
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.2

A METHOD FOR AUTOMATED TESTING OF SOFTWARE INTERFACE

Andrej Ušaniov, Kęstutis Motiejūnas

Software Engineering Department, Kaunas University of Technology
Studentų St. 50-406, LT-51368 Kaunas, Lithuania

e-mail: andrej.usaniov@ktu.lt, kestutis.motiejunas@soften.ktu.lt

Abstract. More than 50 % of all software development resources are consumed by testing of software. Today the
majority of software has a graphical user interface. The most popular way to test software functions is to test them
through a user interface. Automation allows testing costs to be reduced and more extensive testing of software to be
performed, thus resulting in more bugs being found and increasing the quality of software. Automation includes
automatic generation of test case, tests execution and verification of result. Most popular testing methods automate on-
ly certain phases of testing. A method for automated testing of software, which covers all phases of testing, provides
means for modelling end user actions, feeds test data into test model and also verifies test results, is presented in this
paper.

Keywords: software testing, software interface, GUI testing, tests model, testing automation.

1. Introduction

Today the majority of software has a graphical
interface. Users can access software functions through
graphical user interface. Of course, the most popular
way to test software is to test it through its user
interface [1]. This is usually referenced as GUI
(Graphical User Interface) testing. During GUI testing
software is verified through its interface. Usually test-
ing begins at the end of the development process. A
tester enters some input data into software windows
and checks if the produced result is correct.

In practice, testing process is often associated with
time and budget constraints, vaguely documented
requirements, misunderstandings of testing objectives,
and inaccurate evaluation of a testing scope. The user
interface tests are usually documented as steps in
semi-formal text documents. Latter text documents are
read by testers whom manually execute the docu-
mented test cases. The testing result is then manually
evaluated by a tester. This manual process is very
labour intensive and takes more than 50% of the re-
quired development effort and resources. Time and
budget constraints force developers to ship incomple-
tely tested software [2].

In order to reduce testing costs, tests are automated
[3-7]. Automation allows testing cost to be reduced
and more extensive software testing to be performed,
thus resulting in more bugs found and increased qua-
lity of the software [8]. The automation involves auto-
matic preparation of test case, test execution and result
verification.

Majority of testing methods automate only certain
phases of software testing. . For example, designing
test cases using conditioned slicing of activity diagram
[9] just generates test case and is not suitable for full
testing automation.

Other GUI testing methods are based on GUI gra-
phical representation preparation methodology [10].
Often they only provide instructions how to prepare
tests manually, but do not provide means to generate
test cases. Therefore test cases can only be executed
and results evaluated manually. For example, a me-
thod which allows generating test cases from UML
activity diagrams [11] cannot be used to automatically
execute them. Other testing methods describe how to
manually execute tests that were created automatically
[12]. Some methods use program method calls, which
are not the same as end user activity with GUI. Also
those methods do not provide means for applying test
data to the generated paths.

Some methods are model-based [13]. Usually they
use UML state or activity diagrams as an input. Test
cases generated from UML activity diagram can be
used to test the system at code level [14]. Test sce-
narios are derived by parsing activity diagrams. Ele-
ments of activity diagram are provided with object
method calls. This allows generating tests as a se-
quence of action – object method calls. Tests do not
define how to apply test data. As a test oracle it uses
an expected activity in a sequence. This method only
covers the generation of tests. Therefore the test oracle
problem is not solved as the test data has to be fed to
the test manually. The possible test execution as

99

http://dx.doi.org/10.5755/j01.itc.40.2.424

A. Ušaniov, K. Motiejūnas

sequence of SUT objects method calls is similar to
unit testing.

Sometimes code-based models are used [14].
However all of these models show the way a program
should work, but are not suitable for modelling user’s
activity. These methods can generate paths from a
program model. But they do not provide means for
executing these paths automatically or model how
steps from these paths are related to GUI events.

Some methods use results of the first execution of
tests for subsequent testing. The drawback of this
approach is that expected results are not known during
modelling of tests and results obtained after the first
execution may not reliable [1, 12, 14]. Another auto-
matic test case generation for UML activity diagrams
method treats activity diagram as design specification
and is oriented at comparing it with trace results of
real program execution [15]. This still does not solve
the testing oracle problem. The activity diagram me-
thod presents a program model, but not the test model.
The current state of method allows generating tests,
but does not execute tests.

 Constraints within model can be used as test
oracles [16].

Some authors propose easier way for creating
automated user interface tests than using record play-
back tools [1, 17] or automatically generating user
interface tests [18].

Similar research is presented in [19]. D. Barisas
and E. Bareiša have proposed an automated method
for software testing based on state transitions.. The
aim of this method is to gather specifications from the
code and automatically construct a model by com-
bining collaboration diagrams and state charts. This
model allows generating test paths. Test data for
current iteration is passed to generated test paths ma-
nually. This method is a software behaviour oriented
method and the end user‘s point of view of testable
system is not considered. Also application of this
model is labour intensive and it does not solve the test
oracle problem [19].

