and elements [6–10]. Therefore, separate elements, 
gates, flip-flops may not be analysed, joined into groups or 
removed as suggested by other researchers. In experiments 
the results proved to be as good as or better to those in 
similar research papers [6–8]. 

Verification of found initializing sequences is based 
on heuristics. We state that, if input patterns managed to 
bring a system from a large number of starting states 
(50,000) into a fixed state, there is a good chance it will do 
so with larger numbers as well. Yet there is no 100% 
guarantee until transitions from all possible starting states 
are checked. 

Initializing sequences were revalidated against some 
of the ISCAS’89 benchmark circuits using Verilog, part of 
Cadence collection. Verilog is a hardware description 
language that allows creation of tests using four values 
logic (0,1,X,Z). In our experiments, only three (0,1,X) 
were used. X stands for an unknown trigger value, which 
may be 0 or 1.  

An initializing sequences were found and validated 
using two different methods with two sets of results as an 
outcome. First set came from using and initializing 
sequence with an algorithm described. Second set of 
results was produced by emulating the operation of circuit 
using Verilog. S386 circuit (it’s emulated software 
prototype) was tested. 
 
Table 1. AND(&) gates calculation difference 
AND, & 0 1 X 
0 0 0 0 
1 0 1 X 
X 0 X X 

 
 The results from two methods differed. Our random 
search algorithm uses two value logic. Verilog’s decisions 
are explained in Table 1. 
 
Result difference between ternary and bi-valued logics 
 

Upon noticing differences in results, additional 
inspection and checks were used. To do this, an entire 
trigger state space was generated. S386 circuit has 6 
triggers, which results in 64 possible states. An initializing 
sequence was used, which consisted of two different input 
patterns. Change of state space was inspected after using 
each of input patterns. 

Table 2 displays some of the changes in the state 
space using an algorithm described in this article. The 
process goes like this: a system exists in an unknown state. 
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Each input pattern from the initializing sequence is used. 
Each input transfers the system from a previous state to a 
new one. Output is also produced 
 
Table 2. Changes in state space using binary logic 

Description/Action State space 
Starting space set 000000, 000001 …111111 
First input pattern is applied 
Resulting state space 
(unique states only) 

001100, 000100, 000000 

Second input pattern is applied using resulting states space   
Resulting state space 
(unique states only) 

001100 

 
Table 2 clearly displays that using and initializing 

sequence of two input patterns and a full state space, all 
circuit’s triggers are switched into a fixed state (001100). 
After using first input pattern on full trigger state space, 
three unique states appear in output. It means that the first 
input signal is able to switch circuit’s triggers into one of 
three possible states, no matter what was the starting state 
of circuit’s memory and trigger values. So, a full 
initialization of all 6 of 6 triggers is achieved. 

Using the same initializing sequence on Verilog 
provided different results. The number of initialized 
triggers was 5 out of 6. Upon closer inspection, it appeared 
that this difference in results might be caused by Verilog’s 
use of 3-valued logic. It appears that after step 1 Verilog 
discovered that triggers 1,2,5,6 were fully initialized. For 
triggers 3 and 4 it generated and used all possible states 
(00;01;10;11), although Table 2 clearly displays, that 10 
state can never be reached during operation of the circuit. 
If all 4 states are used (Verilog’s 3-value logic example) 
instead of 3 states (proposed algorithm based on 2-value 
logic), then one of the triggers stays in an unset state (X). 

Additional experiments were made to test the 
proposed algorithm in such conditions. The proposed 
algorithm was altered to simulate basic 3-value logic. In 
such case, the results changed and became the same as 
those produced by Verilog’s emulation.  

This proves, that using 2-value logic does have it’s 
benefits. Such a method allows removing illegal states 
from the state space, thus reducing it’s size and finding 
more accurate initializing sequence. It also allows more 
triggers to be switched into fixed states. 
 
The search for an initializing sequence 
 

Search for an initializing candidate consists of: 
generating a small set of starting system states (20 in our 
case) and a larger number of input patterns (100 in this 
experiment). A state-to-state transition is checked for each 
input pattern to starting state combination. After all 
resulting states for each input pattern are calculated, an 
analyzer starts. It checks how many flip flops are switched 
from random into fixed states. After all input patterns are 
tried, best setting pattern is added as a part of full circuit 
initializing sequence. Such sequence may consist of 1 or 
more input patterns. The length was limited to maximum 
of 50 input patterns in this research. After this step, a new 
set of input patterns is generated, yet the old, partly fixed 
flip flop state set is used. The search is stopped if 

initializing sequence length goes beyond the length limit or 
the number of set flip-flops does not increase with newly 
generated sets of input patterns. 

Upon discovering an initializing candidate, it is taken 
for verification. An initializing sequence made of one or 
more input patterns is used, and a large number of starting 
system states is randomly generated. 50,000 of starting 
states were used for verification of solution in this 
experiment. 