The test generation method based on software
models and imprecise constraints was proposed by
Š. Packevičius [20]. This method allows automated
creation of test cases for software units with built-in
oracle. The imprecise constraints within model are
used for generation of the test data and act as a test
oracle. This method is suitable for testing units of soft-
ware. It can be described as testing software from
within. While testing through GUI can be described as
testing software from outside [20].

Shortcomings of manual methods of testing and in-
completeness of existing GUI testing methods leads to
a lack of GUI testing method which would cover all
phases of automated testing and enable automated and
regression testing. Such method should be based on
generating tests from tests models. This approach
would shift testing process to a higher level of abst-
raction, which should close knowledge gaps between

development team members, as they have different
levels of understanding of functional requirements and
system’s behaviour. It also should provide means for
modelling end user’s actions by binding test steps with
events on GUI components. It is important that the
method would specify how test data and built-in test
oracle could be automatically verified based on test
model.

A method for automated software interface testing
based on tests model and experiments is presented in
this paper.

2. A method for automated testing of software
interface

A method for automated software interface testing
is proposed in this section. The method is presented
by: UML-based test model description, rules and prin-
ciples for its construction, generation of executable
test scripts including graph traverse algorithms, crea-
tion of test oracles, the algorithm to minimize the
generated test script set based on code coverage, and
the GUI testing framework.

2.1. The test model

Manual testing process is very labour intensive.
The graphical representation of test cases is proposed
to overcome this issue and to allow testers to
concentrate on testing aims by eliminating the need
for creating tedious test cases and manually executing
them.

A square area calculation program is used to
demonstrate how test model is applied to the testing
process. The square area is calculated by multiplica-
tion of width and height. After the input parameters
“Width” and “Height” are set and button “Calculate”
is pressed the result is shown in the read-only field
“Square area”. On one hand, required functionality for
this system seems obvious, but on the other hand there
is no detailed specification of requirements.

One of the possible ways to tests an area calcula-
tion program is to input width and height and compare
the calculated result against the expected result. Based
on this approach a test case can be proposed. This test
case will be refered to as ‘TestCase_1’. The steps for it
are: “Enter width: 5”, “Enter height: 4”, “Press calcu-
late”.

 An example of TestCase_1 in a textual form is
given in Table 1.

The understanding of System Under Test (SUT)
behaviour assumes many more test cases are created
out of a single test idea. The test cases may vary in
step’s sequences and data passed. For example, other
test cases for square area calculation program might
have different scenarios, such as entering value for
’Height’ first or pressing ’Calculate’ button without
entering any data at all. Use of loops is also possible.

100

A Method for Automated Testing of Software Interface

It is obvious that the creation, maintenance and
execution of test cases even for such trivial programs
is tedious and requires a lot of testing resources.

Table 1. Textual form of the test case

Step Expected result Actual result

1 Enter width: 5 Width is displayed Ok

2 Enter height: 4 Height is
displayed

Ok

3 Press calculate Square area is
calculated: 20

Ok

To replace the textual form of the test case with
graphical one the UML 2.0 activity diagram was used.
The example of TestCase_1 in a graphical form is
presented in Figure re 1.

Figure 1. A graphical form of the test case

Alternatively, more than one test case can be ref-
lected with one diagram. This can be done by placing
additional control flow, merge node and decision node
components into TestCase_1 diagram. A sample of
multiple test cases reflected within one diagram is
presented in Figure 2. The visualization of multiple
test cases within a single diagram turns it into a tests
model. In the case when SUT consists of many func-
tions the test cases for every function should be
depicted graphically as tests models. All these test
models are used to create the system testing diagram –
the SUT’s test model, where action components are
calls to test models of separate functions.

Visualtest cases are easier to create. Adding just
one one transaction arrow into existing test case diag-
ram results in one or more additional testing scenarios.
Thus decreasing manual effort required for creating
tests. Furthermore, the visualised approach simplifies
maintenance of tests and makes them less change-
sensitive. For example, if the functionality of a square
area calculation program is being modified to volume
calculation then in order to apply changes it is
sufficient to place additional step “Enter depth” into a
diagram.

Figure 2. Multiple test cases within a single diagram

The action components in the diagram correspond
to the steps of the test case. The control flow
components define the sequence of test’s steps. The
data pin components are used to input data and receive
results. Testing data can be generated automatically or
manually. Elements of testing data are subsequently
passed to the testing step. The quantity of test cases
that can be generated within one test model is:

;DpathsTC (1)

where:
TC – the quantity of generated test cases,
path – the number of paths within a test model,

n

i
iplengthD

1

)(– the number of testing

data collections,
},,,,{ 121 nn ppppP – the data set of pin

parameters,
 kki vvvvp ,,,, 121 – the set of values of a

data pin parameter pi,
)(iplength – the cardinality of the set pi.

When generating test cases, it is very important
how the test data is selected. A certain test data might
not activate a selected path. In order to prevent void
test cases from being generated the ‘dirty’ data must
be filtered. An algorithm for filtering of test data is
presented in Figure 3.

Figure 3. An algorithm for the selection of test data

1. An algorithm for the selections of test data is
described as: A validation of the data pin is
performed to check if it is whether it is related to

101

A. Ušaniov, K. Motiejūnas

the selected path. If the data pin parameter is
never used in the path it is skipped.

2. The selected path is analysed and conditions are
selected. Those conditions put constraints on the
test data.

3. The values of data pin parameter are filtered by
applying constraints to each of them. The result is
filtered test data, which executes test paths.

4. Filtered data and selected paths are used to gene-
rate test cases.

The usage of test model makes it possible to auto-
matically generate test cases. The test cases expressed
via executable testing scripts can be executed automa-
tically. The test model is treated as a directed graph.
The test cases or sequences of test steps could be
generated by traversing it. The mapping between test
steps and GUI components of SUT is required to ge-
nerate executable testing scripts. Also the description
of each test step should provide explicit information
on which action should be executed on a mapped GUI
component.

Within the test model, the ‘Documentation’
property of an element of an activity diagram is used
to store the mapping information and description of
actions.

The keywords which describe executable action
within each the ‘Documentation’ property of each test
step are: process, control path, methods, properties,
values, action types: (1) action, (2) assignment and (3)
assertion, variables, operators, IfVariable.

2.2. Constructing a graph

While creating a test model of SUT a tester can
choose different layouts and designs. The calls to
nested tests models of the functionality of the system
could be used. Such calls make test models more
visually explicit, more intelligent, and easier to
maintain.

In the test model, the testing of the same SUT
functionality can be represented in multiple ways. To
evaluate the complexity of the test model the cyclo-
matic complexity is used. It is important to keep the
model unambiguous and easy to understand.

The cyclomatic complexity can be decreased by
separating the functionality of the system into distinct
test models and using calls to them from of the main
test model of the system,

2.3. The graph traverse – generation of tests

The test model represented as the UML 2.0 activity
diagram is treated as a directed graph. The vertices
(nodes) of the graph correspond to test steps of the test
model. The arcs indicate the testing flow from one
vertex to another. The XML format is used to store the
activity diagram in the file hereafter refered to as
’XML file’. The XML file is parsed. During the
parsing the vertices and edges are loaded into the
adjacency matrix data structure. The adjacency matrix

is used to represent the graph. This is a matrix with
rows and columns labelled by graph vertices. It shows
which graph vertices are adjacent.

Once the tests model is into the adjacency matrix,
traversing algorithms can be applied and test paths
generated. A path in a graph is a sequence of vertices
such that from each of its vertices there is an edge to
the next vertex in the sequence [21].

The goal of graph traverse is to generate test paths.
In case of test model a path is a sequence of test steps.
Test paths can also be referred to as ‘test cases’ or ‘test
scenarios’. The size of generated set of test cases de-
pends on testing goals and project constraints.

The test cases set generated using all paths
search, hereafter ‘all paths set’, represents all inde-
pendent paths within the tests model of SUT. Thus
execution of all generated test cases requires the lar-
gest amount of time. The all paths search is based on
the breadth-first graph search algorithm that begins at
the root node and explores all the neighbouring nodes.
Then for each of those adjacent nodes, it explores their
unexplored neighbour nodes, and so on, until it finds
the goal. List of all paths is created during the search.

The set of test cases generated using main paths
search, hereafter ‘main paths set’, consists only of the
minimal amount of test cases which cover only the
main aspects of the software’s functionality. The main
paths are determined by weights which correspond to
the probability of software functions usage. The main
paths search is a modification of all paths search
algorithm with the only difference – it only selects
nodes where connecting edges have higher weight or
selectes several nodes if the weight of edges con-
necting them is equal.

A set of test cases set generated using all nodes
search, hereafter ‘all nodes set’ ensures that every
defined tester’s action within the tests model will be
reached at least once. This is a subset of all paths set
with a smaller amount of test cases and requires less
time for execution.

The all nodes search is based on sequential selec-
tion of the longest path from all paths set. The longest
path should have (selection criteria) a smaller number
of iterative nodes and a larger number of new nodes
than already chosen paths.

2.4. Generating executable test scripts

Test model enables generation of the test case set.
Tests model is directed graph which is parsed with
multiple traverse algorithms: All Nodes Search, Main
Paths Search, and All Paths Search. Generated test
case sets are transformed into executable testing
scripts. They can be expressed in different program-
ming languages, i.e. JavaScript or Visual Basic.
Example of generated test path for ATM “Enter Pin
Code” functionality is given in Figure 4. The gene-
rated test path is a model of test cases. By supple-
menting this model with test data executable testing
scripts can be generated.