There is no guarantee, that found initializing 
sequence is 100% correct, because the starting states set is 
only a small fraction of the whole set of possible states.  

The presumption is based on an idea that if 
initializing sequence is able to switch a system into a fixed 
state from a small number of states, and also a large 
number of states, it might be true for all starting states. 
Small number of starting states is used to minimize the 
computer calculation time consumption.  
 
Process of initializing sequences verification 
  

Verification normally approves the found solution, 
yet sometimes the solution does not pass through [11]. In 
this case, the validation process outputs the number of 
fixed flip-flops. The number is always smaller, yet a 
smaller result might still be an acceptable solution. 

The pseudo-code of initialization sequence search 
algorithm used is: 

 
 
CALL generateInputs(100)  
CALL generateStates(10)  
FOR each input signal  
  FOR each state 
    CALCULATE CircuitOutput(input, state) 
  END FOR 
   IF  resetFound(circuitOutputsArr) THEN 
     SET initSeqCandidate 
  ELSE 
      INCREMENT initSeqPointer  
      SET initSeqCandidatePart(initSeqPointer) 
  END IF 
END FOR 
 

 
The validation of solution pseudo-code is: 
 

 
CALL generateStates(50000) 
FOR each state 
   CALCULATE CircuitOutput(initSeqCandidate, state) 
END FOR 
IF  resetFound(circuitOutputsArr) THEN 
 DISPLAY  validationSuccessful 
ELSE 
  DISPLAY actualValidationResults; 
END IF 
 

The number of set flip-flops during validation is more 
reliable, as it uses a much large number of starting system 
states. Imitation of ternary logic is implemented by adding 
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an additional randomization factor into validation process. 
Pseudocode: 
 
CALL generateStates(50000) 
FOR each input pattern from initializing sequence 
  FOR each state 
      CALCULATE CircuitOutput(input, state) 
      CALL randomizeUnsetTriggers(); 
  END FOR 
END FOR 
IF  resetFound(circuitOutputsArr) THEN 
 DISPLAY  validationSuccessful 
ELSE 
  DISPLAY actualValidationResults; 
END IF 
 
 An additional randomization function was added. 
This should create conditions more similar to Verilogs’ 
results. Comparing results on bivalue and ternary testing 
for circuit s386 (described earlier in this article), this 
method allows to imitate using X for unset values. In 
previous example system could only gain values 00;01;11 
and never 10 for two of it’s flip-flops. And randomization 
after each input pattern could possibly introduce the 
missing 10 into the state space used in calculations. 

Results of both methods are displayed in Table 3. 
Binary method is described in depth in [12]. 
 
Table 3. Verification results based on two approaches 

Circui
t no. 

Trigger
s 

Set triggers 
using binary 

Set triggers, 
terniary imit. 

Seq. 
length 

s13207  638 477 (74,7%) 432 15 
s1423  74 74 (100%) 74 3 
s15850  534 458 (86%) 458 18 
s298  14 14 (100%) 14 2 

s38584  1426 
1423 

(99,78%) 1423 36 
s386  6 6 (100%) 6 2 
s526  21 21 (100%) 21 2 
s5378  179 167 (93%) 163 9 
s9234  211 154 (73%) 154 6 
s953 29 25 (86%) 10 1 

 
Only those circuits with an initialization sequence 

length of 2 or more input patterns were analysed. 
Tests using ternary logic turned out to decrease the 

number of set flip-flops in three cases.  Knowledge of 
circuits inner structure was not used, therefore it is hard to 
explain the large difference between circuit testing results. 

 
Results of initialization sequences verification process 
(proposed approach) 
 

For some circuits, found initializing sequences set 
different number of flip-flops while using binary, 
simulated ternary and hardware ternary logic. Testing the 
manufactured hardware circuit using ternary logic provides 
most reliable results displaying unset flip-flops as having 
X values instead of fixed ones (0 or 1).  

 

 
 

Fig. 1. Proposed algorithm for verification of initialization 
sequences 

 
Simulated ternary method described in this article 

provides similar results, yet is based on heuristics, because 
full set of state-transition vectors are not available. It is 
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possible to generate this set for small sized circuits, yet it is 
not possible or impractical for circuits with large number 
of flip-flops. Search using binary seems to provide best 
results in terms of the number of set flip-flops and with the 
minimal length of initializing sequence. 

Due to this difference in results, and approach is 
employed, which might give more reliable results. It is 
described in Fig 1. 
 
Conclusions 
 

This article suggests and approch to verification of 
initializing sequences for sequential circuits. Binary 
method migt be considered as providing optimistic results, 
as ternary – pesimistic ones. This article also explains the 
difference between these two methods, the differences in 
results and why this is happening.  

Using ternary approach might prove useful if validation 
results for both methods differ greatly. Binary method 
appears to be more accurate at finding initializing 
sequences, because of reduction to states space after each 
of input patterns is used. This is not the case when using 
ternary logic testing under Verilog. 
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