102

A Method for Automated Testing of Software Interface

EnterPinCodeActivityTest1(
 InitialNode
 DecisionNode
 EnterPinCode
 DecisionNode
 Ok
 ActivityFinalNode)

Figure 4. One of generated paths for the “Enter Pin Code”
functionality

By supplementing test path with test data
executable test cases expressed in scripting language,
hereafter ‘test scripts’, being generated. Examples of
generated executable test scripts are given below in
Java script (Figure 5) and Visual basic (Figure 6)
languages.
Function EnterPinCodeActivityTest1(pinCode, result){
 PinCode=pinCode;
 Sys.Process("ATM").ATM.EnterPin.enterPinTextBox.Text =
PinCode;

Sys.Process("ATM").ATM.EnterPin.enterPinOkButton.ClickButto
n();
 result[0]="OK"; }

Figure 5. The “Enter Pin Code” test script written in
JavaScript

Sub EnterPinCodeActivityTest1(pinCode, ByRef result)
 PinCode=pinCode
 Sys.Process("ATM").ATM.EnterPin.enterPinTextBox.Text = PinCode
 Sys.Process("ATM").ATM.EnterPin.enterPinOkButton.ClickButton
 result="OK"
End Sub

Figure 6. The “Enter Pin Code” test script written
in Visual Basic

Prepared test scripts are automatically executed on
SUT and provide code coverage feedback for
subsequent tests minimisation step.

2.5. The test oracle

In the proposed method, the problem of test oracle
is solved by placing assertions within test model. In
other words test model has built-in test oracles. The
’Opaque Action’ elements are used to make assump-
tions. In their description the type should be defined as
“Assertion”. The deployment rules within diagram are
the same as for any “Opaque Action” element. Then
the tests model is converted into a graph. Assertions
are treated as ordinary nodes while traversing graph
and generating paths. The generated path may contain
more than one assertion. This is useful when verifica-
tion of multiple variables is required. Verifying
multiple members adds complexity to the software test
and increases the possibilities of finding more defects
[1]. The assertions in the test model allow for
correctness evaluation of GUI components as well as
verifying their existence. Further, the verification of
business level variables or file verifications can be
implemented.

2.6. Minimisation of tests set

The execution duration of test scripts is critical.
The reduction of tests set reduction is required to
reduce duration of execution. In order to increase
method’s effectiveness it is reasonable to minimise
tests set.

The test model represents how a user interacts with
system’s functions. The test model itself does not
show how tests cover SUT. Code coverage is a mea-
sure used in software testing which describes the de-
gree to which the source code of a program is tested.
The code coverage allows to link the test model with
SUT since it shows how tests cover the program.

The code coverage metric should be tracked to
avoid situations where minimised tests set will be
unable to access all required functionality. The gene-
rated test scripts should be minimised by eliminating
scripts which have no influence on code coverage.
Another aspect of minimisation is to not lose the test
goal. This means that for each path at least one test
script should remain. An algorithm for the minimi-
sation of test scripts is depicted in Figure 7.

Figure 7. The generated scripts set minimisation algorithm

The minimisation allows to significantly reduce
test cases set while providing the same level of code
coverage, thus reducing time required for execution.

2.7. The testing framework

A testing framework which implements a
method of automated software interface testing is
presented Figure 8.

The testing framework consists of the following
parts:
1. A tests model – graphical representation of test

ideas bound to the SUT’s GUI. By parsing the
tests model, test-steps, test data and assertions are
obtained. Test steps are passed to the test path
generator. Test data are passed to test scripts ge-
nerator. Assertions are passed to the Oracle.

2. The test paths generator – test steps received from
the tests model are used to construct a directed
graph. The graph is validated and traversal algo-
rithms are applied to generate paths: all paths
search, all nodes search, and main paths search.
Generated paths are transmitted to the test scripts
generator.

103

A. Ušaniov, K. Motiejūnas

Figure 8. The testing framework

3. The test scripts generator – which receives test
data from the tests model and generated paths
from test path generator. It selects the test data
which enables the execution of path and generates
executable test script in chosen language such as
Visual Basic or JavaScript. Generated test scripts
are transferred to the test driver.

4. The test driver – which takes the SUT or its mu-
tant and executes test scripts on it. At the same
time it measures the execution code coverage of
SUT. Execution results are transferred to the
Oracle. The code coverage is transferred to the
test minimisation.

5. The mutants’ generator – modifies the code of
SUT and creates mutants. Mutants are transferred
to the test driver.

6. The Oracle takes results produced by tests execu-
tion and evaluates their correctness against asser-
tions from the tests model. The test report is
prepared at the end of result evaluation; if the
result satisfies provided assertion the PASS record
is added to the test report, otherwise the FAIL
record is added.

7. Tests minimization – provided code coverage al-
lows eliminating scripts which have no influence
on code coverage.

The proposed method uses a feedback driven tests
execution technique. It executes until a bug is detected
after which it terminates. If no bugs are detected, tests
execution continues until the selected coverage crite-
rion is reached. After execution of tests, the coverage
change is measured, if there is no change detected, the
testing ends.

3. Experiments

To evaluate the proposed method we will test these
benchmark programs:

1. Square area calculator application – calculates
square area by multiplying width and height.

2. Car parking application with Web-based cell-
phone’s emulator – simulates sending and receiv-
ing SMS messages when paying for a car parking.

3. Currency converter – converts amount of money
in one currency into an equivalent in another
currency. The same application is used in specifi-
cation-driven approach to test GUI-based prog-
rams [22].

4. Automatic Teller Machine (ATM) – is an applica-
tion that provides customers with access to
financial transactions in a public space without
the need for a cashier. Using an ATM, customers
can withdraw money from their bank accounts,
check balances as well as prepay cell phone cre-
dit. ATM is popular benchmark used by many

5. mSeller – is open source mobile application for
merchandising. It allows managing goods and
their categories, clients and orders directly from a
mobile device.

The spectrum of chosen benchmark programs
consists of simple demo program, web-based cell-
phone application, mobile application, and financial
application. The evaluation of benchmark programs in
lines of code (LOC) and number of GUI forms is
presented in Table 2.

Table 2. Evaluation of benchmark programs

No Benchmark
program

LOC Number
of

GUI
forms

Number of

GUI
objects

1 Square Area
Calculator

266 1 4

2 Car Parking 247 1 4

3 Currency Converter 3189 1 4

4 ATM 6944 9 36

5 mSeller 11221 19 51

3.1. The experiment to generate paths and test
scripts

Test cases and executable testing scripts were
generated from the tests models of the benchmark
programs. Test cases were generated using several
approaches: all paths search, all nodes search, and
main paths search. The ’All paths set’ generated by all
paths search algorithm had the largest amount of test
cases. All nodes search and main paths search
traversal algorithms generated lower quantity of test
cases. The average “All nodes set” size from “all paths
set” was 33.5 % with standard deviation value equal to
18.7 %. The average “Main paths set” size from all
paths set was 22 % with standard deviation value
equal to 23.4 %. The “All nodes set” and “Main paths
set” were subsets of “All paths set” and they had
smaller number of test cases. The average subset size
from “all paths set” was 28.5 % with standard devia-
tion value equal to 21 %. The normal distribution of

104

A Method for Automated Testing of Software Interface

subset sizes is presented in Figure 9.The normal dis-
tribution of subsets’ sizes showed that in 83 % of
cases the size of subsets will make smaller than 49.5
% of “All paths set” size. In other words, usage of all
nodes and/or main paths search algorithms allows
decreasing tests set size by almost 50%.

3
4

,1
3

%

3
4,

1
3

%

1
5

,8
7

%

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0 20 40 60 80

subset size, %

d
is

tr
ib

u
ti

o
n

100

Figure 9. Normal distribution of tests subset sizes

The number of generated test scripts depends on
the size of testing data used when selecting testing
scenarios. To create the test script input values which
enable execution of the path were selected. Therefore
the size of test cases and test scripts were linearly
depended. The correlation of test cases and test scripts
sets’ sizes was 0.98 which meant that both sizes move
together in same direction (Figure 10).

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iterations

S
e

t
s

iz
e

, q
ty

paths test scripts

Figure 10. Dependancy of paths and generated test scripts

1

10

100

1000

10000

100000

1000000

10000000

Cycles

N
u

m
b

e
r

o
f p

a
th

s

main paths 19 889 59599 4194304 5227733

all nodes 176 176 176 176 176

all paths 650 6105789 7201053 7375033 7587504

1 2 3 4 5

Figure 11. The influence of cycles count on tests‘ set size

3.2. The influence of cycles on path generating

While traversing a graph it is important to manage
the number of cycles or loops. A cycle is a non-empty
path beginning and ending at the same vertex. A graph
is acyclic when it has no cycles. In order to manage
the generation of the paths g and limit their quantity
the parameter “cycles count” is used in graph traversal

algorithms. The influence of cycles’ count is shown in
Figure 11. The higher is the value of cycles the expo-
nentially larger is the number of generated paths.

3.3. The run-time duration of tests generation

To evaluate the run-time duration required for
generating tests the ATM tests model was used. Tests
were generated with up to 5 cycles and all traversal
algorithms.

Since the number of tests increased rapidly, dura-
tion of tests generation is represented via logarithmic
trend lines (Figure 12).

-15000000

-10000000

-5000000

0

5000000

10000000

0,0003
0,0034

0,0286
5,4938

Generation duration, min

T
e

s
t

s
e

t
s

iz
e

main paths all nodes all paths

Log. (main paths) Log. (all nodes) Log. (all paths)

Figure 12. Logarithmic trend lines illustrating the growth
of test sets’ size

This graph shows, that:
1. Duration has no influence on the size of tests set

generated by all nodes search algorithm; Further
all nodes set size remains unchanged with the
increase of number of cycles.

2. The all paths search algorithm generates larger
amount of tests than main paths and/or all nodes
search algorithms.

Generating over 7 millions of test requires around
5 minutes. Thus the time required for the tests genera-
tion is short enough not become a bottleneck of the
tests creation process.

3.4. The experiment for code coverage
measurement

The Generated tests: ’all paths set‘, ’all nodes set‘,
and ’main paths set‘ were executed on benchmark
programs. During the execution the coverage of
benchmark programs was measured. The average code
coverage level achieved by execution of tests gene-
rated by different graph traversal algorithms is
presented in Table 3.

Table 3. The average code coverage achieved by traversal
algorithms

Code Coverage, % Graph traversal
algorithm Symbol Branch Method

All paths search 95,77 82 82,2

All nodes search 94,98 78,6 80,6

Main_paths search 89,97 69,3 71,5

105

A. Ušaniov, K. Motiejūnas

The ’all paths set‘ provided the highest code
coverage level. The ’all nodes set‘ provided slightly
lower code coverage than “all path set”. The “main
paths set” provided the lowest level of coverage.

None of generated test scripts sets was able to
reach 100% code coverage. The analysis of the code
coverage showed that the code coverage of certain
automatically generated methods such as initialisation
and destruction was not measured due to platform
specifics. That is why method coverage was about
80%. However the symbol coverage approach covered
all the code created by a programmer. The symbol
coverage approach will be further applied. The
average code coverage for all paths, all nodes, and
main paths sets is presented below (Figure 13).

All nodes;
94,98

Main paths;
89,97

All paths;
95,77

87

88

89

90

91

92

93

94

95

96

97

Tests set

S
ym

b
o

l c
o

ve
ra

g
e,

 %

Figure 13. The average symbol code coverage
by traversal algorithms

3.5. The run-time duration tests’ execution

During the execution of test scripts on benchmark
programs the duration of execution was measured.
Test scripts were generated with parameter “cycles
count” set to 1 and with all traversal algorithms.

The duration of ’all nodes set’ and ’main paths set’
test scripts execution was about 10 minutes. Execution
of ’all paths set’ test scripts took around half an hour.
The duration of execution is linearly linked to the the
number of test scripts executed. The correlation was
0,95. The larger the size of test scripts set the longer it
taked to execute. In Figure 14 the logarithmic graph of
duration of executions is given. For example 10 thou-
sands of test scripts will take nearly 3 hours to
execute.

”Main path” set requires about one minute of exe-
cution and on average ensures symbol code coverage
of 89.97%. The duration of execution for test scripts
will increase from 2 to 40 times when ‘all path’ set is
used. This would allow for increasing symbol code
coverage on average up to 94.98%. The significantly
longer execution would allow increasing code cove-
rage by up to 5 %.

The average time taken to execute one test script is
0.879 second with standard deviation 0.378 second.
This means that duration required for execution of one
test script is about 1 second. In comparison with unit
testing this is too long. The reason for this lies in the
nature of user interface testing. The execution tool (a
test driver) uses the operating system’s resources to
access graphical components of SUT and to fire

events or call event-handlers. The wait-timeout para-
meter defines how long the test driver can wait until
the required GUI component becomes visible. The
default wait timeout parameter value is 10000 milli-
seconds. It was experimentally determined that it
cannot be lower than 500 ms due to GUI nature:
1. The GUI components cannot be used until they

become visible. If wait-timeout value is lower
than 500 ms then the test driver marks test script
as failed.

2. Business logic functions that execute in the
background influence the visibility of GUI
component.

Such long time duration of execution of test scripts
is a shortcoming of the testing process. If the execu-
tion time is too large, automated testing becomes less
attractive and cannot compete with manual testing. To
change the situation it is necessary to reduce the size
of tests set by eliminating scripts which have no
influence on the code coverage, therefore leaving only
essential test scripts.

0

0

0

1

10

100

49 9900 19900 29900 39900 49900 59900

Number of test scripts

E
xe

cu
ti

o
n

 t
im

e
d

u
ra

ti
o

n
,

h
o

u
rs

Figure 14. The duration of test scripts execution

3.6. The experiment to minimise the tests set

The generated testing scripts set can be reduced by
eliminating test scripts which have no influence on the
code coverage.

The tests set reduction is required to decrease exe-
cution time. The summarised results of testing sets
reduction are presented in Table 4. Since the ”All path
search” algorithm generates the largest testing scripts
set – ”All paths set”, it has the biggest chance of
reduction equal to 4.2 times. The ”All nodes set” and
”Main paths set” can be reduced by 3.6 and 2.1 times
correspondingly.

Table 4. Testing set reduction

Testing scripts set Reduction level on average

All paths set 4,2

All nodes set 3,6

Main paths set 2,1

Since the amount of test scripts and duration of
their execution are linearly associated, the run-time of
minimised test scripts set will decrease by the same
factor as number of tests sets was reduced. After the

106

A Method for Automated Testing of Software Interface

minimisation, the code coverage by the original test
will remain the same in the minimised tests set.

3.7. The mutation testing experiment to the
effectiveness of the tests

Creation of tests poses the question whether the
tests are correct. To evaluate the effectiveness of the
generated test set the mutation testing was used. The
benchmark programs were put under the mutation
testing. The summarised results of mutation testing
grouped by approach of tests generation are presented
in Table 5.

Table 5. Mutation testing results of test generation approach

Graph
traversal
algorithm

Revealed,
%

Killed, %
Equivale

nt, %
Survived,

%

All paths
search

80,56 68,1 12,46 19,44

All nodes
search

80,25 67,79 12,46 19,76

Main paths
search 76,56 64,1 12,46 23,45

Depending on testing goals tester could choose the
main path, all nodes, or all paths approaches:
1. The main path set revealed 76.56 % of mutants

(killed 64.1 % + 12.46 % equivalent) with rela-
tively low execution duration of about 1 minute;

2. The all nodes set revealed 80.25 % of mutants
(killed 67.79 % + 12.46 % equivalent), therefore
giving 3.69 % increase of mutants killed. Run-time
took up to 10 minutes;

3. The all paths set revealed 80.56 % of mutants
(killed 68.1 % + 12.46 % equivalent) and gave 0.4
% increase of mutants killed, but took a relatively
long time to execute - around 40 minutes;
The example shows that proposed method allows

for an appropriate testing strategy to be chosen, based
on the balance of testing duration and test quality
required.

3.8. Enabling regression testing with method

The initial tests model creation depends on the size
of SUT. The average time required to create tests
model for benchmark programs is about 2 hours. The
test scripts generation and execution took 5 and 40
minutes accordingly (Figure 15).

model creation;
180

tests
generation; 5

tests execution;
40

Figure 15. Initial testing activity allocation

The average size tests model changes due to
system modifications or model tuning require less
than 15 minutes. While test scripts generation and
execution run-time durations remains unchanged
(Figure 16).

model creation;
15

tests
generation; 5

tests execution;
40

Figure 16. Regression testing activity allocation

The proposed method for automated software in-
terface testing is not change-sensitive and allows to
quickly and easily adopt to the modifications of the
system due to the bug fixes or changed requirements.

3.9. Summary of experiments

The summarised results of executed experiments
are presented in Table 6.

Table 6. Summarised results of executed experiments

Approach Code
coverage,

%

Test
scripts,

%

Revealed,
%

Run-
time

duration

All paths
95.77

100 80.56 > 30
minutes

All nodes
94.,98

36 80.25 < 10
minutes

Main
paths

89.97
9 76.56 < 1

minute

The ”main path” set revealed 76.56 % of mutants
with relatively low execution duration of about 1
minute.

The ”all nodes” set revealed 80.25 % of mutants.
This was a3.69 % increase from the ”main path” set.
The run-time of all nodes took up to 10 minutes.

The ”all paths” set revealed 80.56 % of mutants.
This was only 0,4 % more than ”all nodes” set re-
vealed, but required significantly high execution
duration of up to 40 minutes;

The use of all nodes and/or main paths approaches
allowed decreasing tests set size by 50% and signi-
ficantly reduced the run-time duration.

The proposed method allowed to automate all
manual tests of system’s functionality performed
through GUI and discovered around 80% of mutants.

The dependency of SUT lines of code (LOC) and
the amount of test scripts required is presented in
Figure 17. The correlation metric was 0,975 %. The
number of tests quickly increased when LOC grew.

The experiments showed, that the relation of
code coverage and killed mutants is weak (Figure 18).
The correlation metric of code coverage and killed

107

A. Ušaniov, K. Motiejūnas

mutants is 0,238. This supports the assumption that
the achievement of 100 percents of code coverage by
passing all tests does not guarantee bug free-code,
since many bugs can hide from test suites [23].

LOC and Testing Scripts Set Size Correlation

1

10

100

1000

10000

100 1000 10000 100000

LOC

T
es

ti
n

g
 S

c
ri

p
ts

 S
e
t
S

iz
e

Figure 17. Correlation of LOC and Testing Scripts Set Size

CodeCoverage and KilledMutants corellation

62
64
66
68
70
72
74
76

90 92 94 96 98 100

Code Coverage, %

K
ill

e
d

 M
u

ta
n

ts
 C

o
u

n
t,

%

Figure 18. Correlation of Code Coverage

and Killed Mutants

The experiments showed, that nearly 20 % of test
scripts revealed up to 60 % of mutants. And remaining
80 % of test scripts reveal up to 20 % of mutants.
About 20% of mutants survived and in total 80 % of
mutants are revealed.

0
10
20
30
40
50
60
70
80
90

0 20 40 60 80 100

Test scripts, %

R
e

v
e

a
le

d
 m

u
ta

n
ts

, %

Figure 19. Correlation of Testing Scripts Set Size
and Killed Mutants Count

4. Conclusions

1. The analysis of software testing approaches
showed that there is a lack of model based testing
methods, which automate all testing phases: gene-
rating tests, executing them, and evaluating the test
result.

2. Using the developed method for automated testing
of software interface reduced testing duration and
allowed automating all manual tests of the system
functionality through a graphical interface.

3. Using the developed method for automated testing
of software interface allowed to automatically ge-
nerate tests, execute them, and verify test results.

4. The minimization of all paths tests set by 50 % for
selected benchmark programs reduced tests effect-
tiveness by no more than 5 %.

5. The mutation testing with selected benchmark
programs showed that effectiveness of generated
tests reaches 80 %.

References

 [1] Kanglin Li, Mengqi Wu. Effective GUI Test
Automation: Developing an Automated GUI Testing
Tool. Sybex, 2005.

 [2] P. Baker, Zhen Ru Dai, J. Grabowski, O. Haugen,
S. Lucio, E. Samuelsson, I. Schieferdecker, C.E.
Williams. The UML 2.0 Testing Profile. Proceedings
of the'8th Conference on Quality Engineering in
Software Technology, Nuremberg (Germany), 2004,
181-189.

 [3] F. Corno, E. Sanchez, M.S.Reorda, G. Squillero.
Automatic test program generation: a case study.
Design & Test of Computers, 2004, 21(2), 102-109.

 [4] R. Knowles. Automatic testing: systems and appli-
cations. McGraw-Hill, 1976.

 [5] N. Tracey, J. Clark, K. Mander, J. McDermid.
Automated test-data generation for exception
conditions. Software: Practice and Experience, 2000.
30(1), 61-79.

 [6] W. Kheng, L.K. Siau Cheng, S. Yi. Automated
generation of test programs from closed specifications
of classes and test cases. Proceedings of the 26th
International Conference on Software Engineering,
2004, 96-105.

 [7] W. Xin, C. Zhi, L. Qi Shuhao. An optimized method
for automatic test oracle generation from real-time
specification. Proceedings of the 10th IEEE Interna-
tional Conference on Engineering of Complex Com-
puter Systems (ICECCS'05), 2005, 79-85.

 [8] D. Elfriede. Effective Software Testing: 50 Ways to
Improve Your Software Testing. 2002. Addison-Wes-
ley, 240.

 [9] M. Ray, S.S. Barpanda and D.P. Mohapatra. Test
Case Design Using Conditioned Slicing of Activity
Diagram. International Journal of Recent Trends in
Engineering (IJRTE), 2009, 1(Issue on Computer
Science), 117-120.

[10] A.M. Memon. A Comprehensive Framework For Tes-
ting Graphical User Interfaces. PhD thesis, University
of Pittsburgh, Faculty Of Arts And Sciences. 2001,
139.

[11] D. Kundu, D. Samanta. A Novel Approach to Gene-
rate Test Cases from UML Activity Diagrams. Journal
of Object Technology, 2009, 8, 65-83.

[12] J. Ryser and M. Glinz. A Scenario-Based Approach
to Validating and Testing Software Systems Using
Statecharts. Proceedings of the 12th International
Conference on Software and Systems Engineering and
their Applications ICSSEA'99, Paris, 1999.

108

A Method for Automated Testing of Software Interface

[13] M.A.-J. Jesus, I. Luis. Designing GUI Components
for UML Use Cases. Proceedings of the 12th IEEE
International Conference and Workshops on
Engineering of Computer-Based Systems, 2005.

[14] L. Wang. Generating Test Cases from UML Activity
Diagram based on Gray-Box Method. Proceedings of
the Software Engineering Conference, 11th Asia-
Pacific, 2004.

[15] M. Chen, X. Qiu, X. Li. Automatic test case gene-
ration for UML activity diagrams. Proceedings of the
2006 international workshop on Automation of soft-
ware test. ACM. Shanghai, China, 2006, 2-8.

[16] Š. Packevičius, A. Ušaniov, E. Bareiša. The use of
model constraints as imprecise software test oracles.
Information technology and control. 2007, 36(2), 246-
252.

[17] G. Meszaros. Agile regression testing using record &
playback. Proceedings of the Conference on Object
Oriented Programming Systems Languages and
Applications. Anaheim, CA, USA, 2003, 353-360.

[18] A. Memon, I. Banerjee, A. Nagarajan. What Test
Oracle Should I Use for Effective GUI Testing? Pro-
ceedings of the 18th IEEE International Conference
on Automated Software Engineering,2003, 164-173.

[19] D. Barisas, E. Bareiša. A Software Testing Approach
Based on Behavioral UML Models. Information
Technology and Control, 2009, 38(2), 119-124.

[20] Š. Packevičius. Unit Tests Generation Using Software
Models With Imprecise Constraints. PhD thesis,
Kaunas University of Technology, Faculty of Informa-
tics. 2009, 140.

[21] R. Diestel. Graph Theory. Third Edition. Springer-
Verlag. 2005.

[22] S. Yanhong, L.J. Edward. Specification-driven auto-
mated testing of GUI-based Java programs. Pro-
ceedings of the 42nd annual Southeast regional
conference. Huntsville, Alabama, USA, 2004, 140-145.

[24] R.V. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley. 1999.

Received October 2010.

